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Abstract: Manufacturing processes have become highly accurate and precise in recent years, partic-
ularly in the chemical, aerospace, and electronics industries. This has attracted researchers to inves-
tigate improved procedures for monitoring and detection of small process variations to remain in 
line with such advances. Among these techniques, statistical process controls (SPC), in particular 
the control chart pattern (CCP), have become a popular choice for monitoring process variance, 
being utilized in numerous industrial and manufacturing applications. This study provides an im-
proved control chart pattern recognition (CCPR) method focusing on X-bar chart patterns of small 
process variations using an ensemble classifier comprised of five complementing algorithms: deci-
sion tree, artificial neural network, linear support vector machine, Gaussian support vector machine, 
and k-nearest neighbours. Before advancing to the classification step, Nelson’s Rus Rules were uti-
lized as a monitoring rule to distinguish between stable and unstable processes. The study’s findings 
indicate that the proposed method improves classification performance for patterns with mean 
changes of less than 1.5 sigma, and confirm that the performance of the ensemble classifier is supe-
rior to that of the individual classifier. The ensemble classifier can distinguish unstable pattern types 
with a classification accuracy of 99.55% and an ARL1 of 11.94. 
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1. Introduction 
These days, the competition among manufacturing companies is increasingly ori-

ented towards quality, with the end goal being to produce a product that is of the best 
possible quality. Manufacturing processes have become highly accurate and precise, par-
ticularly in the chemical, aerospace, and electronics industries. This has attracted re-
searchers to investigate improved procedures for monitoring and detection of small pro-
cess variation in order to be in line with such advances [1,2]. Manufacturing companies 
are using advanced technologies for quality control, such as artificial intelligence and con-
trol chart pattern recognition (CCPR). CCPR is regarded as one of the most important 
statistical process control (SPC) techniques. The implementation of CCPR with suitable 
algorithms has gained importance due to its capability to recognize unstable processes. In 
addition, it can provide operators with early warning, allowing for preventive action to 
avoid production of defective products. CCPR gains its popularity because it provides 
useful hints for locating the source of process variation. This is valuable for industrial 
practitioners such as quality inspectors and production supervisors in determining the 
root causes of various problems. A particular CCP can be associated with the potential 
origin of process variation [3–5]. Such variability may be attributed to human faults, 
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defective manufacturing equipment, broken tools, or defective materials, among others. 
When a process is out of control, process behavior can take on a number of unnatural 
patterns on an X-bar chart, including the trend (UT), descending trend (DT), stratification 
(STA), downward shift (DS), cyclic (CYC), systemic (SYS), upward shift (US), and mixed 
patterns (MIX) [6–11].  

Researchers have proposed various designs for CCPR schemes. Several scholars have 
introduced improved input data representation by extracting features from raw data, such 
as wavelet features, statistical features, and shape features [12,13]. Selection of suitable 
essential input features can increase the efficiency of CCPR schemes [14,15]. Kim [16] in-
vestigated ways to reduce the number of feature dimensions using principal component 
analysis (PCA). PCA is a fundamental tool in statistical transformation, and is used to 
convert a set of data according to related variables. Yu [17] suggested the feature map 
visualization mechanism to reveal the model and gain pattern recognition ability. 

Another feature extraction technique is to use statistical features to provide statistical 
information extracted from raw data. Statistical features measure different properties in the 
control chart [1,18]. The shape of the data distribution in the control chart pattern is of prime 
importance due to its high reliability in categorizing and recognizing control chart patterns. 
The graphical representation of CCPs provides valuable information on process variance. 
Combinations of various shapes of time series data can represent distinct process conditions 
[15,19–22]. Moreover, several researchers have proposed a new method utilizing mixed sta-
tistical and shape features for input data representation [9,23–41]. 

The most difficult aspect of pattern recognition in CCPR is to recognizing abnormal 
patterns that are within the control limits. Zorriassatine [42] proposed a recognition 
method for mean shifts for the moderate mean shift patterns (1.5 to 2.5 standard devia-
tions). They reported poor results for small mean shifts (0.5 to 1.0 sigma standard devia-
tions). Similarly, Yu [43] reported poor results when coping with small mean shifts (1.0 
standard deviation). However, they claimed good recognition results for the moderate 
and large mean shifts (1.5 to 3.0 standard deviations). 

In response to the demand for greater precision, researchers have proposed enhance-
ments to the CCPR algorithms. Among them are powerful machine learning systems ca-
pable of pattern recognition, such as Artificial Neural Network (ANN) and Support Vec-
tor Machine (SVM).  

Multilayer perceptron (MLP) is the most widely used ANN-based CCPR methods 
[13,38,44–47]. Addeh [31] reported that an adaptive method based on the Bees algorithm 
and an optimized radial basis function neural network (RBFNN) provide good perfor-
mance in CCPR tasks. Other scholars have proposed SVM and its derivatives to handle 
the difficulties of CCPR. Other relatively newer techniques for pattern recognition include 
functional principal component analysis (FPCA), generalized linear models (GLM), and 
neural network regression models.  

A few scholars have incorporated learning strategies and evolutionary algorithms in 
their work [21]. For example, Lu [2] proposed a strategy using multiple window sizes for 
the data as well as four distinct classifiers (decision tree, ANN, Gaussian SVM, and K- 
Nearest Neighbours (KNN-5)). Their findings indicated that Gaussian Support Vector 
Machine (SVM) is capable of achieving greater recognition accuracy with normal shifting 
data (1.5–2.5 sigma). 

