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Abstract: Applying a three-dimensional (3-D) reconstruction from mapping-oriented offline modeling
to intelligent agent-oriented environment understanding and real-world environment construction
oriented to agent autonomous behavior has important research and application value. Using a scanner
to scan objects is a common way to obtain a 3-D model. However, the existing scanning methods
rely heavily on manual work, fail to meet efficiency requirements, and are not sufficiently compatible
with scanning objects of different sizes. In this article, we propose a creative visual coverage path
planning approach for the robotic multi-model perception system (RMMP) in a 3-D environment
under photogrammetric constraints. To realize the 3-D scanning of real scenes automatically, we
designed a new robotic multi-model perception system. To reduce the influence of image distortion
and resolution loss in 3-D reconstruction, we set scanner-to-scene projective geometric constraints. To
optimize the scanning efficiency, we proposed a novel path planning method under photogrammetric
and kinematics constraints. Under the RMMP system, a constraints-satisfied coverage path could be
generated, and the 3-D reconstruction from the images collected along the way was carried out. In
this way, the autonomous planning of the pose of the end scanner in scanning tasks was effectively
solved. Experimental results show that the RMMP-based 3-D visual coverage method can improve
the efficiency and quality in 3-D reconstruction.

Keywords: path planning; 3-D scanning; multi-model perception; photogrammetric constraints

1. Introduction
1.1. Background and Significance

With the revolutionary development of manufacturing, computer vision, virtual reality,
human–computer interaction, and other fields, the demand for 3-D models is increasing.
They are widely used in industrial manufacturing [1,2] , construction engineering [3], film
and television entertainment [4], driverless [5], cultural relics restoration [6,7], medical and
health care [8], etc. There is an increasing demand [9,10] for 3-D reconstruction for objects
or scenes of different sizes, such as the reconstruction of desktop decorations at the scale of
cm [11–13], reconstruction of car and airplane surfaces that are as large as meters [14–16],
and reconstruction of outdoor natural scenes [17]. In addition, the requirements for the
degree of automation and efficiency of the reconstruction process [18,19] are getting higher
and higher. It is of great significance for industrial manufacturing and production life to
realize the 3-D reconstruction of different-sized objects or scenes and 3-D scanning with a
high automation and efficiency.
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Currently, 3-D scanning solutions for different-sized objects have been proposed in
succession. In order to scan small-sized objects, Hall-Holt O et al. [20] used a combined
approach of a camera and projector to achieve scanning within an operating range of
10 cm, which guaranteed an image acquisition frequency of 60 Hz and a 100 µm accuracy.
Percoco, G et al. [21] used the digital close-range photogrammetry (DCRP) method for
scanning millimeter-scale objects. In order to scan larger-than-millimeter-scale objects,
Li W et al. [22] designed a rotating binocular vision measurement system (RBVMS), which
uses two cameras and two warp meters as a two-dimensional rotating platform. It measures
300 mm and 600 mm targets with an accuracy of approximately 0.014 mm and 0.027 mm.
Straub J et al. [23] built a 3-D scan space with eight prismatic regions and used 50 cameras
for data acquisition. Zeraatkar M et al. [24] used 100 cameras to build a cylindrical scanning
space for a 3-D scanning system targeting person. Yin S et al. [25] and Du H et al. [26]
designed a method for an industrial robotic arm to hold the scanner, and the method
was combined with the use of a laser range finder for end positioning. In order to scan
large-sized objects, Zhen W et al. [27,28] used a binocular plus LiDAR acquisition scheme
for the 3-D scanning of large civil engineering designs , such as bridges and buildings.

