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Abstract: This paper proposes an improved data-driven calibration method for a six degrees of
freedom (DOF) hybrid robot. It focuses mainly on improving the measurement efficiency and
practicability of existing data-driven calibration methods through the following approaches. (1) The
arbitrary motion of the hybrid robot is equivalently decomposed into three independent sub-motions
by motion decomposition. Sequentially, the sub-motions are combined according to specific motion
rules. Then, a large number of robot poses can be acquired in the whole workspace via a limited
number of measurements, effectively solving the curse of dimensionality in measurement. (2) A
mapping between the nominal joint variables and joint compensation values is established using a
back propagation neural network (BPNN), which is trained directly using the measurement data
through a unique algorithm involving inverse kinematics. Thus, the practicability of data-driven
calibration is significantly improved. The validation experiments are carried out on a TriMule-
200 robot. The results show that the robot’s maximal position/orientation errors are reduced by
91.16%/88.17% to 0.085 mm/0.022 deg, respectively, after calibration.

Keywords: calibration; hybrid robot; data-driven; neural network

1. Introduction

Due to the high stiffness, large workspace/footprint ratio, and desirable dynamic
characteristics, hybrid robots have been widely used in modern high-end equipment
manufacturing fields such as aerospace, military, and rail transit [1–3]. Pose accuracy is
the most important index to evaluate the machining performance of hybrid robots. On
the premise of guaranteeing good repeatability through manufacturing and assembly,
calibration is an effective way to improve the robot pose accuracy [4–7].

Model-based calibration, also named kinematic calibration, is a classical technique
widely used in engineering applications. It usually consists of four steps: modeling,
measurement, identification, and compensation. The core step is to establish an error
model that satisfies the requirements of continuity, completeness, and minimization [8,9].
However, a robot has many error sources, including not only geometric errors such as
assembly and manufacturing errors [10], but also many non-geometric errors such as
friction, backlash, thermal deformation, and flexible deformation [11]. Moreover, the
study [12] has shown that almost 20% of robot errors are caused by error sources that
vary with the robot configurations, such as straightness errors in moving pairs and pitch
errors. Hence, establishing a complete model that considers all error sources seems to be
an impossible challenge.

The limitation of model-based calibration incentivizes the application of data-driven
methodologies [13], which estimate errors with an arbitrary posture using pre-measured
errors at certain locations by curve fitting [14], spatial interpolation [15–17], and artificial
neural networks (ANNs) [18–20]. Then, compensation is conducted based on the estimated
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values [21]. It usually involves three steps: measurement, estimation, and compensation.
Along this track, Alici et al. proposed an approach to estimate the robot position errors
using ordinary polynomials [22] and Fourier polynomials [23]. Bai et al. presented fuzzy
interpolation to estimate the position errors using the pre-measured errors on cubic lat-
tices [24]. According to the spatial similarity of position errors, Tian et al. [25] introduced
an inverse distance weighting (IDW) method. Cai et al. [26] utilized the kriging algorithm
to approximate the robot error surface. Analogously, ANNs, such as extreme learning
machine (ELM) [27], back-propagation neural network (BPNN) [28,29], and radial basis
function neural network (RBFNN) [30] have been gradually applied in data-driven cali-
bration. Although the data-driven method seems to be a promising approach due to its
excellent prediction performance, it still cannot ignore the limitations in measurement and
compensation, which seriously restricts its further development and application.

Data-driven calibration can theoretically compensate for all errors in the robot system.
However, its compensation accuracy relies on massive measurement data. The study [31] has
shown that a few sampling configurations cannot accurately describe the robot error distri-
bution, leading to poor accuracy after calibration, and the accuracy of some configurations
may be even worse than that before calibration. It is worth mentioning that the measurement
task always takes up the most of time in the calibration. Especially for robots with high-
dimensional joint space, the sampling data required for accurate calibration exponentially
increase with increasing dimensions of the joint space, leading to the curse of dimensional-
ity [32]. Consequently, the measurement task might take several days. The limitation of low
measurement efficiency is an urgent problem to be solved in data-driven calibration.