Hassan [48] reported that an ensemble classifier significantly improved the discrim-
ination capabilities of the scheme and compensated for the limitations of individual clas-
sifiers through ensemble classifiers or multiple recognitions, as described. The recognition 
performance increased from 73.8% with an all-class-one network (ACON) and 83.3% with 
a single-class-one network (OCON) to 87.1% with both together (ACON+OCON). These 
results concur with earlier research [49–51].  

It is necessary to enhance the detection of process variation in the manufacturing 
process in order to identify errors in industrial processes at an early stage. However, the 
procedure for recognizing abnormal patterns falls short of the requirements for detecting 
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variations in CCP when there are small changes in pattern variables, particularly when 
the variance in the mean is less than 1.5 standard deviations. This study proposes an im-
proved technique by implementing an ensemble classifier to improve the recognition ac-
curacy of CCPR. The rest of the paper is structured as follows: Section 2 discusses the 
materials and methods, Section 3 presents the results, Section 4 presents a discussion, and 
Section 5 concludes the paper. 

2. Materials and Methods 
2.1. Data Generation 

This study focuses on the classification of six commonly investigated CCP patterns, 
namely, Normal, Cycle, Increasing Trend, Decreasing Trend, Upward Shift, and Down-
ward Shift [21,52–54]. The data source was synthetically generated, as it is extremely dif-
ficult and not economical to acquire adequate real manufacturing data. Furthermore, real 
data may not be able to cover all of the conceivable abnormal patterns needed for this 
study. Synthetic and simulated data are common approaches adopted by previous re-
searchers, as can be found in [1,12,55–57]; however, this approach may limit the generali-
zation of the findings with respect to specific application domains. To produce all sample 
patterns, we have employed Monte Carlo simulation, as have the majority of prior re-
searchers. Using Equations (1) to (6), a total of 6000 X-bar chart patterns were constructed 
(1000 patterns for each category):  

Normal (NOR) 𝑦௜ = 𝜇 + 𝑟௜𝜎 (1) 
Cyclic (CYC) 𝑦௜ =  𝜇 + 𝑟௜𝜎 + 𝑎 𝑠𝑖𝑛(2𝜋𝑖 𝑇⁄ ) (2) 
Increase trend (IT) 𝑦௜ = 𝜇 + 𝑟௜𝜎 + 𝑔𝑖 (3) 
Decrease trend (DT) 𝑦௜ = 𝜇 + 𝑟௜𝜎 − 𝑔𝑖 (4) 
Upward shift (US) 𝑦௜ = 𝜇 + 𝑟௜𝜎 + 𝑘𝑠 (5) 
Downward shift (DS) 𝑦௜ = 𝜇 + 𝑟௜𝜎 − 𝑘𝑠 (6) 

Table 1 explains the parameters and values of the equations used in the earlier liter-
ature [1,12,55–57] and modifies them by introducing a slight alteration with upward and 
downward shift patterns. 

Table 1. The parameters and values used to generate the six CCPs [1,12,55–57]. 

Parameters Definition Value 𝜇 Mean. 0 𝜎 Standard deviation. 1 𝜎’ 
Random noise all for each abnormal pat-

tern. σ’ = 1/3σ 𝑎 Amplitude. 0.5 σ ≤ 𝑎 ≤ 2.5σ 𝑇 Period of a cycle. 8, 10 𝑠 Shift magnitude. Normal shift 1.5σ ≤ 𝑠 ≤ 2.8σ 
Small shift 𝑠 < 1.5σ 𝑘 Shift position. position = (5,15,20) 𝑘 = 1 if i ≥ position, else 𝑘 = 0 𝑔 Gradient for a trend pattern. 0.015σ ≤ 𝑔 ≤ 0.025σ 𝑟  At the ith time point, a random. value of a 

standard normal variate 
−3 ≤ 𝑟 ≤ +3 𝑖 Time series value at ith time point 1–30 

Standardized: N (0,1) 
Random noise of 1/3σ was added to all unstable patterns.  
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2.2. Feature Extraction and Selection 
Zhang [29] stated that feature extraction from raw data can reduce the dimensional 

input for machine learning, improving recognition efficiency when the network size is 
reduced. Alwan [58] added that two common features are compatible with the statistical 
and shape aspects of CCP. In this study, a total of 13 mixed features, including both sta-
tistical and shape features, were extracted. The formula used for extracting features can 
be seen in Table 2. This study employs an algorithm-dependent strategy for feature selec-
tion. Specifically, by utilizing Relief, Correlation, and Fisher (RCF) as a feature selection 
method, the top six features (Mean, Std, Min, MSE, Slope, and APSL) that presented the 
input data were chosen.  

Table 2. Selected formulas for statistical and shape feature extraction [12,21,28,34]. 