The above scanners all use fixed schemes or handheld methods, which do not have
autonomous motion exploration capabilities and are not suitable for large-range and long-
time 3-D scanning tasks. With the development of robotics, an increasing amount of
research has been conducted to increase the scanner motion capability in order to improve
the efficiency and automation of the scanning process. Shi J et al. [29] designed multiple-
vision systems mounted on an L-shaped robotic arm. The systems slide on a rail and use a
laser rangefinder to acquire the distance between one end of the rail and robotic arm to
facilitate 3-D reconstruction. Since the camera only acquires image data in an overhead
manner, the reconstruction effect is rational for the top of the object but poor for the side of
the object. Wang J et al. [30,31] proposed a measurement solution based on a mobile robot
and a 3-D reconstruction method based on multi-view point cloud alignment. The mobile
optical scanning robot system for large and complex components was also investigated
for positioning using ground position coded markers. Although the method has a good
error accuracy, it places new requirements on the ground coding and positioning process,
which increases the task difficulty. Zhou Z et al. [32,33] proposed a better measurement,
combining a global laser tracker, local scanning system, and industrial robot with a mobile
platform . The measurement based on a priori knowledge establishes the correlation
constraints between local and global calibrations, improving the measurement accuracy.

To improve the automation of 3-D scanning, it is necessary to plan the path for
the robot, making it maximize the information gained about the objects or scenes. Path
planning is widely used in robotic systems with mobility functions. For example, using
distributed smart cameras in low-cost autonomous transport systems for adapting to
future requirements of a smart factory [34]. Solutions toward path planning problems
include sampling-based methods, frontier-based methods, or a combination of both. In
sampling-based methods, ref. [35] presented a new RRT*-inspired online informative path
planning algorithm by expanding a single tree of candidate trajectories and rewiring nodes
to maintain the tree and refine intermediate paths. Furthermore, ref. [36] proposed a next-
best-view planner that can perform full exploration and user-oriented exploration with an
inspection of the regions of interest using a mobile manipulator robot. In frontier-based
methods, ref. [37] proposed an exploration planning framework that is a reformulation of
information gain as a differentiable function. This allows us to simultaneously optimize
information gain with other differentiable quality measures. In the method of combination,
ref. [38] achieved a fast and efficient exploration performance with tight integration between
the octree-based occupancy mapping approach, frontier extraction, and motion planning.

To address the shortcomings of generic path planning methods in 3-D scanning tasks, a
new multi-model perception robotic system was designed in the manuscript. Furthermore,
a novel path planning method based on the system is proposed in this paper. The robotic
system includes four submodules: a mechanical module, driving module, control module,
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and self-made sensing module. Therefore, it can scan objects of different sizes automatically.
In addition, the path planning method using photogrammetric and kinematic constraints
improves the level of 3-D scanning automation. The method proposed in this paper is
applicable to 3-D scanning and reconstruction tasks and can satisfy 3-D scanning and
reconstruction for outdoor natural scenes, indoor environments, or objects; for example, the
3-D scanning and reconstruction of workpieces in industrial manufacturing. The research
content of this paper is shown in Figure 1.

Data Perception

Control Module 

Drive Module

Sensing Module

Navigation and 

Positioning

Next View 

Planner

Motion Planning

Servo motors

···

3-D Real Scene Reconstruction

···

Figure 1. The robotic system proposed in this paper improves the automation of 3-D scanning and
enables compatible scanning of different-size objects, especially providing an autonomous solution
for 3-D scanning of large scenes or objects. The solution liberates people from a great many instances
of repetitive mechanical labor. Moreover, the path planning based on photogrammetric constraints
makes the data acquisition process more efficient and the collected data more effective.

1.2. Aims and Contributions

This paper mainly focuses on the path planning of autonomous 3-D scanning and
reconstruction for the robotic multi-model perception system. The main contributions of
this work are as follows:

(1) This paper proposes a novel path planning approach for 3-D visual coverage scanning.
By defining a set of practical photogrammetric constraints, the quality of the images
collected along the way of the robotic system is effectively improved. Different from
the existing path planning algorithms—either frontier-based methods, sampling-
based methods, or a combination of both—we planned the path based on the shape of
the objects. The proposed strategy can obtain dynamic feasible paths based on the
true shapes of the scanning objects;

(2) This paper defines two new photogrammetric constraints for image acquisition based
on the shape of scenes or objects. In order to obtain an accurate model of the ROI,
the images obtained from the cameras integrated into the scanner should satisfy the
equidistant and frontal constraints. In this way, the problems of image deforma-
tion and resolution loss caused by the shape change of the scenes or objects to be
reconstructed can be resolved;

(3) This paper proposes a novel design of a scanner and robotic system for coverage
scanning tasks. Firstly, we designed a scanner equipped with LiDAR, Realsense, and
multiple cameras. Secondly, we used a mobile platform and robotic arm to ensure
the robotic system’s ability to move in 3-D space. Finally, the designed scanner was
mounted at the end of the robotic arm to form the scanning robotic system, which can
significantly improve both the quality of photography and the efficiency of scanning.