Due to the limitation of the openness of the robot system and the difficulty in solving
the analytic inverse kinematics, indirect approaches [33] that modify the joint input or
Cartesian coordinates are widely used in error compensation. Chen et al. [34,35] directly
took the estimated error E (the deviation between the measured pose Pm and the desired
pose Pn; i.e., E = Pm − Pn) as the compensation value and assumed that commanding
a robot to move to the Cartesian position Pn − E would cause it to reach Pn in reality;
i.e., Pm = Pn. However, the robot will actually reach a new pose, Pm = Pn − E + E∗,
which involves an error E∗ of another pose Pn − E, where in the general case E 6= E∗.
To acquire the optimal compensation value, Zhao et al. proposed a series of iterative
algorithms based on the kinematics [36], Jacobian [37], and optimization algorithms such
as particle swarm optimization (PSO) [38] and genetic algorithm (GA) [39]. Although the
compensation accuracy can be guaranteed to a certain extent, these approaches are not
feasible for online compensation because of the high computational burden. In addition,
the compensation approaches mentioned above are carried out based on the estimated
errors, which inevitably introduce estimation residuals. More importantly, the cumbersome
calibration process of prediction and compensation is very time-consuming, preventing
this approach from being used in field applications.

Aiming to resolve these problems, a new calibration method has been proposed in re-
search [40], which could effectively solve the contradiction between calibration accuracy and
measurement efficiency, as well as the problem of real-time error compensation. However,
it still has some shortcomings in practical application, as described in detail in Sections 3.1
and 4.1. Thus, an improved data-driven methodology is investigated in this paper. The
significance lies in the improvement of measurement efficiency and practicality. In the mea-
surement, an arbitrary motion of the robot is equivalently decomposed into three independent
sub-motions. Next, the sub-motions are combined according to specific motion rules. In
this manner, a large number of robot poses can be acquired in the whole workspace via a
limited number of measurements, which effectively solves the curse of dimensionality in
measurement. In compensation, the mapping between the nominal joint variables and joint
compensation values is established based on a BPNN, which is trained directly using the
measurement data through a unique training algorithm involving the robot inverse kinematics.
Thus, the practicability of the data-driven methodology is greatly improved.
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The paper is organized as follows. Section 2 is the system description of the six degrees
of freedom (DOF) hybrid robot. Section 3 introduces the principle of motion decomposition
and the implementation process of decomposition measurement. Section 4 illustrates an
improved data-driven calibration methodology from the aspects of the calibration principle,
mapping model designing, and network training. The validation experiments are carried
out on a TriMule-200 robot in Section 5. Finally, conclusions are drawn in Section 6.

2. System Description

Figure 1 shows the 3D model of the TriMule robot. It mainly consists of a 3-DOF
parallel mechanism and a 3-DOF wrist. The 1T2R parallel mechanism is composed of a
6-DOF UPS limb and a 2-DOF planar parallel mechanism involving two actuated RPS
limbs and a passive RP limb. The planar parallel mechanism is connected to the base
frame through a pair of R joints. The wrist is an RRR series mechanism with three axes
intersecting at a common point. Here, R, U, S, and P represent the revolute joint, universal
joint, spherical joint, and prismatic joint, respectively. The underlined R and P represent
the actuated revolute joint and prismatic joint, respectively.

Machines 2023, 11, 31 3 of 17 
 

 

dimensionality in measurement. In compensation, the mapping between the nominal joint 

variables and joint compensation values is established based on a BPNN, which is trained 

directly using the measurement data through a unique training algorithm involving the 

robot inverse kinematics. Thus, the practicability of the data-driven methodology is 

greatly improved. 

The paper is organized as follows. Section 2 is the system description of the six de-

grees of freedom (DOF) hybrid robot. Section 3 introduces the principle of motion decom-

position and the implementation process of decomposition measurement. Section 4 illus-

trates an improved data-driven calibration methodology from the aspects of the calibra-

tion principle, mapping model designing, and network training. The validation experi-

ments are carried out on a TriMule-200 robot in Section 5. Finally, conclusions are drawn 

in Section 6. 

2. System Description 

Figure 1 shows the 3D model of the TriMule robot. It mainly consists of a 3-DOF 

parallel mechanism and a 3-DOF wrist. The 1T2R parallel mechanism is composed of a 6-

DOF UPS limb and a 2-DOF planar parallel mechanism involving two actuated RPS limbs 

and a passive RP limb. The planar parallel mechanism is connected to the base frame 

through a pair of R joints. The wrist is an RRR series mechanism with three axes intersect-

ing at a common point. Here, R, U, S, and P represent the revolute joint, universal joint, 

spherical joint, and prismatic joint, respectively. The underlined R and P represent the 

actuated revolute joint and prismatic joint, respectively. 

 

Figure 1. Three-dimensional model of the TriMule robot. 