No. Type of Features The Formula 

1 Mean (MEAN) 𝑚𝑒𝑎𝑛 = ∑ 𝑥௜௡௜ୀଵ𝑛  

2 
Standard deviation 

(Std) 𝑠𝑡𝑑 = ඨ∑ (𝑥௜ − 𝑚𝑒𝑎𝑛)ଶ௡௜ୀଵ 𝑛  

3 Skewness (SKEW) 𝑠𝑘𝑒𝑤 = ∑ (𝑥௜ − 𝑚𝑒𝑎𝑛)ଷ௡௜ୀଵ 𝑛(𝑠𝑡𝑑)ଷ  

4 Kurtosis (KUR) 𝑘𝑢𝑟𝑡 = ∑ (𝑥௜ − 𝑚𝑒𝑎𝑛)ସ௡௜ୀଵ 𝑛(𝑠𝑡𝑑)ସ  

5 Slope (SLOPE) 𝑏ଵ = (𝑌௜ − 𝑏௢)𝑥௜  

6 Mean-square value 
(MSV) 𝑥ଶ~ = 𝑥଴ଶ + 𝑥ଵଶ+𝑥ଶଶ + ⋯ + 𝑥ேଶ𝑁 + 1 = 1𝑁 + 1 ෍ 𝑥௜ଶே

௜ୀ଴  

7 
Maximum CUSUM 

(CUS) 
𝐶௜ା = 𝑚𝑎𝑥ሾ0, 𝑥௜ − (𝜇଴ + 𝐾) + 𝐶௜ାଵା ሿ 𝐶௜± = 𝑚𝑎𝑥ሾ0, (𝜇଴ − 𝐾) − 𝑥௜ + 𝐶௜ିଵି ሿ 

8 Range (RANGE) 𝑅௫௫ሾ𝑘ሿ ≅ 1𝑁 + 1 − 𝑘 ሾ𝑥଴𝑥௞ + 𝑥ଵ𝑥ଵା௞ + ⋯ 𝑥ேି௞𝑥ேሿ 
9 Maximum point 𝑚𝑎𝑥(𝑥௜) 

10 Minimum point 𝑚𝑖𝑛(𝑥௜) 

11 APSL 𝐴𝑃𝑆𝐿 = ෍ |𝑥௜ − 𝑥̅௜|௠௜ୀଵ  𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑚     𝑥̅௜ = 𝛽ଵ𝑡௜ + 𝛽଴ 

12 APML 𝐴𝑃𝑀𝐿 = 𝐶௠ା + 𝐶௠ି 

13 Least square slop 𝛽ଵ = ∑ (𝑡௜ − 𝑡̅)(𝑥௜ − 𝑥̅)௠௜ୀଵ∑ (𝑡௜ − 𝑡̅)ଶ௠௜ୀଵ  𝑤ℎ𝑒𝑟𝑒, 𝑡̅ = ∑ 𝑡௜௠௜ୀଵ௜ୀଵ𝑚  

2.3. Pattern Recognizer Design 
This study proposes an improved CCPR procedure for detecting small process mean 

variations. To improve recognition accuracy, the study offers a classifier algorithm capa-
ble of recognizing patterns with small variations (less than 1.5 σ). To meet the objectives 
of this study, a variety of validated classifiers were evaluated. Two models have been 
included in the research: the fully developed patterns model and the developing patterns 
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model. In addition, a fully developed patterns model comprises two phases. The first 
phase recognizes a control chart pattern using a common individual classifier, an Artificial 
Neural Network with Multilayer Perceptron (ANN-MLP). The second phase uses the en-
semble principle for the five classifiers (Decision Tree, ANN, Linear Support Machine, 
Gaussian Support Machine, and K- Nearest Neighbors (KNN-5)). In addition, we employ 
the ensemble principle to improve recognition accuracy through majority voting for these 
five classifiers. 

The second model offered is a dynamic model for recognition of developing pat-
terns.() It uses a moving window size with an ensemble technique. Prior to the classifica-
tion stage, this model uses the run rules as a monitoring mechanism to distinguish stable 
processes from unstable processes. This approach results in fewer classification attempts, 
because the classifier only needs to identify the types of abnormal patterns.  

For both models, a normal shift dataset and a small shift dataset were constructed. 
The mean variation for the normal shift dataset was between 1.5 to 2.8 Sigma. The small 
shift dataset was constructed with a variation of less than 1.5 Sigma in order to represent 
small mean shifts. The features were picked, as six features rather than raw data were 
used as input for all experiments. 

In this study, the performance evaluation methods include the Average Run Length 
(ARL), confusion matrix, and recognition accuracy. Figure 1 depicts the flowchart of the 
models employing normal shift and small shift datasets. 

 
Figure 1. Flowchart of the models using normal shift and small shift datasets. 

2.3.1. Classification with Individual Classifiers 
Each classifier was trained independently using the same data, with each classifier’s 

threshold set to 0.75. This indicates that the output for each classifier must exceed the 
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threshold of 0.75 to be accepted into the predicted class, otherwise no predicted classifica-
tion class was assigned. 

2.3.2. Classification Using Majority Voting with Ensemble Classifier 
Commonly used in data cataloguing, majority voting (MV) involves a pooling model 

with at least two algorithms. For each test sample, each process performs its own compu-
tation. The final output is determined by the algorithm that receives the most votes [59]. 
The structure of MV is shown in Figure 2. Assume that L is the labels for each class, with 
Ci, Ɐ ϵ Λ (1, 2, … L) signifying the ith target group expected by the classifier. Given an 
input(x), each classifier provides a prediction about the target group, yielding an aggre-
gate of P predictions, i.e., P1, P2… PN. The purpose of majority voting is to obtain a pooled 
prediction for input (x). Here, P(x) = j, j ϵ Λ from P predictions.  

 
Figure 2. Structure of an Ensemble Classifier with Majority Voting. 

2.4. Fully Developed Patterns Model 
When one or more assignable causes occur in the manufacturing process, the process 

deteriorates from stable to unstable. After generating the data for each pattern, the simu-
lation must integrate the stable process (normal pattern) with the unstable process (abnor-
mal patterns). Every pattern contains 30 points. In fully developed patterns, the observa-
tion window size is labelled as normal during the training phase for all 30 start points. 
Then, another 30 points can be labelled as abnormal patterns.  