2. Problem Formulation
2.1. Assumptions

Consider a scenario where a 3-D ROI needs to be fully covered by images obtained
from cameras mounted on the scanner. The moving of the scanner is subjected to pho-
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togrammetric and kinematics constraints based on the preliminary work of our subject
group [39]. We make the following assumptions:

(1) The ground in the three-dimensional space where the robotic system is located is
required to be flat without potholes or bulges, so as to achieve smooth robotic sys-
tem movement;

(2) The LiDAR, Realsense, and multiple cameras on the scanner should have been pre-
calibrated. In addition, the parameters of the cameras and images, such as the camera
field of view (FOV) and image resolution, should have been known in advance. In
addition, the scanner and the end of the robotic arm should have been pre-calibrated.

(3) Individual images are used or multiple images are seen as a composite individual
image for further theoretical analysis, for the purpose of path planning.

2.2. Definition of Photogrammetric Constraints and Problem Statement

We aimed to capture images ofD with high quality, and to further obtain an accurate 3-
D model. D is the side of scanned objects. Therefore, some constraints should be considered
when the shutter of the camera is triggered.

Let X represent the discrete scanner waypoints: X = [x y z γ β α]T ∈ X ⊂ R6. g1(X)
is a set of constraint functions that satisfy the following photogrammetric conditions at a
specific waypoint, as shown in Figure 2.

(1) Equidistant: In order to maintain a consistent image resolution, the position of each
waypoint X should keep a constant offset distance h from the fitted plane with a
bounded position error ε1;

(2) Frontal: For each waypoint X , the orientation of the camera ([γ β α]) is perpendicular
to the fitted plane to capture an orthophotograph with a bounded angle error ε2;

(3) Overlap: In the 3-D reconstruction application, the images should be acquired with a
horizontal overlapping rate σ0 and vertical overlapping rate σ1 .

Frontal

σ
0 W

c      

Χ

σ1 Lc

Path

L

Lc

Wc

P
at

h
 S

ch
em

at
ic

Equidistant

W

Figure 2. Schematic diagram of photogrammetric constraints and path planning. X represents a
series of three-dimensional spatial points at which the camera is shooting. h represents the constant
distance between the camera and the center of the camera footprint, where the orientation of the
camera is perpendicular to the fitted plane. In addition, σ0 and σ1 denote the horizontal and vertical
overlapping rates.

In this paper, the equidistant h was set by evaluating the expected resolution when
given the distance and the intrinsic parameters of the camera, which is consistent with [40,41].
The normal vector of the fitted plane was used to set the frontal constraint. According to [42],
the overlapping rates σ0 and σ1 were determined.

To cover the 3-D space D, a robotic system was involved, which was equipped with a
scanner for multi-model perception. As shown in Figure 2, the robotic system follows a
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path that contains all of the waypoints generated under photogrammetric and kinematic
constraints, and ultimately achieves the coverage scanning task.

For the robot path planning, we parameterized the obtained path as X = [X1 X2 · · · Xn],
where X was set to fully cover D. The objective of the mission was to minimize the path
length L(X) under the constraints g(X). The exact formulas of the objectives and constraints
will be given in the following sections.

