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Abstract: Intelligent fault diagnosis gives timely information about the condition of mechanical com-

ponents. Since rolling element bearings are often used as rotating equipment parts, it is crucial to iden-

tify and detect bearing faults. When there are several defects in components or machines, early fault 

detection becomes necessary to avoid catastrophic failure. This work suggests a novel approach to 

reliably identifying compound faults in bearings when the availability of experimental data is limited. 

Vibration signals are recorded from single ball bearings consisting of compound faults, i.e., faults in 

the inner race, outer race, and rolling elements with a variation in rotational speed. The measured 

vibration signals are pre-processed using the Hilbert–Huang transform, and, afterward, a Kurtogram 

is generated. The multiscale-SinGAN model is adapted to generate additional Kurtogram images to 

effectively train machine-learning models. To identify the relevant features, metaheuristic optimiza-

tion algorithms such as teaching–learning-based optimization, and Heat Transfer Search are applied 

to feature vectors. Finally, selected features are fed into three machine-learning models for compound 

fault identifications. The results demonstrate that extreme learning machines can detect compound 

faults with 100% Ten-fold cross-validation accuracy. In contrast, the minimum ten-fold cross-valida-

tion accuracy of 98.96% is observed with support vector machines. 

Keywords: structural health monitoring; compound faults; multiscale-SinGAN;  

metaheuristic feature selection; extreme learning machine 

 

1. Introduction 

Rolling element bearings (REBs) are an essential component in rotating machinery, 

used frequently in various industrial machinery and equipment. When rotating machin-

ery is operated for a substantial amount of time, wear and tear on the surface of the REBs 

has been observed. Condition monitoring is beneficial for detecting faults and identifying 

the state of the structure or components. To detect faults in the bearings, several condi-

tion-monitoring techniques, such as acoustic emission, vibration analysis, thermal imag-

ing, etc., have been utilized and reported in the literature [1,2]. Vibration-based condition 

monitoring effectively detects faults in real-time conditions and detects abrupt changes in 

machinery conditions [3,4]. When a localized defect arises on the elements of REBs, the 

faulty rolling surface collides with another surface; therefore, an impulse is generated. 

Further, due to the varying stiffness observed from operating conditions, vibration signals 

are non-linear and non-stationary [4,5]. Therefore, choosing an appropriate signal-pro-

cessing algorithm is a significant challenge. Walsh Hadamard Transform (WHT), Wigner–

Ville distribution (WVD), etc, are some signal processing techniques for extracting various 

statistical features. Zhang et al. [6] applied variational mode decomposition to decompose 

the vibration signals acquired from various bearing conditions and utilize fractal dimen-

sions to diagnose bearing faults. Gu and Peng [7] proposed a methodology to extract the 
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characteristic information from the bearing fault signals based on ensemble empirical 

mode decomposition and permutation entropy. In another approach [8], Duan et al. in-

troduced minimum entropy morphological deconvolution to identify the impulses based 

on the amplitude ratio of the diagonal slice spectrum. The authors compared the simula-

tion and experimental signals and verified the proposed methodology’s effectiveness. 

However, weak signals and signals acquired from compound faults that are non-station-

ary are complicated to identify with signal-processing techniques alone. 

In the last three decades, machine learning (ML) algorithms are reported as an effec-

tive technique for quickly identifying the healthy and abnormal conditions of machinery 

components [9–11]. ML models such as Support Vector Machine (SVM), Artificial Neural 

Network (ANN), Random Forest, Gradient Boosting, etc. are found to be effective in di-

agnosing faults in bearings, gears, pumps, etc. Due to the Industrial Internet of Things 

(IIoT) development and the need to implement Industry 4.0, an enormous amount of data 

is required. It is observed that during operation, the vast majority of monitoring data are 

healthy, and significantly few faulty data are available to train ML models [12]. As a result, 

fault identification and diagnosis with the availability of limited fault sample signals are 

critical [13,14]. Generative adversarial network (GAN) emerges as a superior technique to 

efficiently deal with the imbalanced data, due to the machinery’s operating condition re-

strictions. GAN was proposed by Goodfellow in 2014 [15] and is considered as an unsu-

pervised generative neural network. GAN comprises a generator (G) and discriminator 

(D) network that may construct additional samples from various fault conditions. Re-

cently, various authors have explored the GAN-based fault diagnosis methodology. Gao 

et al. [16] developed a methodology combining GAN with a convolution neural network 

to diagnose faults in rolling element bearings. Lee et al. [17] successfully applied GAN in 

an induction motor to generate fault data to overcome the issue of data imbalance. It is 

reported that the GAN-based fault diagnosis methodology is applied to the 2D represen-

tation of signals, i.e., either spectrogram or scalogram, which reveals the tool-wear condi-

tions [18]. To accurately determine the status of components, various image quality pa-

rameters need to be extracted from either the spectrogram or scalogram and later used for 

constructing feature vectors. Recent literature suggests that feature selection techniques 

can influence fault detection accuracy [19,20]. Li et al. [21] explore maximum relevance 

and minimum redundancy (mRMR) criteria to identify the optimal feature subset, which 

improves the accuracy of identifying various gear faults. In another study, a feature selec-

tion criterion based on optimized Weighted Kernel Principal Component Analysis was 

proposed by Shen and Xu [22] to diagnose bearing failures. 