As illustrated in Figure 2, we number the UPS limb and two actuated RPS limbs as 

limbs 1, 2, and 3, respectively. The passive RP limb together with the wrist is limb 4. 1B  

is the center of the U joint of limb 1; ( )2,3iB i =  is the intersections of the R joints of limb 

i and the rotation axis of the planar parallel mechanism defined by the R joints connecting 

to the base frame; and ( 1,2,3)iA i =  is the center of the S joint of limb i. Let P be the inter-

section of three orthogonal axes of the wrist and C be the tool center point (TCP) of the 

robot end-effector. The base frame  is placed at point O, the intersection of the R joint 

of the RP limb and the rotation axis of the planar parallel mechanism, with its z-axis nor-

mal to 1 2 3B B B , the triangle with vertices at points iB , and its x-axis coincident with 

3 2B B   

Figure 1. Three-dimensional model of the TriMule robot.

As illustrated in Figure 2, we number the UPS limb and two actuated RPS limbs as
limbs 1, 2, and 3, respectively. The passive RP limb together with the wrist is limb 4. B1 is
the center of the U joint of limb 1; Bi(i = 2, 3) is the intersections of the R joints of limb i
and the rotation axis of the planar parallel mechanism defined by the R joints connecting
to the base frame; and Ai(i = 1, 2, 3) is the center of the S joint of limb i. Let P be the
intersection of three orthogonal axes of the wrist and C be the tool center point (TCP) of the
robot end-effector. The base frame K is placed at point O, the intersection of the R joint of
the RP limb and the rotation axis of the planar parallel mechanism, with its z-axis normal

to ∆B1B2B3, the triangle with vertices at points Bi, and its x-axis coincident with
→

B3B2.

Machines 2023, 11, 31 4 of 17 
 

 

 

Figure 2. Schematic diagram of the TriMule robot. 

3. Motion Decomposition and Measurement 

This section focuses on the decomposition measurement for a 6-DOF hybrid robot. It 

involves the principle of motion decomposition and the implementation process of de-

composition measurement. 

3.1. Principle of Motion Decomposition 

Sufficient pose measurement data are the basis of data-driven calibration and are 

crucial to a good compensation effect. However, the measurement data required by accu-

rate calibration exponentially increase with increasing dimensions of the joint space. The 

curse of dimensionality is the main challenge in measurement tasks. Decomposition meas-

urement is an effective approach to solve this problem. In previous research [40], we de-

composed a 5-DOF hybrid robot into a 2-DOF wrist and a 3-DOF parallel mechanism 

through mechanism decomposition. The pose errors of the two substructures are meas-

ured respectively and then composed to obtain those of the hybrid robot, effectively im-

proving the measurement efficiency. However, the pose errors of the parallel mechanism 

can hardly be measured directly due to the occlusion of the wrist. An additional transfer 

frame must be established to connect the two substructures so that indirect measurement 

can be completed with the help of the end effector. As a result, it involves not only trans-

formation errors but also a heavy burden in the measurement. 

To solve these troubles, we proposed a motion decomposition method in this paper. 

The arbitrary motion of the robot is equivalently decomposed into three independent sub-

motions. The sub-motions are achieved by driving the actuated joints according to specific 

rules. Consequently, decomposition measurement can be realized by only measuring the 

end pose of the robot, which is more practical and efficient. 

According to the mechanism characteristics of TriMule, we partition the joint varia-

bles ( )1 2 6, , ,q q q=q  into two subsets, ( )1 2 3, ,q q q=u  and ( )4 5 6, ,q q q=v , where u con-

tains the joint variables of the parallel mechanism and v contains the joint variables of the 

wrist. The mappings between the robot joint space and the operation space are defined as 

the kinematics functions 6: SE(3)iK → , and the corresponding motions can be ex-

pressed by the homogeneous transformation matrices iT . Hence, the forward kinematic 

function of the hybrid robot ( )K q  can be written as: 

( ) ( ) ( ) ( ), u vK K K K= = q u v u v  (1) 

where vK  and uK  are the kinematic functions of the wrist and the parallel mechanism 

defined by v and u, respectively. 

Then, Equation (1) can be equivalently transformed into: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

u v v u u vK K K K K K K
− −

=     q u v v u u v                                            (2) 

Figure 2. Schematic diagram of the TriMule robot.



Machines 2023, 11, 31 4 of 16

3. Motion Decomposition and Measurement

This section focuses on the decomposition measurement for a 6-DOF hybrid robot.
It involves the principle of motion decomposition and the implementation process of
decomposition measurement.