2.4.1. Fully Developed Patterns with MLP Classifier 
In [20,54], the authors confirmed that the Multilayer Perceptron (MLPs) architecture 

can be used as a recognizer, it has been used to address more complex issues such as 
prediction and modelling in CCPs. It consists of three layers, the first of which is the input 
layer, which corresponds to the six input features in this study. The second layer is known 
as the hidden layer, and consists of one hidden layer with an empirically determined num-
ber of nodes (12). Accordingly, six is the output layer for the third layer, which corre-
sponds to the number of studied patterns, resulting in a (6 × 12 × 6) system. After testing 
the gradient descent with momentum and adaptive learning rate (traingdx), BFGS quasi-
Newton (trainbfg), and Levenberg–Marquardt (trainlm) algorithms, (trainbfg) was 
adopted as the learning algorithm. There are two stages of machine learning, training and 
testing.  
• Training Phase: 
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The data must be labeled for each class of patterns, as indicated in Table 3. The tar-
geted values of the recognizers’ output nodes in the proper class are labeled as 0.9, 
whereas the wrong class is labeled as 0.1. This dataset consists of training (70%), validation 
(10%), and preliminary testing (20%) sets before presenting the sample data to the ANN 
for the learning process; 4200 training patterns are used to update the network’s weights 
and biases, 600 patterns are utilized for validation, and 1200 patterns are evaluated as 
hidden during training.  

Table 3. Targeted recognizer outputs [12]. 

Pattern Class Description 1 2 3 4 5 6 
1 Nor 0.9 0.1 0.1 0.1 0.1 0.1 
2 Cycle 0.1 0.9 0.1 0.1 0.1 0.1 
3 IT  0.1 0.1 0.9 0.1 0.1 0.1 
4 DT  0.1 0.1 0.1 0.9 0.1 0.1 
5 US  0.1 0.1 0.1 0.1 0.9 0.1 
6 DS  0.1 0.1 0.1 0.1 0.1 0.9 

The parameters and training specifications of the network were set as shown in Table 
4.  

Table 4. Parameter settings and training specifications. 

Parameters Value 
the number of epochs between showing the progress; the maximum number of 

epochs 500 

The learning rate 0.5 
Momentum constant 0.5 

Performance measurement MSE 
Performance goal 10-3 

All the methods were programmed using MATLAB R2017a’s ANN toolbox. Figure 
3 shows the flowchart of the training phase. 
• Testing Phase:  

During this phase, the testing data were separated from the training data and utilized 
for testing without changing the model weights or evaluating its performance based on 
the correctness of the confusion matrix. Figure 4 shows the flowchart of the testing phase. 

2.4.2. Fully Developed Patterns with Ensemble Classifiers Model 
In the second phase, five distinct classifiers were utilized (decision tree, ANN, linear 

support vector machine, Gaussian support vector machine, and KNN-5). As a new ap-
proach to CCPR, this study employed the ensemble principle to improve the accuracy of 
majority voting for these five classifiers. It is necessary to emphasize this initial use of the 
ensemble classifier using CCPs. At this stage, five distinct classifiers were applied, after 
which an ensemble was created. With MLP, the outcome is superior to the first phase. 
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Figure 3. The training flowchart for the fully developed patterns model using normal shift and small 
shift datasets. 

2.5. Dynamic Model with Developing Patterns (Moving Window Size) 
In this model, five different classifiers (decision tree, ANN, linear support vector ma-

chine, Gaussian support vector machine, and KNN-5) were used in the first model with a 
moving window size. This model’s training data were labeled based on the percentage of 
normal and abnormal patterns in order to improve the ARL1 and detect abnormal pat-
terns before they become completely grown. In other words, the analysis identified all 24 
window size points in the first model as the precise abnormal pattern. Accordingly, the 
study divided the window size in labeling during these 60 points on this model (30 points 
normal and 30 points abnormal). Before the classifier stage, this model additionally uses 
the run rules as a monitoring procedure to distinguish normal patterns from abnormal 
ones. This step considerably lowers the time required, and increases performance by al-
lowing the classifier to operate only when necessary [60]. In other words, if the model is 
able to differentiate the normal pattern from another abnormal pattern using run rules, it 
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is not necessary to transmit the normal pattern to the classifier for recognition when it has 
a false alarm that can accumulate through a stable process. The classifier only operates 
when abnormal patterns are present; however, the rules cannot identify the specific ab-
normal pattern type. As in the prior model with labeling during the training phase, no 
change was made to normal patterns; only abnormal patterns were altered. As the abnor-
mal pattern for this model, we utilized four distinct training cases (100%, 83%, 75%, and 
67%) from the observation window size.  

 
Figure 4. Testing flowchart for the fully developed patterns model using normal shift and small 
shift datasets. 