Although considerable studies have been reported in fault diagnosis using GANs or 

conventional feature selection criteria, the issue of effectively predicting compound de-

fects with limited experimental data still needs to be addressed. Therefore, the primary 

goal of our proposed study is to provide an appropriate methodology for reliably detect-

ing compound faults in bearings. In addition, the authors have explored teaching–learn-

ing-based optimization (TLBO) and Heat Transfer Search (HTS) metaheuristic techniques 

to identify the best feature subset which identify compound faults effectively. As per the 

study conducted by the authors, TLBO and HTS feature-selection strategies are not being 

effectively explored for fault diagnosis. Motivated by the facts mentioned above, the sig-

nificant contributions of the proposed methodology are as follows: 

1. Experiments were conducted to capture signals from compound faults, i.e., Inner 

Race Defect (IRD), Ball Defect (BD), and Outer Race Defect (ORD) in a single rolling 

element bearing with a variation in the rotational speed of the shaft. 

2. To effectively develop machine-learning models, many images are required. There-

fore, recently developed Multi-Scale Single Image Generative Adversarial Network 

(Multiscale-SinGAN) is utilized. 

3. TLBO and HTS metaheuristic algorithms were adapted and applied to select the op-

timal feature subset. 
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4. The optimized features subset is evaluated with three classifiers, i.e., Support Vector 

Machine (SVM), Standardized Variable Distance (SVD), and Extreme Learning Ma-

chine (ELM), with 30% hold-out and ten-fold cross-validation accuracy to detect com-

pound faults. 

The remaining work is organized as follows: Section 2 briefly discusses the Hilbert–

Huang transform, the Multiscale-SinGAN architecture model, the TLBO and HTS me-

taheuristic optimization algorithms, ML algorithms, and experimentation and feature ex-

traction. In Section 3, the results are discussed in a comprehensively manner. Finally, the 

outcomes are summarized in Section 4. Figure 1 shows the methodology of compound 

fault detection in bearings using Multiscale-SinGAN and metaheuristic feature selection. 

 

Figure 1. Flowchart of methodology.  
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2. Materials and Methods 

2.1. Hilbert–Huang Transform 

The Hilbert–Huang transform (HHT) is a non-linear signal processing technique that 

involves two steps. In the first stage, signals are broken down into various intrinsic mode 

functions (IMFs) and, in second stage, the extracted IMFs are subjected to the Hilbert 

Transform, which generates an orthogonal pair. The instantaneous fluctuations in ampli-

tudes and frequencies can be determined from the corresponding IMF and its orthogonal 

pair. As a result, HHT is highly beneficial for extracting useful information from non-

linear time series data, such as bearing and gear faults [23]. The steps required to imple-

ment HHT are as follows: 

For any signal, a(γ) of Lp class, its Hilbert transform b(t) is given by 

�(�) =
�

�
�

a(γ)

� − γ

��

��

�� (1)

where C represents Cauchy singular integral value. 

The analytic function when Hilbert transform b(t) is applied to function a(t) is repre-

sented as 

�(�) = �(�) + ��(�) = �(�)���(�) (2)

                   �(�) = (�� + ��)
�

��    ,      �(�) = tan�� �

�
 (3)

Here, a represents instantaneous amplitude, and θ represents instantaneous phase 

function. The instantaneous frequency is calculated as 

�(�) =
��(�)

��
 (4)

The amplitude can be expressed as a function of frequency and time, h (ω, t), which 

can be formulated as: 

�(�) = � ℎ(�, �)��
�

�

 (5)

2.2. Multiscale-SinGAN 

GAN is considered as unsupervised algorithm which Goodfellow proposed in 2014. 

Generative adversarial networks (GANs) are beneficial for industrial applications where 

there is a lack of annotated data that can be used to train machine-learning algorithms on 

both healthy and faulty data. GANs consist of two models, a generator ‘G’ and discrimi-

nator ‘D’, which are trained simultaneously. A well-trained GAN model can generate ad-

ditional images after applying a minimax formulation between two subnetworks—the 

discriminator ‘D’ and the generator ‘G’. Mathematically, the equation is represented as 

follows [24]: 

 ��������(�, �) =  ��~�����[��� � (�)] + ��~��[���(1 − �(�(�))] (6)

where D(x) represents the likelihood that the input image x is generated by augmented 

data rather than real data, while G(z) represents generated data. Pz is a noise distribution, 

and E is the expectation of a variable in Equation (6). 

The SinGAN, which only needs one image to train, was first introduced by Shaham 

et al. [24]. SinGAN captures and analyses the intrinsic association between training images 

and can also capture color and texture information. It has a pyramidal structure of similar 

‘N’ GAN networks. Initially, at the coarse scale ‘0’, SinGAN focuses on global features like 

shape and image alignment. As the training continues, it compensates for local features 

such as texture, edge information, etc., at a finer scale ‘n’. Initially, images are generated 
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by upsampling from previous scales χ’N+1 and putting them into a new map ZN. After-

ward, a residual image is returned to (χ’N+1) ↑r after being passed through convolution 

layers. Figure 2 shows the SinGAN architecture. 

 

Figure 2. The architecture of single natural image Generative Adversarial Networks. 