3.1. Principle of Motion Decomposition

Sufficient pose measurement data are the basis of data-driven calibration and are
crucial to a good compensation effect. However, the measurement data required by accurate
calibration exponentially increase with increasing dimensions of the joint space. The
curse of dimensionality is the main challenge in measurement tasks. Decomposition
measurement is an effective approach to solve this problem. In previous research [40], we
decomposed a 5-DOF hybrid robot into a 2-DOF wrist and a 3-DOF parallel mechanism
through mechanism decomposition. The pose errors of the two substructures are measured
respectively and then composed to obtain those of the hybrid robot, effectively improving
the measurement efficiency. However, the pose errors of the parallel mechanism can hardly
be measured directly due to the occlusion of the wrist. An additional transfer frame must be
established to connect the two substructures so that indirect measurement can be completed
with the help of the end effector. As a result, it involves not only transformation errors but
also a heavy burden in the measurement.

To solve these troubles, we proposed a motion decomposition method in this paper.
The arbitrary motion of the robot is equivalently decomposed into three independent sub-
motions. The sub-motions are achieved by driving the actuated joints according to specific
rules. Consequently, decomposition measurement can be realized by only measuring the
end pose of the robot, which is more practical and efficient.

According to the mechanism characteristics of TriMule, we partition the joint variables
q = (q1, q2, · · · , q6) into two subsets, u = (q1, q2, q3) and v = (q4, q5, q6), where u contains
the joint variables of the parallel mechanism and v contains the joint variables of the wrist.
The mappings between the robot joint space and the operation space are defined as the
kinematics functions Ki : R6 → SE(3) , and the corresponding motions can be expressed
by the homogeneous transformation matrices Ti. Hence, the forward kinematic function of
the hybrid robot K(q) can be written as:

K(q) = K(u, v) = Ku(u) · Kv(v) (1)

where Kv and Ku are the kinematic functions of the wrist and the parallel mechanism
defined by v and u, respectively.

Then, Equation (1) can be equivalently transformed into:

K(q) = Ku(u) · Kv(ṽ) · Kv(ṽ)
−1 · Ku(ũ)

−1 · Ku(ũ) · Kv(v) (2)

where ũ is an arbitrarily fixed value for u, Ku(ũ) represents the motion of the parallel
mechanism associated with ũ, ṽ is an arbitrarily fixed value for v, and Kv(ṽ) represents the
motion of the wrist associated with ṽ.

Finally, substituting Equation (1) into Equation (2) results in the motion decomposition formula:

K(q) = K(u, ṽ) · K(ũ, ṽ)−1 · K(ũ, v) = K(q1) · K(q0)
−1 · K(q2) (3)

where q1 = (u, ṽ), q0 = (ũ, ṽ), and q2 = (ũ, v).
Hence, an arbitrary motion K(q) of the hybrid robot can be equivalently decomposed

into three independent motions: K(q0), K(q1), and K(q2).

3.2. Decomposition Measurement and Composition

According to the definition of the kinematics functions Ki, Equation (3) can be rewritten as

T = T1T−1
0 T2 (4)
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where T, T0, T1, and T2 represent the poses of the hybrid robot at different configurations q,
q0, q1, and q2, respectively.

Thus, for a certain motion K(q), except for the direct measurement at configuration q,
we can also measure the poses of the hybrid robot T0, T1, and T2 at another three specific
configurations, q0, q1, and q2, respectively, and then obtain the required pose T through
composition. It is worth noting that q0 is an arbitrarily fixed value for q, and q1, q2 are
related to q0 and q.

Although the decomposition measurement demonstrates no obvious advantages for a
single configuration and even increases the measurement task, it has great advantages in
terms of measurement efficiency for massive measurement tasks. In addition to Figure 3,
the detailed steps of the method are described as follows. For convenience of description,
the stationary joints of the hybrid robot are marked in red, and the moving joints are
marked in green.
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of the parallel mechanism; and (c) Motion of the wrist.

(1) The base frame K is established as defined in Section 2, and an end frame KC is set
up at the robot end-effector (see Figure 3). All measurements hereinafter are conducted in
the base frame K, and T∗ denotes the transformation matrix of frame KC with respect to
frame K for different configurations q∗.

(2) An arbitrary fixed value q̃0 = (ũ, ṽ) = (q̃1,c, q̃2,c, q̃3,c, q̃4,c, q̃5,c, q̃6,c) is set as the
reference configuration. The hybrid robot is moved to q̃0, and its end pose T0 is measured,
as shown in Figure 3a.

