
 

 
 

 

 
Machines 2023, 11, 6. https://doi.org/10.3390/machines11010006 www.mdpi.com/journal/machines 

Article 

Identifying Parametric Models Used to Estimate Track  

Irregularities of a High-Speed Railway 

Sunghoon Choi 

High-Speed Railroad Research Department, Korea Railroad Research Institute,  

Uiwang-si 16105, Republic of Korea; schoi@krri.re.kr 

Abstract: This study aims to identify parametric models to estimate track irregularities in high-

speed railways with simple acceleration measurements. The primary contribution of current re-

search is the development of effective parametric models with smaller parameters. These parame-

ters are derived from the measured data via a specialized track geometry inspection system. An 

adaptive Kalman filter algorithm, using the displacement estimated from the acceleration signals as 

the input and measured track irregularities as the output, is applied to obtain the model’s unknown 

parameters. These models are applied to acceleration measured from high-speed rail vehicles in 

operation, and track irregularities are estimated in spatial and wavelength domains. The estimated 

irregularities are compared to the track geometry inspection system’s results. 
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1. Introduction 

Track irregularities mainly originate from heavy traffic loads and unexpected ground 

movement, which excite the wheelset and create unwanted vibrations. These vibrations 

may affect passenger comfort and cause the degradation of track and train components 

or, at worst, derailment. Therefore, rail operators and infrastructure managers should reg-

ularly monitor and maintain the track irregularities with proper methods to ensure pas-

senger comfort and safety. 

Track irregularities, defined as deviations from the original track geometry, are usu-

ally measured with a track inspection vehicle equipped with special measurement devices 

using contact probes, lasers, or optical sensors [1,2]. However, using this inspection vehi-

cle with measuring devices is costly and complicated. In addition, the dynamic character-

istics of a track inspection vehicle are different from those of a high-speed train in com-

mercial operation, so the dynamic deflection of the track caused by a high-speed train 

cannot be appropriately measured. As an alternative, a simple and inexpensive device 

using accelerometers installed on an in-service vehicle has drawn attention because it can 

be used for daily monitoring of track conditions. Theoretically, displacement can simply 

be estimated by double integrating acceleration. However, in practice, the integration 

usually yields unwanted drifts due to the non-zero initial condition of the signal, the di-

rect current (DC) offsets, or the noise due to electrical/mechanical hysteresis in sensors or 

cables [3]. To avoid these drawbacks, many researchers have proposed model-based 

methods. In these methods, system models are required, which can represent the input–

output relationship between acceleration and track irregularities. 

Several studies have sought models that describe the dependence between accelera-

tion and track irregularities. Kawasaki et al. [4] presented a method using car body accel-

eration and an auto-regression model with extra inputs. The properties of the suspension 
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system highly influence the car body acceleration; hence, it is difficult to separate the effect 

of suspension from the acceleration signals. Weston et al. [5,6] used bogie-mounted accel-

erometers and a gyroscope to monitor track irregularities and proposed a correction using 

the second-order dynamic model to improve the lateral irregularity. The results of such 

studies were limited to wavelengths less than 35 m or 70 m and thus were unsuitable for 

measuring long wavelengths up to 150 or 200 m. Alfi et al. [7] proposed a method for 

calculating irregularities with long wavelengths from vehicle acceleration measurements 

using a model-based identification procedure defined in the frequency domain. However, 

there was a non-negligible difference in the trend of the power spectral density and in the 

space diagram for wavelengths up to 120 m, which is essential for passenger comfort dur-

ing high-speed journeys. Czop et al. [8] presented an approach to detect track irregulari-

ties using axle box accelerometers and the inverse linear parametric vehicle dynamics 

model. They focused on the relationship between the measured bending moment and axle 

box vibrations, not displacement, which is essential for making a track maintenance deci-

sion. Hidalgo et al. [9] and Tsunashima et al. [10] developed Kalman-filter-based tech-

niques that combined a kinematic model and a dynamic model to identify track irregular-

ities. Both works used an accelerometer and a gyroscope to estimate the vertical track ir-

regularities, and relatively acceptable accuracy was obtained. Muñoz et al. [11] proposed 

an efficient Kalman-based methodology for monitoring lateral track irregularities using 

inertial sensors installed on a train in operation. In this study, two accelerometers are uti-

lized to measure the lateral acceleration of the wheelset and the bogie frame. At the same 

time, a gyroscope is employed to detect the yaw angular velocity of the wheelset. 