2.3. Metaheuristic Optimization Algorithms 

Metaheuristic algorithms are a promising technique and are successfully utilized in 

different domains. For instance, most engineering optimization issues need solutions to 

multi-objective issues since they are substantially non-linear. On the other hand, it is chal-

lenging to design the optimization issue to solve for optimality when dealing with artifi-

cial-intelligence and machine-learning challenges, which largely depend on enormous da-

tasets. As a result, metaheuristics are crucial in helping to resolve practical issues that are 

difficult to resolve using traditional optimization techniques. A metaheuristic algorithm 

searches for a satisfactory solution to a complicated, hard-to-solve optimization issue. In 

the methodology proposed, the authors explored the utility of teaching–learning-based 

optimization (TLBO) and Heat Transfer Search (HTS) optimization techniques to identify 

the optimal feature subset. Details of both algorithms are discussed in the next subsection. 
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2.3.1. Teaching–Learning-Based Optimization (TLBO) Algorithm 

The TLBO algorithm designed by Rao et al. [25,26] examines the impact of a teacher’s 

influence on the upshot of the student’s performance in a classroom. The teaching–learn-

ing approach is designed to improve the student’s performance by learning from teachers 

and other students (result). The TLBO algorithm is executed in two phases to impro-

vise/update the solution. The algorithm initiates with a random generation of ‘n’ solution. 

The solution is then obtained in successive stages through the generation of different 

phases of teaching and learning. In the teacher phase, the solution is updated with the 

help of the best solution and mean solution of population. The teacher phase tries to im-

prove the mean solution for the entire population. In the learner phase, the solution is 

updated from randomly selected solutions through the population. The pseudocode of 

the TLBO algorithm is presented in Figure 3. 

 

Figure 3. Pseudocode of the TLBO algorithm. 

2.3.2. Heat Transfer Search (HTS) Algorithm 

The HTS algorithm, presented by Patel and Savsani [27], resembles the heat transfer 

behavior between the system and its surrounding. The HTS algorithm is executed in three 

stages (conduction, convection, and radiation phase) to improvise/update the solution. 

The algorithm initiates with a random generation of ‘n’ solution. In the subsequent stage, 

__________________________________________________________________________ 

START 

Initialize TLBO operating parameters: population size (n), Number of generation (Ng),  

design variables (j), bounds of the design variables (xmax, xmin),  

Generate the initial population and evaluate the fitness value  

For i=1 to Ng 

Determine mean of design variable (i.e., Mj) and the difference between the current 

mean and best design variable (Mnew,j) by using the teaching factor (TF) 

����������_����� ,� = �������,� − ���� ,�� 

�� = �����[1 + ����] 

Update the solution (Teacher Phase)  

��,�
′ = ��,� + ����������_����� ,�  

Apply greedy selection process to preserve the updated solutions. 

Update the solution (Learner Phase)  

      ��,�
′ = ��,� + ����� − �� � If  f (Xi) < f (Xj) 

��,�
′ = ��,� + ����� − ��� If  f (Xi) > f (Xj) 

Evaluate greedy selection process. 

End 

STOP 
___________________________________________________________________________ 
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the solution is updated through a randomly selected heat transfer phase in each genera-

tion. The solution is updated in the conduction and radiation phase with a randomly se-

lected solution from the population. However, the mechanism to update the solution dif-

fers in both phases. In the convection phase, the solution is updated based on the best 

population solution. Further, all three phases have two different search mechanism, which 

is governed by control parameters called conduction factor (CDF), convection factor 

(COF), and radiation factor (RDF). Two different search mechanisms of each phase bal-

ance the exploration and exploitation throughout the optimization procedure. The pseu-

docode of the HTS algorithm is presented in Figure 4. 

 

Figure 4. Pseudocode of the HTS algorithm. 

___________________________________________________________________________ 

START 

Initialize HTS operating parameters: population size (n), Number of generations (Ng),  

design variables (j), bounds of the design variables (xmax, xmin), CDF, RDF, COF 

Generate the initial population and evaluate the fitness value  

For i=1 to Ng 

Randomly generate the probability ‘R’ 

If R < 0.3333 

Update the solution (conduction phase)  

�� ,�
′ = �

��,� + �−�2��,��, �� ���� � >  �(�� )

�� ,� + �−�2�� ,��, �� ���� � < �(�� )
; �� ��  ≤ ��,��� /��� 

�� ,�
′ = �

��,� + �−����,��, �� ���� � >  �(�� )

�� ,� + �−���� ,��, �� ���� � < �(�� )
; �� �� > ��,��� /��� 

Else If 0.3333 < R < 0.6666 

Update the solution (radiation phase)  

�� ,�
′ = �

�� ,� + ����,� − �� ,��, �� ���� � >  �(�� )

�� ,� + ���� ,� − ��,��, �� ���� � < �(�� )
; �� ��  ≤ ��,��� /��� 

�� ,�
′ = �

�� ,� + �����,� − �� ,��, �� ���� � >  �(�� )

�� ,� + ����� ,� − ��,��, �� ���� � < �(�� )
; �� �� > ��,��� /��� 

Else 

Update the solution (convection phase)  

�� ,�
′ = �� ,� + �(�� − ��� ∗ ���) 

��� = �
���(� − ��), �� ��  ≤ ��,��� /���

�����(1 + ��), �� ��� > ��,��� /���
 

End 

Evaluate greedy selection process. 