(3) The m measurement configurations µi = (q1,i, q2,i, q3,i), i = 1, 2, · · · , m are uni-
formly selected in the joint space of the parallel mechanism. The hybrid robot is moved
to each configuration q1,i = (ui, ṽ) = (q1,i, q2,i, q3,i, q̃4,c, q̃5,c, q̃6,c) successively by keeping
the wrist stationary at the reference configuration and moving the parallel mechanism
independently. Next, the end pose of the robot T1,i(i = 1, 2, · · · , m) is measured at each
configuration, as shown in Figure 3b.
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(4) The n measurement configurations vj =
(
q4,j, q5,j, q6,j

)
, j = 1, 2, · · · , n are uniformly

selected in the joint space of the wrist. The hybrid robot is moved to each configuration
q2,j =

(
ũ, vj

)
=
(
q̃1,c, q̃2,c, q̃3,c, q4,j, q5,j, q6,j

)
successively by keeping the parallel mechanism

stationary at the reference configuration and moving the wrist independently. Next, the end
pose of robot T2,j(j = 1, 2, · · · , n) is measured at each configuration, as shown in Figure 3c.

The composition is conducted according to Equation (4) so that we can obtain the end
poses of the hybrid robot Tk at a large number of combined configurations
qk =

(
ui, vj

)
=
(
q1,i, q2,i, q3,i, q4,j, q5,j, q6,j

)
:

Tk = T1,i · T−1
0 · T2,j, k = 1, 2, · · · , m× n (5)

The six-dimensional joint space of the hybrid robot is decomposed into two three-
dimensional subspaces through decomposition measurement. Assuming that m and n
measurement configurations are planned in two subspaces, the robot poses at m × n
configurations can be easily obtained by only m + n measurements, which greatly improves
the measurement efficiency. Moreover, the method is superior in terms of measurement
efficiency with the increase of the measurement configurations m and n.

4. Improved Data-Driven Methodology for Calibration

In this section, an improved data-driven methodology is proposed. It directly estab-
lishes the mapping between the nominal joint variables and joint compensation values
based on a BPNN and then conducts the training by a unique algorithm involving the robot
inverse kinematics.

4.1. Principle of the Improved Data-Driven Methodology

The existing data-driven methods usually include two steps: estimation and compen-
sation. First, an error estimation model is established based on the data-driven approach.
Next, compensation is implemented based on the estimated values, as described in our
previous research [40]. Although the method realized real-time compensation and achieved
a high calibration accuracy in the whole workspace of the robot, it inevitably introduces the
estimated residual in theory. Moreover, the joint compensation values are calculated based
on Jacobian iteration, which may cause a heavy computational burden in the sample set
construction. Hence, an improved data-driven methodology is proposed. By merging the
processes of estimation and compensation, a mapping between the nominal joint variables
and joint compensation values is established based on a BPNN and then trained directly
using the measurement data through a unique training algorithm involving the robot
inverse kinematics.

As shown in Figure 4, the data-driven methodology mainly contains two steps: offline
calibration and online compensation. First, measurement is conducted to obtain the actual
pose ym of the hybrid robot at the nominal joint variable qn, and the joint compensation
value ∆q is computed according to the robot mechanism model such as the kinematic and
Jacobian models. Second, the mapping g(qn, α) between the nominal joint variables and
joint compensation values is established based on the data-driven methodology, where
g(qn, α) can be a polynomial function, interpolation function, or neural network, and α
represents the parameter to be determined by the mapping. Next, parameter α̂ is fitted to
minimize the predicted residuals for all measurement configurations. Finally, the compen-
sator g(qn, α̂) is embedded into the robot control system for online compensation. For a
certain joint command qn, the joint compensation value ∆q̂ is obtained according to the
compensator, and the corrected joint variable qa is calculated by qn − ∆q̂ so that the robot’s
actual pose ya can be as close as possible to the desired pose yn.
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The method establishes the mapping model between the nominal joint variables and
joint compensation values, which can be directly used for online compensation after data
fitting, voiding the troubles of error estimation and iterative calculation in compensation.
To guarantee the implementation effect, the following two core problems need to be solved:
(1) how to establish an accurate mapping model; and (2) how to obtain accurate joint
compensation value.

4.2. Mapping Model Designing

The first step is to establish an appropriate mapping model. According to previous
research, polynomial fitting can accurately estimate the position errors of robots on Cartesian
space trajectory [22]. However, for the compensation of pose errors in the whole workspace of
a 6-DOF robot, constructing high-order polynomials with six variables will involve too many
coefficient terms, which will cause much trouble in parameter identification [23]. Furthermore,
building up a query table of spatial interpolation in the whole workspace of the robot requires
the expensive cost of time and storage space [9], so it is tough to implement in practice. The
neural network, which has a strong ability for nonlinear mapping and generalization, can
fit any complex nonlinear mapping. In recent years, a back propagation neural network
(BPNN) has been gradually applied in robot calibration by many scholars [28,29]. Along this
track, a BPNN is built to describe the mapping between the nominal joint variables and joint
compensation values in the whole workspace of the robot.