Lee et al. [12] proposed a mixed filtering approach using the Kalman, band-pass, and 

compensation filters for waveband monitoring of lateral and vertical track irregularities, 

which used accelerometers installed on the axle box and the bogie. The method used Kal-

man and band-pass filters for displacement estimation from measured acceleration. Com-

pensation filters consisting of finite impulse response models with 40 parameters were 

used to correct for amplitude and phase difference, which result from the inherent char-

acteristics of the preceding filters and the lateral motion of the wheelset or the bogie with 

respect to the track. However, the models were expensive and complex because too many 

parameters were used. This research proposes efficient parametric models with fewer pa-

rameters. The parameters are derived from the measured signals obtained using a track 

geometry inspection system (TGIS). An adaptive Kalman filter algorithm is applied to ob-

tain the unknown parameters of track irregularities with an estimated displacement from 

acceleration signals as the input and track irregularity signals as the output. Finally, the 

developed models are used in the analysis of acceleration data measured from the axle 

box and the bogie of a high-speed train in operation. 

This paper is organized as follows: The measurement setup used to obtain accelera-

tion signals and track geometry is described in Section 2; Section 3 presents the process of 

estimating displacement from acceleration signals, while Section 4 explains the parametric 

models and the methodology used to estimate the parameters; Section 5 describes the 

model section process and validates the selected model; In Section 6, track irregularities 

are estimated using acceleration signals obtained from high-speed trains in operation, and 

the results are compared with the reference irregularities; and the summary and conclu-

sions can be found in Section 7. 

2. Measurement Setup 

Figure 1 depicts the installation of lateral and vertical accelerometers on an axle box 

and a bogie of a high-speed train in operation. Capacitive-type accelerometers were used 

to measure low-frequency vibrations. The sampling frequency used to acquire each signal 

was 2048 Hz. Additionally, the train’s speed was measured synchronously with the accel-

eration signals, so the filtered signals were rearranged from the time domain to the wave-

number domain with a 0.25 m sampling interval. 
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(a) (b) 

Figure 1. Accelerometers on axle box and bogie: (a) axle box-mounted accelerometers; (b) bogie-

mounted accelerometers [12]. 

The profile and geometry of the track were measured using a specialized TGIS, which 

can operate at speeds of up to 320 km/h with a spatial resolution of 0.25 m. The TGIS was 

installed on the high-speed train HSR-350x, which is the prototype of commercial high-

speed trains in Korea [13]. A light-sectioning technique using a small laser band as a sharp 

edge was utilized to measure the profile. The inertial data obtained with gyros and accel-

erometers, which were installed close to the laser device and the camera, were used for 

geometric measurements. Their signals underwent time-domain processing prior to con-

version to the wavenumber domain through filtering and re-sampling. 

3. Displacement Estimation from Acceleration 

As mentioned in the introduction, displacement estimation from noisy acceleration 

using direct double integration results in unrealistic errors. A discrete state-space model 

and the Kalman filter were introduced to resolve the error in the previous works [12,14]. 

The following describes the state-space model for displacement estimation from noisy ac-

celeration: 

• State model 

𝒙𝑛+1 = 𝑭𝒙𝑛 + 𝑮𝒖𝑛, (1) 

• Space model 

𝑎𝑛 = 𝑯𝒙𝑛 + 𝒘𝑛, (2) 

wherein 

𝑭 = [
𝛼 0 0
1 0 0
0 1 0

], 𝑮 = [
1
0
0

], and 𝑯 =
1

𝑇𝑠
2 [1 −2 1]. (3) 

In Equation (3), α is a model parameter (0 ≪ 𝛼 ≤ 1) and 𝑇𝑠 is the sampling time. In 

the state-space equations, the state transition matrix 𝑭 is used to update the preceding 

state, and 𝑮 is the noise-input matrix. At the same time, 𝑯 is the measurement matrix 

used to map the estimated displacement onto the measured acceleration. The noises 𝒖𝑛 

and 𝒘𝑛 are comprised of zero-mean white Gaussian processes. It is assumed that the ini-

tial displacement 𝑥0 is zero. 