End 

STOP 
___________________________________________________________________________ 
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2.4. Machine-Learning Algorithms 

Classification and regression are two preliminary tasks of machine-learning algo-

rithms. Labels are predicted in classification, whereas numerical values are predicted in 

regression. Bearing fault detection requires labels to predict various fault conditions, 

whereas regression analysis is required to detect fault severity. In this study, the authors 

investigated the prediction capability of the SVM, ELM, and SVD ML models to effectively 

detect the compound fault in bearings at various rpm. 

2.4.1. Support Vector Machine 

SVM is a form of the supervised algorithm based on its better generalization capabil-

ity and versatility in handling a variety of applications. Cortes and Vapnik developed a 

basic model of SVM in 1994, which is capable of handling both classification and regres-

sion problems with multiple continuous and categorical variables [28]. A Support Vector 

Machine classifies data by locating the hyperplane with the most significant margin be-

tween two classes. The support vectors are the vectors (cases) that define the hyperplane. 

An ideal SVM analysis should produce a hyperplane that completely separates the vectors 

into two non-overlapping classes. However, perfect separation may not be possible, or it 

may result in a model with many cases that it needs to classify correctly. In this situation, 

SVM finds the hyperplane that maximizes the margin and minimizes the misclassifica-

tions. Kernel-based SVM has received much attention due to its capability to handle non-

linear data efficiently and make data more separable. Mathematically, the formation of a 

hyperplane as an optimization function can be represented as [29]: 

Min
�

 �
‖�‖� + � ∑ ��

�
���  (7)

Subjected to{ ��(���� + �) ≥ 1 − �� (8)

�� ≥ 0, � = 1,2, … � 

 

where C is known as the error penalty and ��represents the slack variable 

2.4.2. Extreme Learning Machine 

Extreme Learning Machine (ELM) was introduced by Huang et al. [30]. The learning 

rate of feed-forward neural networks is likely to be slower than necessary. For decades, 

this constraint has been a significant hurdle in many applications. Unlike traditional learn-

ing procedures, a learning strategy is proposed based on Single-Hidden-Layer Feed-For-

ward Neural Networks, known as Extreme Learning Machine (ELM). In most cases, the 

weights of hidden nodes are usually learned in a single step which results in a fast-learn-

ing scheme as shown in Figure 5. ELM allocates hidden nodes randomly and uses least-

squares techniques to estimate the output weights [31]. In ELM, the objective function 

with Q hidden node for a single hidden layer is represented as [32]: 

�� =  � ��

�

���
ℎ���� (9)

where βi = output weight, i = number of hidden nodes, and hi = output value of hidden 

node. 

ℎ�� = ���, ��, � (10)

where �� and �� = parameters of hidden node. 

For N number of samples, the output value of the hidden layer is: 

                            � = 
ℎ��

⋮
ℎ��

=  
���, ��, �� … ���, ��, ��

⋮ ⋮ ⋮
���, ��, �� … ���, ��, ��

 (11)
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The objective matrix used in ELM is represented by T, which incorporates various 

fault conditions represented by O, and is written as: 

T = O1, O2 ……… ON (12)

The output weight is computed by 

��: �� =  ��� (13)

Finally, the classification can be computed as: 

����� ����� =  ������ �� ����� (14)

 

 

Figure 5. Architecture of Extreme Learning Machine. 

2.4.3. Standardized Variable Distance 

The Standardized Variable Distance (SVD) classifier is formulated based on the Min-

imum Distance Classifier (MDC) algorithm principle. Since MDC does not consider the 

effect of noise while computing the distances of input vectors to the class centroid, it is 

therefore considered an insensitive variance method. To alleviate this issue, a variance-

sensitive model is developed by Aelen and Avuclu [33], known as SVD, which calculates 

the z-score of an input feature vector. The absolute value of the z-score indicates how 

many standard deviations are away from the mean. In multiclass classifiers, each input 

vector belongs to an individual class and is fed to the ML model for training. Based on 

training from input data, a model is formulated which can be helpful for classification or 

regression analysis. Equation (15) shows the input matrix (Vx ∈ Rm×n) and the output ma-

trix (Vy ∈ Rm) corresponding to each input vector. 

       �� = �

��,� ⋯ ��,�

⋮ ⋱ ⋮
��,� ⋯ ��,�

� , �� = �

��

⋮
��

� (15)

where m represents the number of samples in the data set, and n represents the number of 

attributes in a dataset. The output vector, which consists of the dataset needed to be trained, 

is utilized to determine the class labels for the classes, as indicated in Equation (16). 
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�� = [��, ��, … , ��] 

� = {∃�∈  ��: ��(�) ᴧ ∀�∈ ��: �(�) → � = ��} 

(16)

where c represents the number of classes present in dataset. With the help of the z-score, 

the similarity scores of each input vector are found. If a z-score equals zero, the centroid-

class vector has the same value as the sample presented [33]. Figure 6. shows the classifi-

cation architecture with SVD. 

 

Figure 6. Classification with SVD. 