• Pattern Monitoring by Run Rules 
A run is a sequence of points on one side of the median. In addition, a non-random 

pattern or change signal is suggested by insufficient or excessive median line crossings or 
runs. We count the number of times the data line crosses the median and add one to obtain 
the number of runs above and below the median. When a control chart displays an out-
of-control state (a point outside the control limits or meeting one or more of the criteria in 
the following rules), the assignable causes of variation must be identified and eliminated.  
• Training Phase 

For the Developing Patterns model, the various labeling procedures depend on the 
percentage of abnormal and normal patterns for each window size. Therefore, the win-
dow size observation is 24 points. All normal patterns for the stable process were labeled 
as normal, just as in the first model. The abnormal patterns were labeled based on the 
proportion of abnormal points relative to normal points inside the window size. In other 
words, the window size of 24 points included both normal and abnormal points, and were 
labeled as the exact abnormal pattern. The prior model labeled all window size points as 
abnormal, and did not include any normal points. This procedure enables us to spot the 
irregular pattern as early as is feasible, before its complete development. In addition, it 
has the benefit of decreasing the ARL1 for aberrant patterns. This study considers four 
instances of window size percentage, with 100% of the first case’s window size taken as 
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abnormal patterns. Its mean (24) WS points are normal; while it has completely estab-
lished patterns, its deviations from the prior model are due to the use of a moving window 
size and run rules. In the second instance, the WS was categorized as 83% abnormal and 
17% normal (4 normal points + 20 abnormal points). In the third instance, the WS was 
designated as 75% abnormal and 25% normal (6 normal points + 18 abnormal points). In 
the fourth instance, the WS was determined to be 67% abnormal and 33% normal (8 nor-
mal points + 16 abnormal points). According to the research, abnormal patterns require a 
minimum of 16 points to detect and classify the right patterns. Therefore, this study se-
lected the final example, the WS, which includes 16 points of irregular patterns, to account 
for all potential Nelson’s rules [61]. The network’s parameters and training specifications 
are configured similarly to the prior model. Figure 5 shows the flowchart of the training 
phase.  

 
Figure 5. The training flowchart for the developing patterns model using normal shift and small 
shift datasets. 

• Testing Phase 
We used run rules to modify the observation window utilized by the model. For sim-

ulation purposes, this study combines the patterns as (normal + normal) normal. In addi-
tion, with (normal + abnormal) every process begins with a normal pattern (stable process) 
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and deteriorates to an abnormal pattern. This approach generates 30 points for each pat-
tern (normal and abnormal), which are then combined. The observation window size of 
24 points is preferable, as larger window sizes, such as 60, are too late for quality-related 
judgments, while smaller window sizes such as 20 provide a risk of not identifying the 
correct pattern type [62]. We used a moving observation window (from point 1 to point 
24) for each pattern and monitored this pattern by run rules. If the pattern is normal (sta-
ble), it moves from point 2 to point 25. The same process monitoring using run rules, if 
stable, continues to move until the end of the pattern’s last window observation from 
point (37) to point (60), which is the last point of the pattern if all the WS are stable, then 
moves to the next pattern. Suppose, however, that the run rules detect one of about eight 
rules. In this situation, the procedure extracts the characteristics of this pattern, normalizes 
them, and tests them using trained classifiers to determine the type of abnormal pattern 
and evaluate the performance of the model. Figure 6 depicts the flowchart for the testing 
phase of the second model. 

 
Figure 6. Testing flowchart for the developing patterns model using normal shift and small shift 
datasets. 

3. Results 
This section discusses the results of the enhancement of the control chart pattern in 

terms of recognition.  

3.1. Result of Fully Developed Patterns with ANN-MLP Model 
The outcomes for the two distinct datasets (normal and small) are displayed in Tables 

5 and 6, respectively. In the normal shifting dataset, the stable process (normal pattern) 
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has a correct recognition accuracy of 100%, while the unstable process (abnormal pattern) 
has a correct recognition accuracy of 98.60%, for a total correct recognition accuracy of 
98.88%. The recognition accuracy of the six features with the dataset smaller than 1.5 is 
99.90% for a stable process, though only 97.78% for an unstable patterns. The overall ac-
curacy of recognition is 98.13%. All of these findings are the average of ten runs. The ac-
curacy of 98.13% with a small variation needs to be improved in order to detect the type 
of pattern correctly. For this reason, this study enhanced the classifier (ANN-MLP) by 
employing another type of classifier in the second phase (the ensemble classifier).  

Table 5. Confusion matrix with normal shift (1.5–2.8 sigma) with ANN-MLP classifier. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 0.47 99.52 0 0 0 0 

IT 0 0 98.76 0 1.23 0 
DT 0 0 0 98.65 0 1.34 
US 0 0 1.72 0 98.27 0 
DS 0 0 0 2.19 0 97.80 

Table 6. Confusion matrix small shift less than (1.5 sigma) with ANN-MLP classifier. 

 NOR CYC IT DT US DS 
NOR 99.9 0 0 0 0 0.05 
CYC 0.45 99.55 0 0 0 0 

IT 0 0 97.15 0 2.84 0 
DT 0 0 0 97.29 0 2.70 
US 0 0 3.06 0 96.93 0 
DS 0 0 0 2.00 0 97.99 

3.2. Average Run Length (ARL) 
The Average Run Length (ARL) is an essential SPC performance evaluation vector. 

Accordingly, (ARL0) estimates the length of time until a false alarm for a steady process, 
with a larger ARL0 value being preferable, while for an unstable process (ARL1) indicates 
the number of observations required before the correct unstable pattern is recognized. In 
this work, the computation of (ARL0) for a stable process for the two distinct datasets was 
(315) for normal shifting and (260) for small shifting. Likewise, ARL1 was computed for 
the two separate datasets, normal shift and small shift, with ARL1 equalling (15) with a 
normal shift and (15.5) with a small shift.  