2.3. Next View Planner

The next view planner is one of the robotic system functions, and determines the ideal
scanning position and attitude of the 3-D scanner at the next moment according to the
shape change of the scenes or objects. The planner needs to input LiDAR or Realsense
point cloud data. LiDAR covers medium and long-range 3-D scanning, and Realsense
covers 0.2 m∼10 m 3-D scene scanning. Since the laser point cloud acquires 360-degree
point cloud data, the next view planner only needs a certain angle in front of the scanner,
so it is considered to intercept the laser point cloud with a slightly larger angle than the
image resolution. After data preprocessing, plane fitting, photogrammetric constraints,
and other processing, the ideal scanning pose of the 3-D scanner in the robotic system at
the next moment can be calculated. The whole calculation and derivation process of the
next view planner is as follows:

(1) Rotation: As shown in Figure 3, SRC_Data represents the obtained LiDAR point
cloud data matrix. Define the rotation matrix as K obtained by Realsense imu data. The
LiDAR coordinate system changes from L to L′ by L′ = K · L, and ROT_Data is obtained
by Rot_Data = K · SRC_Data;
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Figure 3. The next view planner(I) shows fitting line processes. After the rotation and angle segmen-
tation of the original data, further handling the data, and then fitting the straight line.

(2) Cutting: Select Rot_Cut_Data from Rot_Data, covering positive and negative
45 degrees in front of the scanner;

(3) Denoising: Filter the Rot_Cut_Data by comparing it with the mean value of the
spatial points’ coordinates, named the denoised data as Rot_Cut_Mean_Data;

(4) Fitting line: Project the Rot_Cut_Mean_Data under the L′ coordinate system onto
x-0-y plane, fit a straight line by the least square method, and name the line as Fi. The
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straight line is used to solve the ideal shooting plane of the next view. Process (1) to process
(4) are shown in Figure 3;

(5) Frontal: Establish a perpendicular line (frontal constraint) from the coordinate
origin to the fitted line. Generate a vector from the perpendicular foot named Ai to the
origin, which is the normal vector of both the ideal shooting direction and the ideal shooting
plane in the next view;

(6) Fitting plane: Fit a plane by the plane normal vector in the process (5) and the
straight line on the plane in the process (4). Use the plane and the plane’s normal vector to
calculate the ideal shooting pose for the next view;

(7) Equidistant: Calculate a point by x-y coordinate mean of Rot_Cut_Mean_Data.
Use the point and plane’s normal vector to find the ideal shooting poseH(Xi) at a distance
h from the plane. TheH(Xi) is defined by Formula (1);

H(Xi) =

[
R C
0 1

]
let: R = RZ(α)RY(β)RX(γ)

=

cα −sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1 0
−sβ 0 cβ

1 0 0
0 cγ −sγ
0 sγ cγ


=

cαcβ cαsβsγ− sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ− cαsγ
−sβ cβsγ cβcγ


C = [x y z]T ⊂ R3

(1)

(8) Recovering the coordinate system: Use the inverse matrix K′ of K to recover
coordinate system form L′ to L. Meanwhile, theH′(Xi) is obtained by Formula (2). Process
(5) to process (8) are shown in Figure 4;

H′(Xi) = K′ · H(Xi) (2)

Photogrammetric Constraints

Establish Vertical Line

(Normal Vector)
Establish Vertical Plane

Ⅱ

Next View Planner Ⅱ

Output

Figure 4. The next view planner(II) shows fitting plane processes. After fitting straight line, the
frontal and equidistant constraints are used to fit plane and calculate ideal shooting pose, and the
pose is then converted to the L coordinate system.

(9) Calculating n: Define n as the number of shots. For every scan horizon line, the
number of shots is nl . For every scan vertical line, the number of shots is nv. n is the sum
of dnle plus dnve as Formula (3), where L×W represents the size of area D, and Lc ×Wc
represents the camera resolution.
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nl =
L− σ1Lc

Lc − σ1Lc

nv =
W − σ0Wc

Wc − σ0Wc

n = dnle × dnve

(3)

Define NVP as a constraint function that represents the above process (1) to (9). Define
P1, which is the set of all points Xi that satisfies the NVP.

2.4. Inverse Kinematics Constraints

Describe the mobile platform position and attitude with three parameters
Cm = [xm, ym, θ0], and the flexible robot arm has six joint degrees of freedom described by
Cr = [θ1, θ2, θ3, θ4, θ5, θ6]. Therefore, the control towards the scanner pose located at the
end of the mobile manipulator has redundant parameters. Name Pi as the scanner ideal
pose. The relationship between Pi andH′(Xi) is:

Pi = H′(Xi) ·M =


r11 r12 r13 pxi

r21 r22 r23 pyi

r31 r32 r33 pzi

0 0 0 1

 (4)

where M represents the inverse matrix of the transformation matrix from the end of the
manipulator to the laser radar. It is pre-calibrated.