2.5. Experimentation and Kurtogram Extraction 

The experimentation is conducted on Machinery Fault Simulator (MFS) to acquire 

the vibration-based compound fault signals of REBs from the accelerometer. The MFS 

simulator, as shown in Figure 7, is capable of conducting experiments and acquiring vi-

bration signals at different shaft RPMs and with machinery components, such as a defect 

in ball bearing, shaft defects, rotor defects, etc. The setup consists of a 1HP AC motor with 

a multi-featured front panel programmable controller, a piezoelectric accelerometer to 

capture signals, flexible or rigid coupling, and a data acquisition system with supporting 

hardware and software. An SKF 6004 Open Deep Groove Ball Bearing with compound 

faults and a bore diameter of 20 mm, an outer diameter of 42 mm, and a width of 12 mm 

is mounted on MFS to conduct experiments. 
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Figure 7. Machinery Fault Simulator Setup. 

The faults introduced in a single bearing are inner race defect (IRD), an outer race 

defect (ORD), and a ball defect (BD); therefore, it is referred to as a compound fault.   

Compound fault bearing used in our study is shown in Figure 8. Seeded point faults of 

0.5 mm width and 0.2 mm depth have been introduced in the ball bearing dataset. A radial 

load of 11 lb (5 kg) is applied on Machinery Fault Simulator with grease lubrication. As a 

first step, the machine was run with a healthy bearing to establish the baseline data. Sig-

nals were captured with variations in shaft speeds of 600–2400 RPM with an interval of 

200 RPM. The sampling frequency is set to 12.4 kHz. Since the bearing consists of com-

pound faults, it is challenging to differentiate them solely from vibration signals. There-

fore, FFT plots are shown in Figure 9a–d as graphical illustrations, which identify the 

peaks corresponding to a fault in the inner race, outer race, and ball. In Figure 9, BPFO, 

BPFI, and BSF represent the ball pass frequency at the outer race, ball pass frequency at 

the inner race, and ball spin frequency. Detection of faults when fault size is small and 

when multiple faults are present is tedious and complex. There are several methods to 

filter the raw vibration signals but HHT is preferable to the wavelet approach because it 

can remove spurious harmonics that have no underlying physical mean. In addition, HHT 

is better than the wavelet method because it is faster and is able to detect weak signals 

with good accuracy. The authors applied HHT on raw vibration signals, and with filter 

signals, the Kurtogram is generated. Since only 10 Kurtogram are generated, the training 

and development of the ML model are tedious; therefore, SinGAN is applied to generate 

additional Kurtogram images. In our study, the authors have generated 2000 Kurtogram 
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images from original images, when the scale in SinGAN is varied from ‘0’ to ‘3’. Original 

and synthetic images are shown in Figure 10 at various RPM. 

 

Figure 8. Bearing with compound fault. 
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Figure 9. (a–d) FFT plot at (a) 800 rpm, (b) 1400 rpm, (c) 1800 rpm, and (d) 2200 rpm. 
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Figure 10. Kurtogram generation using SinGAN at various scales. 

3. Results and Discussion 

The Python 3, TensorFlow 1.9.1 programming framework is utilized for developing the 

SinGAN model. The images are processed through the Google COLAB Pro+ online server 

which gives access to a 52 GB RAM processor with which to process images. As mentioned 

earlier, from a single Kurtogram image at each scale, 50 images are generated. Since the scale 

is varied from ‘0’ to ‘3’, corresponding to each original image, 200 augmented images are 

generated. Finally, a data set of 200 × 10 = 2000 Kurtogram images are constructed. It is gen-

erally challenging to classify augmented/generated images from machine-learning models; 

therefore, standard image quality parameters (IQP) are extracted to construct a feature vec-

tor, listed in Table 1. The authors computed 11 IQP features from each Kurtogram image, 

and sample feature vectors are shown in Table 2. It is observed that the computation cost 

and biasedness in classification are increased by the presence of redundant and irrelevant 

features, which significantly affects the classification accuracy. Therefore, feature-selection 

techniques such as feature ranking and metaheuristic optimization algorithms are needed 

to enhance classification accuracy. To select the relevant features, TLBO and HTS metaheu-

ristic optimization algorithms are applied on the extracted IQP features, and the optimized 

features are mentioned in Table 3 and Table 4. However, it is impossible to distinguish 

healthy and faulty conditions only by simply looking at the feature vector; hence, machine 

learning models are needed to differentiate the bearing condition. 

Table 1. IQP features extracted from Kurtogram. 

Image Quality Parameters  Formula 

Mean-Square Error (MSE) ��� =  
∑ ∑ ([��(�, �)  −  ��(�, �)]��

���
�
���

��
 

Peak Signal-to-Noise Ratio (PSNR) ���� = 10 log�� �
��

���
� 

Signal-to-Noise Ratio (SNR) ��� = 20 log��

�

�
 

Structural Similarity Index for Measuring 

Image Quality (SSIM) 
����� =  

(2���� + ��)(2��� + ��)

(��
� + ��

� + ��)(��
� + ��

� + ��)
 

Multi-Scale Structural Similarity Index 

for Measuring Image Quality (MSSIM) 
����� (��, ��) =  

∑ ��������, �����
���

��

 

2-D Correlation Coefficient 
� =  

∑ ∑ ���� − ������� − �����

��∑ ∑ ���� − ���
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2-D Standard Deviation �� =  �
∑ (�� − ��)��

���

� − 1

�

 

Entropy �(�) = − � ��

�

���

 ���� ��  

Blind/Referenceless Image Spatial Qual-

ity Evaluator (BRISQUE) 

BRISQUE is a model that does not require 

transformations and instead calculates its char-

acteristics from the image pixels. It is used to 

assess the quality of a picture by comparing it 

to a model with the same sort of distortion. 