These results demonstrate that the ANN-MLP model has a recognition accuracy of 
98.88% and 98.13%and an ARL1 of 15 and 15.5 for the normal and small shift datasets, 
respectively. For this reason, we created the model in this study using a variety of classi-
fiers.  

3.3. Results of Fully Developed Patterns with Ensemble Classifiers Model 
This study applied five distinct classifiers in order to increase recognition decisions 

and ensure their accuracy. The study employed the ensemble principle to attain greater 
precision by employing the majority voting technique for these five classifiers. Ensemble 
classifiers with majority voting have been utilized often in numerous fields, and have 
yielded favourable results in comparison with individual classifiers [59]. Combining mul-
tiple classifiers (i.e., ensemble classifiers) has recently become an important research topic 
in machine learning. It is anticipated that high precision can be achieved by combining a 
small number of precise classifiers. In other words, such a combination can compensate 
for any errors made by individual classifiers in different regions of the input space. The 
literature demonstrates that ensemble classifiers outperform several different single 
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classifiers in terms of prediction performance [63–65]. The outputs of numerous inde-
pendent classifiers are pooled in majority voting. Methods of voting include maximum 
and average voting. In maximum voting, the output class with the greatest number of 
votes is selected as the final category option. Multiple individual classifiers are averaged 
to determine the outcome of average voting. In contrast, the weighted voting technique 
takes into account certain output results of classifiers with greater weights than others 
when determining the final classification output [63,66]. Using five classifiers, the average 
voting approach was adopted for this investigation. Each classifier’s threshold was set to 
0.75, with standard values for each classifier algorithm. 

Table 7 demonstrates that for the normal shift database the results are enhanced from 
98.88% with MLP to 99.05% with the ensemble classifier, while for the small shift dataset 
the results improve from 98.13% to 98.37%. The ARL1 remains too high and must be 
brought down; hence, the model in this study must be improved in order to detect abnor-
mal patterns more rapidly.  

Table 7. The results for the second phase of the first model. 

Classifier 
Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma 

Training 
Accuracy% 

Testing Accuracy Full 
Developed 

ARL1 Training 
Accuracy% 

Testing Accuracy 
Full Developed 

ARL1 

DT 99.51 98.32 14.30 99.44 97.47 14.58 
ANN-MLP 99.07 98.88 13.84 98.74 98.13 14.01 

Linear_SVM 99.02 99.07 13.90 98.28 98.10 14.52 
G- SVM 99.05 99.01 13.98 98.35 98.30 14.04 
KNN5 99.17 98.83 14.48 98.55 98.11 14.74 

Ensemble 99.15 99.05 13.99 98.65 98.37 14.34 

3.4. Results of Developing Patterns with Ensemble Classifier (Proposed Approach) 
This study uses four different percentages of window size for abnormal patterns in 

the training data (100%, 83%, 75%, and 67%); each training dataset was evaluated to de-
termine the optimal training data, which resulted in greater accuracy in the test phase.  
• Case 1: Training data as 100% abnormal + 0% normal (0 normal point + 24 abnormal 

points) from point (31:54). In the first instance, this study identified the abnormal 
patterns in the same manner as in the prior case; all abnormal points were labeled as 
abnormal. As stated in Table 8, they were trained as full abnormal points from point 
31 to point 60.  

Table 8. Percentage of abnormal pattern points in the labeling step. 

Normal Abnormal 
30 points 30 points 

0% 100% 

Six feature selections were used to apply the results of all the classification algo-
rithms. This study compared two datasets, normal shift and small shift. All classifiers had 
acceptable identification accuracy for detecting a normal pattern (stable process), as ob-
served. This benefit was implemented during the process of monitoring the run rules.  

In the normal range for the mean shift dataset, the decision tree classifier had only 
71% accuracy in spotting abnormal patterns for the cycle pattern. For the increasing trend, 
only 21% of inaccurate recognitions were correct, compared to 40% for normal and 39% 
for cycle. The poor accuracy on the downward trend was just 6%, compared to 59% for 
incorrect cycle recognition and 35% for normal recognition. For the increasing trend, the 
upper shift pattern yielded 87% correct recognition and 13% incorrect recognition. For the 
decreasing trend, the downshift pattern had 82% correct recognition and 18% incorrect 
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recognition. Table 9 shows that the overall rate of correct recognition is 61.16%. As demon-
strated in Table 10, the ANN classifier has 81.50% correct recognition. As indicated in Ta-
ble 11, the Linear Support Vector Machine classifier has a correct identification rate of 
95.16%. As demonstrated in Table 12, the Gaussian Support Vector machine classifier has 
a 97.5% correct identification rate. According to Table 13, the KNN-5 classifier has an ac-
curate identification rate of 91.83%. As indicated in Table 14, when the ensemble principle 
with majority voting was applied to these five distinct classifiers , decision-making im-
proved, achieving a 99.55% accuracy level for each pattern. 

Table 9. Decision Tree Accuracy = 61.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 29 71 0 0 0 0 

IT 40 39 21 0 0 0 
DT 35 59 0 6 0 0 
US 0 0 13 0 87 0 
DS 0 0 0 18 0 82 

Table 10. ANN Accuracy = 81.50%. 