The measured acceleration signals are utilized to estimate the displacement using a 

Kalman filter algorithm, and its covariance form is described as follows [15]: 

• Initial condition 

𝒙̂0|−1 = 0, (4) 

Lateral

Vertical

Vertical
Lateral
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𝑷0|−1 = 𝚷0. (5) 

• Recursion relations 

- Innovations: 

𝑒𝑛 = 𝑎𝑛 − 𝑯𝒙̂𝑛|𝑛−1, (6) 

- Innovation covariance: 

𝑹𝑒,𝑛 = 𝑯𝑷𝑛|𝑛−1𝑯∗ + 𝑹𝑛, (7) 

- Kalman prediction gain: 

𝑲𝑝,𝑛 = (𝑭𝑷𝑛|𝑛−1𝑯∗ + 𝑮𝑺𝑛)𝑹𝑒,𝑛
−1 , (8) 

- State estimation: 

𝒙̂𝑛+1|𝑛 = 𝑭𝒙̂𝑛|𝑛−1 + 𝑲𝑝,𝑛𝑒𝑛, (9) 

- State error covariance: 

𝑷𝑛+1|𝑛 = 𝑭𝑷𝑛|𝑛−1𝑭∗ + 𝑮𝑸𝑛𝑮 − 𝑲𝑝,𝑛𝑹𝑒,𝑛𝑲𝑝,𝑛
∗ . (10) 

where 𝒙̂𝑛+1|𝑛 is the estimate of 𝒙𝑛 , 𝑷𝑛+1|𝑛 is the state error covariance information at 

step 𝑛, 𝜫0 is the auto-covariance of the initially estimated displacement 𝒙̂0|−1, and 𝑸𝑛 

and 𝑹𝑛 are the auto-covariances of 𝒖𝑛 and 𝒘𝑛, respectively. 

After applying the Kalman filter, the third-order Butterworth band-pass filters are 

applied to eliminate the short-wavelength effect due to the wheel and the bogie and the 

long-wavelength effect due to the track’s curves. Block diagrams illustrating the processes 

are presented in Figure 2. 

 

Figure 2. Displacement estimation from acceleration signals. 

4. Model Setup and Identification 

4.1. Concept 

System identification is a technique used to build and complement a model with 

measurements [16]. The model may have a parametric or a non-parametric description in 

the frequency or time domains. The non-parametric description uses a system’s impulse 

or frequency response with no parameters. It is highly dependent on time or frequency 

resolution. Using window techniques to reduce leakage can lead to signal distortion. 

Moreover, it is difficult to use in real-time calculation because an inverse Fourier trans-

form is required to represent the results in the time domain. Therefore, a parametric rep-

resentation was utilized in this work. It uses a model whose parameters are identified by 

an adaptive filtering algorithm that minimizes the error between the estimated and meas-

ured outputs. There are two kinds of parametric models: tailor-made and ready-made. 

The former is constructed using fundamental physical principles, and its parameters are 

unknown variables used to represent the characteristics of input–output relationships. 

Kalman filter

State-space model

3 ~ 200m
band-pass filters

Estimated
lateral 

displacement

Measured
lateral

acceleration

3 ~ 150m
band-pass filters

Estimated 
vertical 

displacement

Measured
vertical
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The latter is built in terms of input, output, and transfer characteristics without any phys-

ical principles representing its internal workings. The variables describe the relationship 

between the inputs and outputs without representing physical quantities. 

The relationship between track irregularities and the motion of an axle box or a bogie 

depends on the dynamic characteristics of the suspension system and the effective wheel 

conicity, the mechanism of which is highly complex; hence, it is challenging to represent 

using physical models [17]. Therefore, ready-made parametric models, which can predict 

track irregularities from the estimated displacement, are selected for this research. The 

displacement is estimated from the acceleration signals, which the TGIS measured so that 

they are synchronized with track irregularities. The estimated displacement was used in-

stead of the measured acceleration to reduce uncertainty in the system identification. 

4.2. Model Setup 

The finite impulse response (FIR) and the infinite impulse response (IIR) models are 

considered for the ready-made parametric models. The FIR models depend on the present 

and previous values of input signals only, while the IIR models rely on one or more prior 

output values in addition to the input signal [18]. They are represented as follows: 

- IIR model: 

𝑦𝑛 = − ∑ 𝑎𝑘𝑦𝑛−𝑘

𝑁

𝑘=1

+ ∑ 𝑏𝑘𝑥𝑛−𝑘

𝑀

𝑘=0

, (11) 

- FIR model: 

𝑦𝑛 = ∑ 𝑏𝑘𝑥𝑛−𝑘

𝑀

𝑘=0

, (12) 

where 𝑎𝑘 and 𝑏𝑘 are model parameters, and 𝑥𝑛 and 𝑦𝑛 are the input and output of the 

model. 