With a lower BRISQUE score, higher percep-

tual quality can be achieved. 

Natural Image Quality Evaluator (NIQE) 

To determine the no-reference image quality 

score, NIQE can estimate image quality with 

arbitrary distortion, despite being trained on 

immaculate photos. The perceived quality im-

proves when NIQE decreases. 

Perception-Based Image Quality Evalua-

tor (PIQE) 

PIQE computes the quality score by evaluating 

block distortion and calculating the local vari-

ance of perceptibly distorted blocks. 

Table 2. Sample IQP feature vector. 

S.No MSE PSNR SNR SSIM MSSIM BRISQUE NIQE PIQE 
2-D 

Corr. 

2-D Std 

Dev. 
Entropy Class 

1 63.58 −18.03 23.50 0.37 0.65 36.12 7.06 64.31 0.98 36.27 7.37 0 

2 80.40 −19.05 22.48 0.35 0.66 33.12 7.96 65.57 0.97 35.25 7.25 0 

3 42.16 −16.25 25.28 0.38 0.69 40.13 6.15 65.52 0.98 35.79 7.31 0 

4 45.06 −16.54 24.99 0.39 0.69 43.00 6.93 64.01 0.98 35.08 7.33 0 

5 49.04 −16.91 24.62 0.39 0.70 37.48 8.07 65.53 0.98 36.15 7.34 0 

6 68.41 −18.35 23.18 0.35 0.64 31.37 6.63 65.30 0.97 35.26 7.25 1 

7 12.32 −10.90 28.74 0.42 0.75 40.76 6.48 61.96 0.99 29.33 7.08 1 

8 19.23 −12.84 26.80 0.37 0.69 41.52 6.65 66.11 0.99 29.03 7.08 1 

9 17.52 −12.44 27.20 0.37 0.67 38.66 6.95 64.58 0.99 28.57 7.07 1 

10 20.05 −13.02 26.62 0.37 0.69 42.00 6.56 62.55 0.99 29.14 7.05 1 

11 9.84 −9.93 28.11 0.28 0.69 30.56 7.24 63.83 0.99 20.43 6.39 9 

12 9.85 −9.94 28.11 0.28 0.69 31.55 7.08 63.46 0.99 20.42 6.38 9 

13 9.89 −9.95 28.09 0.28 0.69 28.32 7.31 61.63 0.99 20.42 6.39 9 

14 9.89 −9.95 28.09 0.28 0.70 30.21 6.37 63.16 0.99 20.42 6.39 9 

15 9.93 −9.97 28.07 0.28 0.70 29.52 5.76 62.87 0.99 20.43 6.39 9 

Table 3. Sample features selected using TLBO optimization. 

S. No SNR 2-D Corr. 2-D Std Dev. Entropy Class 

1 36.12 7.06 0.98 36.27 0 

2 33.12 7.96 0.97 35.25 0 

3 40.13 6.15 0.98 35.79 0 

4 43.00 6.93 0.98 35.08 0 

5 37.48 8.07 0.98 36.15 0 

6 31.37 6.63 0.97 35.26 1 

7 40.76 6.48 0.99 29.33 1 

8 41.52 6.65 0.99 29.03 1 



Machines 2023, 11, 29 17 of 26 
 

 

9 38.66 6.95 0.99 28.57 1 

10 42.00 6.56 0.99 29.14 1 

11 30.56 7.24 0.99 20.43 9 

12 31.55 7.08 0.99 20.42 9 

13 28.32 7.31 0.99 20.42 9 

14 30.21 6.37 0.99 20.42 9 

15 29.52 5.76 0.99 20.43 9 

Table 4. Sample features selected using HTS optimization. 

S.No BRISQUE NIQE 2-D Corr. 2-D Std Dev. Class 

1 23.50 0.98 36.27 7.37 0 

2 22.48 0.97 35.25 7.25 0 

3 25.28 0.98 35.79 7.31 0 

4 24.99 0.98 35.08 7.33 0 

5 24.62 0.98 36.15 7.34 0 

6 23.18 0.97 35.26 7.25 1 

7 28.74 0.99 29.33 7.08 1 

8 26.80 0.99 29.03 7.08 1 

9 27.20 0.99 28.57 7.07 1 

10 26.62 0.99 29.14 7.05 1 

11 28.11 0.99 20.43 6.39 9 

12 28.11 0.99 20.42 6.38 9 

13 28.09 0.99 20.42 6.39 9 

14 28.09 0.99 20.42 6.39 9 

15 28.07 0.99 20.43 6.39 9 

Three ML models (SVM, ELM, and SVD) are considered to demonstrate the utility of 

the proposed framework of compound fault prediction. To evaluate the individual capa-

bilities of a prediction model, standard performance metrics (accuracy, precision, recall, 

and F-score) are calculated and evaluated with a 30% hold-out and a 10-fold cross-valida-

tion procedure. Figure 11a–c show the prediction results obtained with the three feature 

conditions: all features, TLBO-optimized features, and HTS-optimized features with 30% 

hold-out data. It can be noticed that, when all features are considered, the average accu-

racy to detect compound faults of the bearing is 99.03% with the SVM model, whereas, 

with TLBO- and HTS-optimized features, the average accuracy is observed as 98.96% and 