Taking the nominal joint variable and corresponding compensation value as the input
and output, respectively, a BPNN is constructed, as illustrated in Figure 5. Both the input
and output layers consist of six neurons, representing six elements of the nominal joint
variable qn and the joint compensation value ∆q, respectively. According to some successful
experiences [31], it has two hidden layers, and the tan-sigmoid function and linear function
are taken as the activation functions of the hidden layer and the output layer, respectively.



Machines 2023, 11, 31 8 of 16

Machines 2023, 11, 31 8 of 17 
 

 

4.2. Mapping Model Designing 

The first step is to establish an appropriate mapping model. According to previous 

research, polynomial fitting can accurately estimate the position errors of robots on Car-

tesian space trajectory [22]. However, for the compensation of pose errors in the whole 

workspace of a 6-DOF robot, constructing high-order polynomials with six variables will 

involve too many coefficient terms, which will cause much trouble in parameter identifi-

cation [23]. Furthermore, building up a query table of spatial interpolation in the whole 

workspace of the robot requires the expensive cost of time and storage space [9], so it is 

tough to implement in practice. The neural network, which has a strong ability for non-

linear mapping and generalization, can fit any complex nonlinear mapping. In recent 

years, a back propagation neural network (BPNN) has been gradually applied in robot 

calibration by many scholars [28,29]. Along this track, a BPNN is built to describe the 

mapping between the nominal joint variables and joint compensation values in the whole 

workspace of the robot. 

Taking the nominal joint variable and corresponding compensation value as the in-

put and output, respectively, a BPNN is constructed, as illustrated in Figure 5. Both the 

input and output layers consist of six neurons, representing six elements of the nominal 

joint variable nq  and the joint compensation value q , respectively. According to some 

successful experiences [31], it has two hidden layers, and the tan-sigmoid function and 

linear function are taken as the activation functions of the hidden layer and the output 

layer, respectively. 

 

Figure 5. The structure of the BPNN. 

4.3. Network Training 

Next, a unique network-training algorithm is proposed based on the robot inverse 

kinematics, which can train the network directly using the pre-measured robot poses, 

avoiding the troubles of calculating the pose errors and solving the joint compensation 

values. The principle of network training is shown in Figure 6. 

When the nominal joint variable nq  is input, the robot moves to my  rather than the 

desired pose ny . Next, the nominal joint variable mq  of pose my  is computed through 

the nominal inverse kinematics. Assuming that the desired pose of the robot is my , the 

joint command mq  theoretically needs to be input to the robot. However, the robot can-

not move to my  due to various errors in the robot system. The robot will move to my  

exactly when the joint command nq  is input at the beginning. Hence, the joint variable 

nq  can be regarded as the corrected joint variable of the desired pose my , and 

n m = −q q q is the corresponding joint compensation value of robot configuration ( )m my q

. It is worth noting that q  here is the joint compensation value corresponding to joint 

Figure 5. The structure of the BPNN.

4.3. Network Training

Next, a unique network-training algorithm is proposed based on the robot inverse
kinematics, which can train the network directly using the pre-measured robot poses,
avoiding the troubles of calculating the pose errors and solving the joint compensation
values. The principle of network training is shown in Figure 6.
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When the nominal joint variable qn is input, the robot moves to ym rather than the
desired pose yn. Next, the nominal joint variable qm of pose ym is computed through the
nominal inverse kinematics. Assuming that the desired pose of the robot is ym, the joint
command qm theoretically needs to be input to the robot. However, the robot cannot move
to ym due to various errors in the robot system. The robot will move to ym exactly when the
joint command qn is input at the beginning. Hence, the joint variable qn can be regarded as
the corrected joint variable of the desired pose ym, and ∆q = qn − qm is the corresponding
joint compensation value of robot configuration ym(qm). It is worth noting that ∆q here is
the joint compensation value corresponding to joint variable qm rather than qn. Therefore,
the neural network should be trained with qm and ∆q as the input and output, respectively.

Following the principle above, Algorithm 1 is proposed for training the BPNN:
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Algorithm 1: Training of BPNN

1 foreach qn ∈ Training_set do;
2 Move to qn and measure the actual pose ym;
3 Calculate the nominal joint variable qm of ym by f−1

n (ym, βn);
4 Calculate the joint compensation value ∆q = qn − qm;
5 Train the BPNN with qm as input and ∆q as output.