Define Di as the euclidean distance between Pdi
= [pxi pyi pzi ] and Pdi−1

:

Di = ‖Pdi
−Pdi−1

‖ (5)

Describe the space coordinates (xm, ym) and direction angle θ0 of the mobile platform
and six joint angles of the manipulator(θ1, θ2, θ3, θ4, θ5, θ6) as the system state quantity
(Cm, Cr). Since the control to the end of the mobile manipulator has redundant parameters,
the solution to the joint angle of the manipulator and the pose of the mobile platform
requires setting reasonable constraints. Therefore, the state quantity of the solved system
can reach the specified pose by the ends scanner. A reasonable constraint not only needs
to consider the mechanical characteristics, required to ensure the flexibility of the ends
scanner and the stability of the robot, but also the difficulty of the solving process. The
relationship between the system state quantity and the desired pose can be obtained from
Formula (6):

W
E T(Cm, Cr) = Pi (6)

where W
E T represents the ends scanner pose matrix in the world coordinate system.

The pose of the scanner at the end of the manipulator has six degrees of freedom
(DOFs), which are three rotational DOFs and three translational DOFs, respectively. The
three rotational DOFs are controlled by the rotational parameters (θ1, θ4, θ5, θ6) of the
manipulator and directional parameter θ0 of the mobile platform. The three translational
DOFs are controlled by the rotational parameters (θ2, θ3) of the manipulator and position
parameters (xm, ym) of the mobile platform.

From the perspective of mechanical characteristics and ease-solved parameters. Since
the manipulator θ1 and mobile platform θ0 both rotate around the same Z-axis, the two mo-
tions can be equivalent. Therefore, constraint 1—θ1 = 0◦—was designed and the shortage
was made up by θ0. To ensure the stability of the robot, constraint 2—θ3 = 2× (θ2 + 90◦)—
was designed to keep the robot’s center of gravity within a certain range. In addition,
considering the situation that if θ4, θ5 are constrained, the dexterity space of the robot will
be reduced, θ4, θ5 should be released. However, considering that even if the flexibility of the
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sixth axis is guaranteed, its effect on the scanner at the end is not significant, a constraint 3
of θ6 = 0◦ was set.

Use Equation (8) to figure out the six joint angles of the manipulator, and then use
Equation (9) to find the position coordinate parameter(xm, ym) and the direction angle
parameter θ0 of the mobile platform.

B
ET(Cr) =

W
B T−1 · Pi =


r
′
11 r

′
12 r

′
13 p

′
xi

r
′
21 r

′
22 r

′
23 p

′
yi

r
′
31 r

′
32 r

′
33 p

′
zi

0 0 0 1

 (7)

W
B T(Cm) = Pi ·BE T−1 =


r
′′
11 r

′′
12 r

′′
13 p

′′
xi

r
′′
21 r

′′
22 r

′′
23 p

′′
yi

r
′′
31 r

′′
32 r

′′
33 p

′′
zi

0 0 0 1

 (8)

where B
ET denotes the ends scanner pose matrix in the base coordinate system, and W

B T
denotes the base pose matrix in the world coordinate system, which is a known matrix
by navigation and positioning. Therefore, the homogeneous matrix on the right side of
Formula (7) is a known parameter. According to constraint 1, constraint 3, and Formula (7),
we can obtain: 

θ2 = asin(
(t− d5 × r

′
32− p

′
zi
)

a2 + a3
)

θ3 = 2× (θ2 + 90◦)

θ4 = θ2 − acos(r
′
32)

θ5 = atan2(r
′
33,−r

′
31)

(9)

According to the values of θ1 = 0◦, θ6 = 0◦ and Formula (9), we can figure out
(xm, ym, θ0) by Formula (8):


xm = p

′′
xi

ym = p
′′
yi

θ0 = atan2(r
′
21,−r

′
11)

(10)

The above solutions for the joint angles of the manipulator and the mobile platform
pose do not include the case θ5 = 0◦. When it comes to the special case θ5 = 0◦, taking into
account the mechanical characteristics, an additional constraint θ4 = θ2 + 180◦ was added
to tackle this problem. After solving the parameter (xm, ym, θ0), the differential two-wheel
kinematics model can be used to calculate the two-wheel angular velocity ωl and ωr.