99.73%, respectively, with the same model. Similarly, the average precision values ob-

served are 95.3%, 94.8%, and 98.6%, respectively, with all three feature conditions. More-

over, the average recall was observed as 96.6%, 96.2%, and 98.7%, respectively. Further-

more, the average F-score was observed as 95.4%, 95%, and 98.7%, respectively, consider-

ing all features, TLBO-, and HTS-optimized features, respectively, from the SVM as ob-

served in Figure 11a. The average compound fault detection accuracy, precision, recall, 

and F-score calculated with the SVD model are shown in Figure 11b. The maximum aver-

age accuracy in detecting compound faults is observed as 99.83% with HTS-optimized 

features, whereas the least accuracy of 99.36% to detect compound faults is observed with 

the All feature condition. 
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Figure 11. (a–c) Compound fault prediction: (a) SVM (b) SVD, and (c) ELM ML models at 30% hold-out. 

Similarly, the maximum average precision, recall, and F-score are observed as 99.2%, 

99.2%, and 99.1%, respectively, with HTS-optimized features. The SVD-TLBO prediction 

is better than the SVD-All prediction but relatively less than the SVD-HTS model, as ob-

served in Figure 11b. Figure 11c shows the prediction results to detect compound faults 

from the ELM model. 100% average accuracy, precision, recall, and F-score has been ob-

served from the ELM-HTS and ELM-TLBO models, whereas an average of 99.8% accuracy 

and 99.5% average precision, recall, and F-score were observed from the ELM-All feature 

model. Thus, from Figure 11a–c, it is observed that 100% compound faults in bearings are 

predicted from the ELM-HTS model. 

When ML models are applied for predicting various faults, ten-fold cross-validation 

(CV) is needed to avoid the overfitting of the ML model, and to produce unbiased and 

reliable results for fault predictions. When ten-fold CV is applied, a feature vector is ini-

tially divided into 10 random parts, out of which nine parts are used for training, and one 

part is utilized for testing. In the second stage, eight parts are utilized for training, and 

two parts are used for testing. The aforementioned procedure is repeated, and the average 

fault prediction results are considered. Figure 12a–c show the compound fault prediction 

accuracy when the ten-fold CV procedure is applied to all three ML models and three 

feature set conditions. With the SVM-HTS model, the highest average compound fault 

prediction accuracy of 99.69% is reported, whereas 99.04% and 99.1% ten-fold CV fault 

prediction accuracy is reported from the SVM-TLBO and SVM-All model, as shown in 

Figure 12a. With the SVD-HTS model, the average maximum accuracy reported is 99.99% 

as compared to 99.74% with the SVD-TLBO model and 99.74% with the SVD-All feature 

model. Similarly, the maximum average precision, recall, and F-score are observed with 

HTS features and the least average precision, recall, and F-score are observed from the All 

feature condition, as shown in Figure 12b. When the ELM model is applied to the three-

feature set to predict compound faults in REBs, 100% average compound fault prediction 

accuracy is observed from the ELM-HTS and ELM-TLBO models. Moreover, an average 
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compound fault prediction accuracy of 99.96% is observed with the ELM-All feature con-

dition. Similarly, 100% average precision, recall, and F-score are observed with ELM-HTS 

and ELM-TLBO, and slightly lower compound fault prediction results are observed when 

the ELM-All model is considered, as observed from Figure 12c. Thus, ELM is the best ML 

model to detect compound faults as compared to SVM and SVD. Similarly, HTS-opti-

mized features are better than TLBO and All features for detecting compound faults. Table 

5 shows the maximum average compound fault detection accuracy of all three ML models 

and feature sets. The result demonstrates that the proposed framework incorporating 

SinGAN and optimized features works well across machine-learning models for com-

pound fault detection in bearings. 

Table 5. Compound fault prediction accuracy. 

 30% Hold-Out Accuracy (%) Ten-Fold CV Accuracy (%) 

Data Set SVM SVD ELM SVM SVD ELM 

All Features 99.03 99.36 99.8 99.19 99.78 99.96 

TLBO Features 98.96 99.73 100 99.04 99.74 100 

HTS Features 99.73 99.83 100 99.69 100 100 

When class-wise fault prediction accuracy needs to be visualized, a confusion matrix 

is needed. The confusion matrix represents a table where actual vs. predicted values can 

be visualized. Since the ten-fold CV exhibits reliable compound fault prediction accuracy, 

a confusion matrix generated through all three ML models and with all three feature con-

ditions are investigated. In Figure 13a–i, A–I represent the class corresponding to shaft 

speed varying from 600 rpm to 2400 rpm. Figure 13a–c represent the SVM model’s class-

wise prediction accuracy. It should be noticed that SVM-HTS has the lowest misclassifi-

cation accuracy of compound defects in REBs, but SVM-TLBO has a substantially greater 

misclassification accuracy. Further, with the SVD model, all the compound fault condi-

tions except at 1800 rpm are detected correctly with SVD-HTS, whereas SVD-TLBO mis-

classified accuracy more often compared to SVD-All features, which is shown in Figure 