The FIR models have been widely used because of their stable behavior and good 

convergence in the estimation. However, they require many parameters and complex cal-

culations to achieve a satisfactory performance. The IIR models can realize a sharp transi-

tion band with relatively few parameters, although they are unstable [19]. In this work, a 

hybrid model using a serial application of IIR or FIR models is applied to employ the 

advantages of both models. The parameters are initially set to zero and identified using 

the adaptive Kalman filter as illustrated in Figure 3a,b. In the figures, A and B correspond 

to IIR and FIR filters, respectively. 

 
(a) 

Σ
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Adaptive 
Kalman filter

̶

Copy 
parameters

Compare!

Σ
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(b) 

Figure 3. Adaptive filtering for system identification: (a) single model; (b) hybrid model. 

4.3. Adaptive Kalman Filter 

Before applying an adaptive Kalman filter process, the parametric models are modi-

fied and described as a state-space model [20]: 

- State model 

𝜽𝑛+1 = 𝜽𝑛 + 𝒖𝑛, (13) 

- Space model: 

𝑦𝑛 = 𝑯𝑛
𝑇𝜽𝑛 + 𝒘𝑛, (14) 

where 

𝜽𝑛 = [𝑏0, … , 𝑏𝑀 , 𝑎1, … , 𝑎𝑁]𝑇 , 𝑯𝑛 = [𝑥𝑛, … 𝑥𝑛−𝑀, −𝑦𝑛−1, … , −𝑦𝑛−𝑁]𝑇  

𝒖𝑛, 𝒘𝑛: 𝑍𝑒𝑟𝑜 − 𝑚𝑒𝑎𝑛 𝑤ℎ𝑖𝑡𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒𝑠. 
 

The adaptive Kalman filter is applied to identify the model parameters recursively. 

It is an optimal estimation of the state that minimizes the squared error between the esti-

mated and the measured track irregularities. The algorithm can be summarized as fol-

lows: 

• Initialization 

𝜽̂0|−1 = 0, 𝑷0|−1 = 𝚯0, (15) 

• Recursions 

- Innovations: 

𝑒𝑛 = 𝑦𝑛 − 𝑯𝑛𝜽̂𝑛|𝑛−1, (16) 

- Innovation covariance: 

𝑹𝑒,𝑛 = 𝑯𝑛𝑷𝑛|𝑛−1𝑯𝑛
∗ + 𝑹𝑛, (17) 

- Kalman prediction gain: 

𝑲𝑝,𝑛 = 𝑷𝑛|𝑛−1𝑯𝑛
∗ 𝑹𝑒,𝑛

−1 , (18) 

- State estimation: 

𝜽̂𝑛+1|𝑛 = 𝜽̂𝑛|𝑛−1 + 𝑲𝑝,𝑛𝒆𝑛, (19) 

- State error covariance: 

Σ
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𝑷𝑛+1|𝑛 = 𝑷𝑛|𝑛−1 + 𝑸𝑛 − 𝑲𝑝,𝑛𝑹𝑒,𝑛𝑲𝑝,𝑛
∗ = 𝑷𝑛|𝑛−1 + 𝑸𝑛 − 𝑲𝑝,𝑛𝑯𝑛𝑷𝑛|𝑛−1. (20) 

In the algorithm, 𝜽̂𝑛+1|𝑛 is the parameter estimation at 𝑛, and 𝑸𝑛, 𝑹𝑛, and 𝚯0 rep-

resent the auto-covariance of 𝒖𝑛, 𝒘𝑛, and 𝜽0, respectively. 

5. Identification of the Models 

5.1. Model Selection 

To determine the model parameters, the displacements and irregularities obtained 

over a track section of 30 km in length, as shown in Figure 4, are used as the input and 

output. They were sampled every 0.25 m; hence, 120,000 points are used for identification 

in each direction. Several single and hybrid models are created using a selection of poles 

and zeros. The Pearson’s product-moment correlation coefficient (PPMCC) between the 

estimated and the measured track irregularities, the measure of the linear dependency 

between the two signals [21], is evaluated to determine the optimal orders of the model. 