Define IKC as a function that represents the constraint mapping relation from Pi to
(xm, ym, θ0, θ1, θ2, θ3, θ4, θ5, θ6). Define a set P2, which means that the set of all points Xi
satisfied the IKC.

2.5. Path Generation

The above two sections, Next View Planner and Inverse Kinematics Constraints,
describe the constraints. For the robot path planning, considering a real-world scene and a
series of waypoints set X employed to fully cover D, the goal of the coverage path planning
can be shown as follows:
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min L(X) =
k

∑
i=1

Di

s.t. ‖Xi −Ai‖ = h

XiFi = 0

Xi ∈ P1 ∪ P2

(11)

where X is the path set [X1 X2 · · · Xn], Di is the euclidean distance between Xn−1 and Xn,
h is the equidistant constraint, XiFi = 0 is the frontal constraint, P1 is the set of all points
Xi that satisfy the NVP, and P2 is the set of all points Xi that satisfy the IKC.

2.6. Algorithm of Path Planning under Photogrammetric and Kinematics Constraints (PP-PKC)

The path planning algorithm under photogrammetric and kinematics constraints (PP-
PKC) is shown in Algorithm 1. M is the pre-calibrated data between LiDAR and the end of
the manipulator. SRC_Datai is the original data of LiDAR. Calc_n represents Formula (5).
Eucl_d means the euclidean distance between Xj−1 and Xj, as shown in Formula (6). In
addition, NVP is defined in Section 2.3, and IKC is defined in Section 2.4.

Algorithm 1: Path Planning Algorithm under Photogrammetric and Kinematics
Constraints (PP-PKC)

input : M,SRC_Datai, Lc, Wc,L, W
output : Paths, D
n← Calc_n(L, Lc, W, Wc);
k = 1; j = 1;
for i← 1 to n do
Xi ← NVP(SRC_Datai);
Pi ← H′(Xi) ·M;
T ← IKC(Pi);
if T ∈ P1 ∪ P2 then
Xj ← T ;
if j 6= 1 then
Dk ← Eucl_d(Xj−1,Xj);
k ++;

j ++;

Paths = [X1 X2 · · · Xj];
D = [D1 D2 · · · Dk];

3. Robotic Multi-Model Perception System (RMMP)
3.1. Robotic System Overall Structure

The robotic multi-model perception system (RMMP) proposed in this paper is made
up of four parts: a mechanical module, driving module, control module, and sensing
module. The mechanical module includes a mobile platform, a manipulator, and a 3-D
scanner; the drive module consists of several DC servo motors; the control module includes
three parts: navigation and positioning, a next frame planner, and motion planning; and
the sensing module consists of sensors belonging to a 3-D scanner. All of these modules are
shown in the upper left of Figure 5.
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Figure 5. The framework of the robotic multi-model perception system (RMMP). This paper proposes
a novel design of scanner and robotic system for covering scanning tasks. The scanner is a self-
developed platform with an axisymmetric structure, including 4 cameras, 1 projector, 1 LiDAR, and
1 Realsense. The scanner coordinate system coincides with the end of the manipulator coordinate
system. The base of the manipulator and the mobile platform are fixed by rigid connection; in
addition, the scanner and the end of the manipulator are also fixed by rigid connection.

3.2. Mechanical Module and Self-Designed Scanner

The mechanical module in RMMP contains the mobile platform, manipulator, and 3-D
scanner. The mobile platform is responsible for the plane movement of the robot system in
3-D space, which has the advantage of an unlimited movement range. The manipulator is
responsible for the 3-D movement of the end scanner in space, which can ensure that the
scanner makes a flexible movement in 3-D space. Moreover, the 3-D scanner is responsible
for the data acquisition of the object to be scanned.