Through the algorithm, the BPNN can be trained directly based on the pre-measured
robot poses and the nominal inverse kinematics, which avoids the process of solving
robot pose errors and the complex iterative calculation in error compensation. In terms of
compensation accuracy, the real compensation value of the robot can be obtained on the
premise of ignoring the measurement errors rather than the approximate value obtained by
iterative calculation.

5. Experiments

To demonstrate the effectiveness of the methodology, the validation experiments are
carried out as shown in Figure 7. A TriMule 200 robot, which has a repeatability accuracy
of 0.0197 mm/0.0041 deg, is taken as the verification platform. The measuring instrument
is a Leica AT901-LR laser tracker that has a maximal observed deviation of 0.005 mm/m.
In addition, all measurements are conducted under static and no-load conditions.
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Before pose measurement, the base frame K is registered in the measuring software
(Spatial Analyzer) according to its definition, as illustrated in Section 2. The x-axis is
constructed by fitting the arc trajectory marked in red, which is formed by the spherically
mounted retroreflector (SMR) attached to the end of the robot. The center B1 of the U joint
is constructed by fitting the green spherical surface, which is formed by another SMR fixed
at limb 1. A normal line from B1 to the x-axis is constructed as the y-axis, and intersection
O is defined as the origin. Next, a base frame K is constructed according to the right hand
rule (see Figure 7). A specialized measuring tool is connected to the end effector with its
centers of the three SMRs defined as P1, P2, and P3. The end frame KC is placed at point C,
which is the center of P1, P2, and P3. Thus, the end pose TC can be obtained by measuring
P1, P2, and P3 as follows:

TC =

[
RC rC
0 1

]
(6)
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with
RC =

[
nx ny nz

]
∈ R3×3, rC = P1+P2+P3

3
nx = (P2−P3)

‖(P2−P3)‖2
, nz =

(P2−P3)×(P1−P2)
‖(P2−P3)×(P1−P2)‖2

, ny = nz × nx

where nx is aligned with
→

P3P2, and nz is normal to ∆P1P2P3.
The decomposition measurement methodology is adopted to efficiently acquire the

robot poses in the whole workspace. The joint space of the hybrid robot is divided into
two subspaces, i.e., the joint space of the parallel mechanism (W1) composed of joints 1,
2, and 3 and the joint space of the wrist (W2) consisting of joints 4, 5, and 6. The joint
space of the hybrid robot is defined by the motion ranges of the six actuated joints, as
shown in Table 1. To sample the robot poses over the entire workspace, W1 and W2 are
discretized into two sets of three-dimensional grid elements, of which vertices are taken
as the sampling configurations of W1 and W2, respectively. The discretization rules are
as follows: (1) Joints 1, 2, and 3 are divided by a sampling interval of 60 mm so that W1 is
discretized into a group of 125 sampling configurations. (2) The sampling intervals of 60◦,
22.5◦, and 45◦ are adopted for joints 4, 5, and 6, respectively, to discretize W2 into a group
of 175 sampling configurations.

Table 1. Definition of the robot joint space.

Joint Range (mm/◦)

1 [−70, 170]
2 [−20, 220]
3 [−20, 220]
4 [−180, 180]
5 [0, 90]
6 [−90, 90]

The home pose of the robot is taken as the reference configuration for convenience.
Following the detailed processes described in Section 3.2, the end poses of the robot are
measured at the sampling configurations of W1 and W2, as illustrated in Figure 8a,b.
Figure 8c shows the distribution diagram of the tool center point (TCP) in the robot
workspace, which is obtained by composing the sampling configurations of W1 and W2.
Consequently, a group of 21,875 samples are acquired with only 300 measurements.

To prove the effectiveness of the proposed method, it is compared with the calibra-
tion method in reference [38]. For more detailed steps of the comparative experiment,
please refer to [38], which will not be repeated here. This paper only gives the necessary
measurement process, network training parameters, and error compensation results.

Both methods adopt the same sampling configurations as described before. The de-
tailed measurement procedures and sampling time are shown in Tables 2 and 3, respectively.
The experimental results show that both methods effectively improve the measurement
efficiency, which can obtain massive sampling data in the whole workspace of the robot
within 160 min. Although the proposed method does not show significant advantages in
sampling time, it avoids the establishment of the transfer frame and frequent coordinate
system transformation in the measurement. All data are directly measured based on the
robot base frame and the end measuring tool. Thus, it is more practical and efficient for
on-site implementation.
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Table 2. Sampling time of the proposed method.

Measurement Procedure Sampling Time (min)

Establishment of base frame 20
Measurement of the reference configuration 1

Measurement by driving parallel mechanism (125 configurations) 50
Measurement by driving wrist (175 configurations) 70

Total measurement process 141

Table 3. Sampling time of the comparative method.