 NOR CYC IT DT US DS 
NOR 95 3 0 2 0 0 
CYC 4 96 0 0 0 0 

IT 1 8 91 0 0 0 
DT 61 0 0 39 0 0 
US 0 0 23 0 77 0 
DS 0 2 0 7 0 91 

Table 11. Linear_SVM Accuracy = 95.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 12 88 0 0 0 0 

IT 2 2 96 0 0 0 
DT 7 3 0 90 0 0 
US 0 0 1 0 99 0 
DS 0 0 0 2 0 98 

Table 12. Gaussian_SVM Accuracy = 97.5%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 2 97 1 0 0 0 

IT 3 0 97 0 0 0 
DT 1 0 0 99 0 0 
US 0 0 1 0 99 0 
DS 0 0 0 7 0 93 
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Table 13. KNN_5 Accuracy = 91.83%. 

 NOR CYC IT DT US DS 
NOR 99 1 0 0 0 0 
CYC 13 87 0 0 0 0 

IT 6 0 94 0 0 0 
DT 0 0 0 100 0 0 
US 0 0 17 0 83 0 
DS 0 0 0 12 0 88 

Table 14. Ensemble Accuracy = 99.55%. 

 NOR CYC IT DT US DS 
NOR 99.99 0.01 0 0 0 0 
CYC 0.49 99.51 0 0 0 0 

IT 0 0.46 99.54 0 0 0 
DT 0 0.45 0 99.45 0 0 
US 0 0 0.8 0 99.19 0 
DS 0 0 0 0.3 0 99.66 

For the small range mean shift dataset, this study indicates that all classifiers detect 
a normal pattern (stable process) with high identification accuracy. The accuracy of the 
decision tree classifier in detecting abnormal patterns for cycle pattern recognition is 
100%. For the increasing trend, only 25% of respondents correctly identified it, while 68% 
misidentified it as an upper shift and 7% as a cycle. In addition, 57% of inaccurate recog-
nitions were as a downshift, 14% of incorrect recognitions were as a cycle, and 5% were 
as normal, contributing to the low accuracy of the downward trend, which stands at just 
24%. The normal and cycle recognition rates for the upwards shift pattern are 12% accu-
rate recognition and 68% and 20% wrong recognition, respectively. In addition, the recog-
nition rate for the downshift pattern is 7% correct, 73% incorrect as normal, and 20% in-
correct as cycle. The correct recognition rate is 44.50% overall, as indicated in Table 15. 
According to Table 16, the ANN classifier has an 84.16% correct recognition rate. Accord-
ing to Table 17, the Linear Support Vector Machine classifier has a 92% correct recognition 
rate. According to Table 18, the Gaussian Support Vector machine classifier has a correct 
identification rate of 93.83%. According to Table 19, the KNN-5 classifier has an accurate 
identification rate of 91.83%. As indicated in Table 20, the ensemble principle with major-
ity voting was applied to the five distinct classifiers, resulting in improved decision-mak-
ing; a 99.14% accuracy level was achieved for each pattern. 

Table 15. Decision Tree Accuracy = 44.50%. 

 NOR CYC IT DT US DS 
NOR 99 1 0 0 0 0 
CYC 0 100 0 0 0 0 

IT 0 7 25 0 68 0 
DT 5 14 0 24 0 57 
US 68 20 0 0 12 0 
DS 73 20 0 0 0 7 
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Table 16. ANN Accuracy = 84.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 35 65 0 0 0 0 

IT 0 1 83 0 16 0 
DT 0 0 0 69 0 31 
US 0 12 0 0 88 0 
DS 0 0 0 0 0 100 

Table 17. Linear_SVM Accuracy = 92%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 21 79 0 0 0 0 

IT 0 0 98 0 2 0 
DT 1 0 0 86 0 13 
US 3 1 0 0 96 0 
DS 7 0 0 0 0 93 

Table 18. Gaussian_SVM Accuracy = 93.83%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 1 93 0 0 0 0 

IT 0 0 83 0 17 0 
DT 0 0 0 100 0 0 
US 0 0 0 0 100 0 
DS 12 0 0 1 0 87 

Table 19. KNN_5 Accuracy = 91.83%. 

 NOR CYC IT DT US DS 
NOR 99 1 0 0 0 0 
CYC 4 91 0 0 5 0 

IT 0 0 94 0 6 0 
DT 0 0 0 98 0 2 
US 14 1 3 0 82 0 
DS 6 1 0 8 0 85 

Table 20. Ensemble Accuracy = 99.14%. 

 NOR CYC IT DT US DS 
NOR 99.89 0 0 0 0.19 0 
CYC 0.7 99.32 0 0 0 0 

IT 0 0 99.27 0 0 0.7 
DT 0 0 0 99.15 0 0.8 
US 0 0 0.15 0 98.5 0 
DS 0 0 0 1.2 0 98.7 

In addition to calculating the ARL1 for each classifier, the results permit a compari-
son between the normal and small shift datasets. This study identifies superior accuracy 
of the five Gaussian Support Vector Machine classifiers for normal and small shifts, with 
97.5 and 93.83%, respectively. On the other hand, the decision tree classifier is only able 
to achieve accuracy of 61.32 and 44.50%, respectively, on the normal and small shift 
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databases. The respective ensemble recognition accuracy for the two datasets is 99.55 and 
99.14%. This implies that several classifiers are superior to a single classifier as the first 
phase (ANN-MLP classifier) in the first model (Fully developed patterns), as the decision-
making process is dependent on multiple classifiers. In addition, the accuracy increased 
when the run rules were implemented, from 99.05% and 98.37% for the normal shift and 
small shift, respectively, in the first model to 99.55% and 99.14% in the second model. 
Table 21 shows that the ARL1 improves from 14.34 to 13.96 with the new strategy utilized 
in the training phase. 