Among them, the 3-D scanner is a novel self-designed platform, as shown in the upper
right of Figure 5. The designed scanner has an axisymmetric structure with a projector in
the center that can be specified to project structured light. The projector has two binocular
vision systems, named as BVS1 and BVS2, respectively. The BVS1 is made up of Camera1
and Camera4, and the BVS2 is made up of Camera2 and Camera3. LiDAR is on the top of
projector, and Realsense is beneath the projector.

For small-sized objects, we used the binocular systems made up of Camera2 and Cam-
era3; in addition, the projector and Realsense were chosen to assist in data perception. For
medium and large objects, the binocular systems made up of Camera1 and Camera4 were
selected; in additoin, LiDAR was used to collect the object point cloud data. Throughout the
3-D scanning process, the scanner attitude information can be collected using the inertial
measurement unit (IMU) integrated in Realsense.

3.3. Control Module

The control module of RMMP is the key part to accomplish the autonomous scanning
task, as shown in Figure 6. The control module designed in this paper contained navigation
and positioning, the next view planner, and motion planning. Navigation and positioning
were used to calculate the robot pose, obstacle avoidance, and other functions. The next
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view planner was used to calculate the ideal shooting pose for the next frame, and motion
planning was used to calculate and control the robotic system movement.

LiDAR or Realsense 

Data Input 

Fitting Plane
Photogrammetric 

Constraints 
Next View

3-D Scanner 

Pose

Navigation and Positioning

Localization 

and Mapping

Motion Planning

Next View Planner

current 
pose

next 
pose

Inverse 

Kinematics

Back End

Optimization

Front End

Odometry

Loop Closure

Data 

Pre-processing

Arm

Cartesian Space Planning

Differential Two-wheel 

Motion Planning

Output 

Cr ,ωl ,ωr

Figure 6. Flow chart of the control module. The module inputs LiDAR point cloud data or Realsense
point cloud data for navigation and positioning module and next view planner module simultane-
ously. The navigation and positioning module calculates the current pose, the next view planner
module calculates the ideal pose at the next view, and the motion planning module uses the current
pose and the ideal pose at the next view for motion planning.

4. Experiment

In order to verify the effectiveness of the RMMP system and the method described
above, we took the real natural scene as a 3-D scanning experimental object and carried out
the 3-D scanning experiment.

4.1. Experimental Environment

The hardware composition of the RMMP system is shown in Figure 5. The mobile
platform takes differential two wheel drive mode, the mechanical manipulator adopts
6-DOF serial flexible mechanical mode, and the end of the mechanical manipulator con-
trols the self-developed 3-D scanner device. Moreover, the system was equipped with a
minicomputer to control the system. Therefore, the robot system can improve the flexibility
and automation level of 3-D scanning.

4.2. Task Workflow

The workflow of the 3-D scanning and reconstruction task is shown in Figure 7, and is
demonstrated as follows:

(1) First, preset the path of the mobile platform according to the shape of the object to
be scanned. For example, for a car, a circular path or elliptical path needs to be preset to
control the movement of the mobile platform; for a square column, a square path is needed;
for a small object, directly presetting a circular path is correct. During the movement of the
robot in the preset path, the LiDAR and Realsense located on the scanner begin to work.
After the preset path is completed, we can derive L, W, and n;

(2) Based on the data obtained in the previous step, path planning is started to acquire
image data. In this process, not only do the laser radar and depth camera start to work,
but BVS1, BVS2, or both also begin to work. After the path is completed, at a distance of
h, a set of pictures of the scanned object can be obtained. Compared with using images
obtained by the traditional method of path planning, a better 3-D reconstruction can be
realized by this set of images;

(3) Decrease the distance h and scan the object again. A better 3-D reconstruction can
be obtained by using this set of images and images formed by process (2);

(4) Judge the reconstruction result of the object. Paper [43] gives an evaluation method.
If the reconstruction result is reasonable, we can move to the next process. However, if
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the result is unsatisfactory, repeat process (3) until the reconstruction effect of the object
reaches the requirements;

(5) Return the robot to the starting point and carry out the post-processing of the 3-D
model. After the post-processing, if holes and other problems exist in the model, repeat
process (3), (4), and (5) until the 3-D model meets the requirements;

(6) Finish the experiment.