Measurement Procedure Sampling Time (min)

Establishment of base frame 20
Establishment of transfer frame 20

Measurement of parallel mechanism (125 configurations) 50
Measurement of wrist (175 configurations) 70

Total measurement process 160

Next, two BPNNs are trained by two methods, respectively, to compensate for the
robot pose errors. Since the hyperparameters of the network will directly affect its training
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performance, a series of comparative experiments are conducted to determine the optimal
number of hidden layer neurons. The number of neurons is increased gradually to search
and verify the optimal architecture, which is judged by the root mean square error (RMSE)
of the testing and training sets [21,31]. Table 4 shows the specific training parameters of
two neural networks. It is worth noting that the networks are trained by two different
sample sets constructed by the proposed and comparative methods, respectively, although
they have the same number of samples. Finally, the BPNNs are embedded into the robot to
realize online compensation.

Table 4. Training parameters of two neural networks.

Parameters Proposed Method Comparative Method

Training samples 21,875 21,875
Hidden neurons 30, 15 28, 16

Initialization Xavier Xavier
Training function LM LM
Training time (s) 135 147

Training RMSE (mm) 0.0367 0.0384
Testing RMSE (mm) 0.0425 0.0419

The uniform sampling intervals of 80 mm, 80 mm, 80 mm, 90◦, 30◦, and 60◦ are
adopted for joints 1, 2, 3, 4, 5, and 6 to discretize the whole workspace of the hybrid robot
into 5120 poses, from which 100 poses are randomly selected as validation configurations,
as shown in Figure 9. It is worth mentioning that none of the discretization poses overlap
the sampling poses. The actual pose of the robot is measured before and after compensa-
tion and then compared with its nominal pose. The volumetric orientation error ∆θ and
volumetric position error ∆r (simplified as the orientation and position errors) are taken as
the evaluation index of robot accuracy.
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Figure 9. Distribution of the validation configurations.

Figures 10 and 11 and Table 5 show the experimental results. After compensation
by the proposed method, the robot’s maximum position/orientation errors are reduced to
0.085 mm/0.022 deg, which is 91.16%/88.17% lower than 0.962 mm/0.186 deg before compen-
sation, respectively, and the mean position/orientation errors are reduced by 91.22%/89.74%
to 0.049 mm/0.012 deg, respectively. After compensation by the comparative method, the
maximum position/orientation errors have decreased to 0.098 mm/0.024 deg, which is
89.81%/86.56% lower than before compensation, and the mean position/orientation errors
are reduced by 89.96%/88.73% to 0.056 mm/0.014 deg, respectively. Thus, we can conclude
that the methodology can effectively improve the pose accuracy in the whole workspace of
the robot.
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Table 5. Pose errors before and after compensation.

Pose Errors Max Mean Rms

Before
compensation

∆r (mm) 0.962 0.558 0.579
∆θ (deg) 0.186 0.117 0.122

Proposed
method

∆r (mm) 0.085 0.049 0.052
∆θ (deg) 0.022 0.012 0.013

Comparative
method

∆r (mm) 0.098 0.056 0.054
∆θ (deg) 0.024 0.014 0.015

6. Conclusions

This paper proposes an improved data-driven calibration method for a 6-DOF hybrid
robot. It mainly focuses on enhancing calibration efficiency and practicability. The following
conclusions are drawn.

(1) A decomposition measurement method is proposed to overcome the curse of
dimensionality in the measurement of data-driven calibration. An arbitrary motion of the
hybrid robot is equivalently decomposed into three independent sub-motions through
motion decomposition. The sub-motions are sequentially combined according to specific
motion rules. Thus, a large number of robot poses can be acquired over the entire workspace
with a limited number of measurements.

(2) An improved data-driven methodology is proposed to replace the traditional
processes of error estimation and compensation to improve the practicability in field appli-
cations. The mapping between the nominal joint variables and joint compensation values
is established based on a BPNN. Next, it is trained directly using the measurement data of
robot poses through a unique training algorithm involving the robot inverse kinematics.

(3) The experimental results demonstrate the effectiveness of the method. The robot’s
maximal position/orientation errors are reduced by 91.16%/88.17% to 0.085 mm/0.022 deg
after calibration.

(4) The proposed method can also be applied to other serial or hybrid robots as a
general methodology.

In the future, we will continue to refine this method. In measurement, the relationship
between the distributions of sampling configurations and calibration accuracy has to
be further investigated to provide guidance for sampling configuration optimization. In
network training, the research on an intelligent optimization algorithm of network structure
will be carried out to replace the complex comparative experiments at present.
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