The mean square error (MSE) of the estimated irregularity is also evaluated to compare 

the performance of the models. 

 
(a) 

 
(b) 

Figure 4. Input (displacement) and output (irregularity) signals for system identification: (a) lateral 

direction; (b) vertical direction. 
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The number of zeros (𝑀) and poles (𝑁) for the models, defined as in Equations (11) 

and (12), range from 0 to 20 and 1 to 20, respectively. The contour plots, as shown in Figure 

5, are used for the intuitive evaluation of the models. The highest values are obtained 

above six zeros and one pole in the lateral direction. In the vertical direction, they are 

obtained above fourteen zeros and one pole, above twelve zeros and three poles, and 

above six zeros and five poles. IIR models with six zeros and one pole and six zeros and 

five poles are selected for the vertical and lateral directions, respectively, because models 

with smaller orders are efficient. 

 
(a) 

 
(b) 

Figure 5. PPMCC contour plots using estimated displacement from measured acceleration: (a) lat-

eral direction; (b) vertical direction. 

The PPMCC and the MSE for different models are compared, as shown in Figure 6. 

The numbers in the parentheses indicate the number of zeros and poles; for example, 

FIR(4) represents the FIR model with 𝑀 = 4, and IIR(6,5) stands for the IIR model with 

𝑀 = 6 and 𝑁 = 5. The FIR(40) model is selected for comparison, as it was used in a pre-

vious work [11]. The FIR(4) model is also selected because it has the lowest number of 

zeros with no pole and a relatively high PPMCC in the lateral direction. 

In Figure 6a, for the lateral direction, it is found that the PPMCC value is increased 

when a single IIR(6,1) or FIR(4) is used. However, the MSE for the IIR(6,1) model is higher 

than that of the FIR(4) or FIR(40) models. A hybrid IIR/FIR model, which applies the FIR(4) 

after the IIR(6,1), results in the highest PPMCC and the lowest MSE. On the contrary, the 

worst result is obtained when the sequence of the filters is reversed, i.e., the IIR(6,1) is 

applied after the FIR(4). Hence, it is confirmed that the hybrid IIR/FIR model is adequate 

and appropriate for estimating lateral track irregularity. In Figure 6b, for the vertical di-

rection, it is found that the PPMCC and the MSE slightly improve when a single IIR(6,5) 

model is used. The effect of using a hybrid IIR/FIR model is moderate, and a hybrid 
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FIR/IIR model worsens the result. Therefore, it is confirmed that a single IIR model would 

be sufficient to estimate the vertical track irregularity. 

 
(a) 

 
(b) 

Figure 6. Comparison of PPMCC () and MSE (■) of different models: (a) lateral direction; (b) ver-

tical direction. 

The spatial frequency responses of the derived models are shown in Figure 7. As 

mentioned in the introduction, the models are used to compensate for the discrepancies 

caused by the lateral motion of the axle box or the bogie relative to the track and the phase 

delay of the previous filters. Therefore, the model in the lateral direction has larger value 

than that in the vertical direction. Data from two additional test campaigns, carried out 

within a six-month interval after the first test, are used to ensure the reproducibility of the 

proposed models. Despite the six-month interval between the first and the third trials, the 

frequency responses of both directions are consistent. Therefore, it is safe to conclude that 

the models are reliable and can be applied to estimate track irregularities. 

The pole–zero plots of the derived models are shown in Figure 8. All poles are located 

inside, near the unit circle, and separated from zeros. This ensures that the derived models 

are stable and can produce bounded signals. 
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(a) 

 
(b) 

Figure 7. Frequency response of the derived models: (a) lateral direction; (b) vertical direction. 
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(b) 

Figure 8. Pole−zero plots: (a) lateral direction; (b) vertical direction. 

5.2. Model Validation 

The derived parametric models are applied to estimate track irregularities from the 

acceleration signals obtained from the HSR-350x train on which the TGIS is installed. The 

results in the spatial domain are shown in Figure 9. In the lateral direction, the irregularity 

estimated without the parametric model overestimates the track irregularity, while the 

derived models ensure the estimated results are close to the measured track irregularity. 

In the vertical direction, all results are consistent, and no significant improvements are 

observed regardless of the model used. 

 

Figure 9. Estimation of track irregularities from the TGIS in the spatial domain. 