End

Start

LiDAR
Realsence

work

Get L,W,n

Preset path operation

Set h Equidistant

Get a set of images
Back to the start

No

Yes

Decrease h

Get a set of images

Cameras
work

Model post-rocessing

Rescan 

No

Yes
There are holes or 

other flaws

Good 

reconstruction 

effect

Cameras
work

LiDAR
Realsence

work

LiDAR
Realsence

work

Figure 7. Flow chart of 3-D scanning task. An example is given to illustrate how the RMMP system
completes an overall 3-D scanning task.

4.3. Multi-Model Data Perception

In this paper, a real natural scene was scanned and reconstructed in three dimensions.
Specifically, for the flower bed and the pine tree inside, a suborbicular motion path was
preset. During the motion of the RMMP system, the LiDAR and Realsense located on the
scanner started to work. After completing the preset path, L, W, and n were obtained.
Considering the actual situation, we chose 2.5 m and 2 m as the equidistant constraint h,
combined with kinematic constraints, to generate the planning results of Path 1 and Path 2,
respectively. The path planning effect of the RMMP system in the real scene is shown in
Figure 8. Table 1 shows the relevant experimental data information of different paths.

Figure 8. The path planning of the RMMP system in the real scene experiment. The red circle is the
preset path, the green represents the planned path under the constraint h, and the blue means the
planned path under the constraint of decreased h. It can be seen that the proposed method improves
the effectiveness of path planning.
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Table 1. Experimental data of different paths.

Num of Xi
Constrainst

h (m)
Path Length

(m) L×W (m) Triangular
Facet

Preset path 50 — 25.40 — —
Path1 47 2.5 21.73 6.49× 2.88 1,703,424
Path2 44 2 18.47 6.30× 2.78 2,982,178

Table 1 shows the relevant experimental data information of different paths. From
Table 1, it can be seen that the effect of path planning is significantly improved when
photogrammetric constraints are added (both of the path lengths under constraints are
smaller than the preset path length), and the effect of path planning is further improved
with the reduction in equidistant constraint h. In addition, the effect of path planning can
be seen intuitively from Figure 8. Furthermore, from the triangular facet data in Table 1,
it can be seen that the effect of reconstruction is further improved with the reduction in
equidistant constraint h.

4.4. Three-Dimensional Real Scene Reconstruction

After using RMMP system for data perception, the collected data were used in 3-D
reconstruction. The 3-D reconstruction result under different h is shown in Figure 9. As
the left side of Figure 9 shows, the pictures taken in the equidistant constraint h, the
reconstructed model has an uneven surface and bulging edge; when distance h is reduced,
the reconstructed effect is better handled for both the plane and the edge. The right side of
Figure 9 shows the reconstructed results, demonstrating a better performance.

3-D Reconstruction Results

Equidistant h

Decrease h

Figure 9. Three-dimensional reconstruction results under different constraint h.

5. Conclusions

This paper introduced a RMMP system, focusing on the path-planning-based next
view planner and inverse kinematics constraints. Under photogrammetric constraints,
the proposed next view planner can figure out the problems of image deformation and
resolution loss caused by the shape change of the objects to be reconstructed. In addition,
the proposed inverse kinematics constraints make the robot able to reach an ideal pose.
Compared with the traditional scanning method, the proposed robotic system improves
the 3-D scanning automation and efficiency. In the RMMP system, the mobile platform was
used for plane movement in two-dimensional space, and the flexible manipulator was used
to ensure the motion ability of the scanner in 3-D space. In addition, the designed scanner
can collect multi-model information of different-size objects. Preliminary experiments show
that the correctness of the proposed inverse kinematics and the rationality of the proposed
next view planner provide a guarantee for the robot to complete automatic data acquisition.

It must be pointed out that the proposed RMMP system has the characteristics of a
high efficiency and universality, as well as being very suitable for the 3-D data acquisition
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of large scenes or objects. The future work will focus on further improving the level of the
automation of the robotic system and achieving efficient 3-D reconstruction.
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