13d–f. Moreover, when the confusion matrix is observed for the ELM ML model, all the 

compound fault conditions are detected with 100% accuracy with all operating conditions 

and with both ELM-HTS and ELM-TLBO models. Slight misclassification accuracy is re-

ported with ELM-All features, as observed from Figure 13g–i. According to the results 

obtained, it is observed that at a higher shaft speed, the compound fault conditions are 

predicted accurately with the SVD and ELM models. In contrast, slightly higher misclas-

sification results are observed from the SVM model. Furthermore, the methodology for 

detecting compound faults in REBs based on Multiscale-SinGAN and optimized features 

consistently reported an average fault prediction accuracy of 99%, indicating that the 

SinGAN-HTS-ELM model is efficient enough to detect compound faults with a limited 

dataset of ten experiments. Table 6 shows the prediction accuracy when redundant fea-

tures are considered. Here, redundant features represent the features that are not selected 

when TLBO and HTS are applied to select the feature subset. The results, as observed 

from Table 5 and Table 6, confirm that the HTS and TLBO features identify compound 

fault prediction better than redundant features. Table 7 shows the computational time re-

quired to develop ML models when a 30% hold-out and ten-fold CV dataset are consid-

ered. The SVM model requires less time to predict compound faults, whereas SVD re-

quired a significantly higher time to predict compound faults. 
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Figure 12. (a–c) Compound fault prediction: (a) SVM (b) SVD, and (c) ELM models with ten-fold CV. 
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Figure 13. (a–i) Confusion matrix from Ten-fold CV with SVM, SVD, and ELM ML models. 

Table 6. Compound fault prediction accuracy with redundant features. 

 HTS (Redundant Features) TLBO (Redundant Features) 

 

30% Hold-

Out  

Misclassi-

fication 

Accuracy 

(%) 

30% 

Hold-Out 

Classifica-

tion 

Accuracy 

(%) 

Ten-Fold 

CV  

Misclassi-

fication 

Accuracy 

(%) 

Ten-

Fold 

CV  

Classi-

fication 

Accu-

racy (%) 

30% 

Hold-Out 

Classifica-

tion 

Accuracy 

(%) 

30% 

Hold-

Out  

Classifi-

cation 

 

Ten-Fold 

CV  

Classifi-

cation 

Accuracy 

(%) 

Ten-Fold 

CV  

Classifi-

cation 

Accuracy 

(%) 

SVM 2.5 97.50 6.41 93.59 1 99 3.23 96.77 

SVD 2.64 97.36 2.89 97.11 1.40 98.60 1.13 98.87 

ELM 3.9 96.10 8.31 91.69 3.0 97 8.49 91.59 
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Table 7. Computational time. 

 SVM ELM SVD 

Features Validation Time (In Seconds) Time (In Seconds) Time (In Seconds) 

All  
30% hold-out 0.03131 1.7495 3.278 

Ten-fold CV  0.2476 22.508 31.557 

HTS 
30% hold-out 0.0203 1.621 2.57 

Ten-fold CV  0.133 22.175 21.36 

TLBO 
30% hold-out 0.0193 1.666 2.930 

Ten-fold CV  0.1114 23.302 25.5 

Redun-

dant HTS 

30% hold-out 0.153 1.716 4.51 

Ten-fold CV  2.065 22.304 42.46 

Redun-

dant 

TLBO 

30% hold-out 1.0609 1.7201 4.865 

Ten-fold CV  16.151 22.869 47.98 

4. Conclusions 

Structural health monitoring using vibration signals is an efficient tool for detecting 

faults. In the current study, the authors suggested a hybrid framework for compound fail-

ure identification in ball bearings that combines Multiscale-SinGAN, metaheuristic opti-

mization techniques, and ML models. Ten vibration signals are acquired from compound 

faults in REBs at different rpm, and the signals are pre-processed with HHT. HHT is ap-

plied to the vibration signals, and a Kurtogram is generated. Due to the limited availability 

of an experimental dataset, Multiscale-SinGAN is utilized to generate additional Kurto-

grams from which features are extracted. In addition, TLBO and HTS metaheuristic opti-

mization techniques are applied for feature selections, and with the selected features, 30% 

hold-out, and Ten-fold CV are performed with three ML models. The salient observations 

from the proposed methodology are listed below: 

1. Considering all IQP features with 30% hold-out testing, the maximum average accu-

racy to detect compound faults is observed as 99.8% with the ELM model. 

2. ELM-HTS and ELM-TLBO detect 100% compound faults with 30% hold-out testing, 

whereas the least average accuracy to detect compound faults is observed as 98.96% 

with SVM-TLBO. 

3. With Ten-Fold CV and considering all IQP features, the maximum average accuracy 

to detect compound faults in REBs is reported as 99.9% with the ELM model. 

4. The maximum average compound fault detection accuracy of 100% is observed with 

ELM-HTS and ELM-TLBO. In contrast, the minimum average accuracy of 99.04% is 

reported from the SVM-TLBO model with the Ten-fold CV procedure. 

The proposed methodology is useful for precisely diagnosing the bearing’s faults. 

When the available experimental data are limited, the approach may also be used for defect 

identification and the health monitoring of turbines, gears, pumps, and so on. Further find-

ings illustrate the effectiveness of metaheuristic feature-selection algorithms, such as HTS 

and TLBO, in effectively identifying the important features for defect detection. The auto-

mation of condition monitoring and problem detection in industries is expected to gain trac-

tion in the near future with the augmented data generated by Multiscale-SinGAN. 
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