Since it is complicated to analyze the results in the spatial domain, track irregularities 

are transformed into the wavelength domain, and their power spectral densities are com-

pared as shown in Figure 10. The compensation model improves the irregularity estima-

tion in the lateral direction, especially for wavelengths between 4~70 m. However, the 

effect of the model is indistinct in the vertical direction. 
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Figure 10. Estimation of track irregularities using the TGIS signal in the wavelength domain: (a) 

lateral direction; (b) vertical direction. 

6. Track Irregularity Estimation Using Derived Models 

To examine the applicability of the derived models, they were used to estimate track 

irregularities from the signals obtained using the accelerometers installed on the axle box 

and the bogie of a KTX train in operation. A section of the slab track with notable lateral 

and vertical track irregularities was selected for comparison. The reference measurement 

with the TGIS was carried out approximately one year before the measurement tests with 

the in-service train. The slab track was selected because the variations in time are expected 

to be smaller than those for the ballasted track. Three measurement tests were carried out 

within a one-week interval to ensure the reproducibility of the methodology, and the re-

sults were compared in the spatial and the wavelength domains as shown in Figures 11–

13. The maximum train speed in these test campaigns was 300 km/h. The discrepancies 

were presumed to be a result of the differences in the suspension characteristics and wheel 

profiles of the KTX train and HSR-350x train. 

The estimated and measured lateral track irregularities are compared in Figures 11a 

and 12. The estimated results from the three tests show excellent agreement, confirming 

that the proposed method can be used for trains in regular operation. The results also 

show good agreement with the reference irregularity. In the spatial domain, as shown in 

Figure 11a, an irregularity is clearly observed near the 0.25 km section from both accel-

erometers installed on the axle box and the bogie. In the wavelength domain, as shown in 

Figure 12, the estimated results show good agreement over all wavelengths except below 

4 m and near 10 m. 
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(a) 

 
(b) 

Figure 11. Estimation of track irregularities in the spatial domain: (a) lateral direction; (b) vertical 

direction. 
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(a) 

 
(b) 

Figure 12. Estimation of lateral track irregularities in the wavelength domain: (a) axle box-mounted 

accelerometer; (b) bogie-mounted accelerometer. 

The estimated and measured vertical track irregularities are compared in Figures 11b 

and 13. The results from the three tests of the bogie-mounted accelerometer show excellent 

agreement, while those of the axle box-mounted accelerometer show some discrepancies. 

However, a notable irregularity near the 0.25 km section is clearly observed. Its magnitude 

is estimated within a tolerable range in both the axle box and the bogie-mounted accel-

erometers, as shown in Figure 11b. The wavelength characteristics of the estimated irreg-

ularities are shown in Figure 13. The results obtained from the accelerometers installed on 

the axle box and the bogie exhibit the same spectral characteristics of the measured irreg-

ularity. The results show that bogie-mounted accelerometers estimate the irregularities 

better. It is presumed that the acceleration signal of the axle box is noisier because the 

vibration level is much higher. 
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(a) 

 
(b) 

Figure 13. Estimation of vertical track irregularities in the wavelength domain: (a) axle box-mounted 

accelerometer; (b) bogie-mounted accelerometer. 

7. Summary and Conclusions 

The parametric models are identified by applying a system identification technique 

that uses estimated displacement from acceleration as the input and measured track ir-

regularity as the output. The parameters are derived from the acceleration and the track 

irregularities from a track geometry inspection system (TGIS). The parametric models are 

set up based on the IIR and/or the FIR, and the adaptive Kalman filter is applied for their 

estimation. The orders of the parametric models are determined by evaluating the PPMCC 

and the MSE. The number of parameters can be reduced while improving the performance 

of the models. In this work, a hybrid IIR/FIR model and a single IIR model are selected for 

lateral and vertical directions. They are validated by estimating irregularities from the 

acceleration signals measured by the TGIS. 

Finally, track irregularities are estimated using acceleration measured from trains in 

commercial operation. The results using data obtained from three measurement tests 

show good agreement, ensuring the methodology’s reproducibility. The estimated irreg-

ularities are compared with the reference irregularity in the spatial and wavelength do-

mains. The suggested method can detect the location of irregularities in both the lateral 
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and the vertical directions. It is also demonstrated that the estimated irregularities exhibit 

the same spectral characteristics as the measured irregularity. 

In conclusion, the identified parametric models can be used to predict track irregu-

larities from the accelerometers installed on high-speed trains in commercial operation. 
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