Table 21. Correct recognition and ARL1 for all of the classifiers. 

Classifier 
Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma 

Training 
Accuracy% 

Testing Accuracy  
Full Developed 

Testing Accuracy  
Moving WS 

ARL1 
Training Ac-

curacy% 
Testing Accuracy  
Full Developed 

Testing Accuracy 
Moving WS 

ARL1 

DT 99.51 98.32 61.16 13.35 99.44 97.47 44.50 13.58 
ANN 99.07 99.01 81.5 13.65 98.74 98.46 84.16 13.91 

L_SVM 99.02 99.07 95.16 14.05 98.28 98.10 92 14.14 
G-SVM 99.05 99.01 97.5 13.83 98.35 98.30 93.83 13.94 
KNN5 99.17 98.83 91.83 14.08 98.55 98.11 91.5 14.24 

Ensemble 99.15 99.05 99.55 13.13 98.65 98.37 99.14 13.96 

• Case 2: In this instance, the size of the window is divided into training data as 83% 
abnormal + 17% normal (4 nor + 20 abnormal) from point (27:50). This study catego-
rized 83% of the abnormal patterns during the window size (24 points) as abnormal 
and 17% as normal in this instance. As indicated in Table 22, all abnormal patterns 
(20 points abnormal versus 4 points normal) have been categorized as abnormal.  

Table 22. Percentage of abnormal pattern points in the labeling step. 

Normal Abnormal 
26 points 34 points 

17% 83% 

On the normal shift dataset, it is evident that the ensemble classifier has a 100% recog-
nition accuracy for identifying normal patterns (stable process). This benefit is imple-
mented during the run rules monitoring process. The accuracy of the decision tree classi-
fier in spotting abnormal patterns for cycle pattern proper recognition is 96%, while it 
incorrectly labels just 3% as normal and 1% as an increasing trend. The increasing trend 
has a correct recognition rate of 66%; when incorrect, it identifies 32% as a cycle and 2% 
as normal. The accuracy of the decreasing trend is only 55% accurate, with 41% inaccu-
rately recognized as normal and 4% as a cycle. As an ascending pattern, the upper shift 
pattern has a correct identification rate of 69% and an inaccurate recognition rate of 31%. 
In addition, 69% of those who recognize the downshift pattern correctly and 31% incor-
rectly do so as a decreasing trend. The decision tree has been enhanced from Case 1. As 
indicated in Table 23, the correct recognition rate was 75.83%, compared to 61.16% in Case 
1. According to Table 24, the ANN classifier has 75.16% correct recognition. As demon-
strated in Table 25, the Linear Support Vector Machine classifier has 91% accurate recog-
nition. As indicated in Table 26, the Gaussian Support Vector machine classifier has a cor-
rect identification rate of 93.83%. The KNN-5 classifier has 90.33% correct recognition, as 
shown in Table 27. The ensemble classifier has higher accuracy, achieving 99.07%, as 
shown in Table 28. 
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Table 23. Decision Tree Accuracy = 75.83%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 3 96 1 0 0 0 

IT 2 32 66 0 0 0 
DT 41 4 0 55 0 0 
US 0 0 31 0 69 0 
DS 0 0 0 31 0 69 

Table 24. ANN Accuracy = 75.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 60 39 1 0 0 0 

IT 7 0 93 0 0 0 
DT 17 2 0 81 0 0 
US 0 0 11 0 89 0 
DS 0 0 0 51 0 49 

Table 25. Linear_SVM Accuracy = 91%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 2 96 0 0 0 0 

IT 6 0 94 0 0 0 
DT 9 0 0 91 0 0 
US 0 0 12 0 88 0 
DS 0 0 0 23 0 77 

Table 26. Gaussian_SVM Accuracy = 93.83%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 1 98 0 1 0 0 

IT 12 0 88 0 0 0 
DT 2 0 0 98 0 0 
US 0 0 5 0 95 0 
DS 0 0 0 3 0 97 

Table 27. KNN_5 Accuracy = 90.33%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 16 82 2 0 0 0 

IT 6 0 94 0 0 0 
DT 1 1 0 98 0 0 
US 0 0 25 0 75 0 
DS 0 0 0 7 0 93 
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Table 28. Ensemble Accuracy = 99.07%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 0 100 0 0 0 0 

IT 0 0 98.3 0 0 1.6 
DT 0 0 0 99.24 0 0.7 
US 1.2 0 0 0 98.7 0 
DS 0 0 0 1.7 0 98.2 

For the small shift dataset, the decision tree classifier recognizes abnormal patterns 
for cycle pattern recognition with high accuracy. The increasing trend has 66% correct 
recognition in Case 2, compared to 25% in Case 1; 28% are incorrectly identified as a cycle 
and 6% as an upward shift. The recognition accuracy for the decreasing trend pattern is 
64%, while it was only 24% in Case 1; 30% recognize it as a downshift, while 57% incor-
rectly identified it as a downshift in Case 1. With only 4% correct recognition for down-
shift and 86% incorrect recognition as cycle pattern, 6% as IT, and 4% as normal, the upper 
shift pattern has a low degree of accuracy. The downshift pattern has an identification rate 
of 21% correct, 74% incorrect as normal, 3% as a cycle, and 2% as a decreasing trend. The 
overall correct recognition rate is 59%, while in Case 1 it was 44.50%, as shown in Table 
29. The ANN classifier has 81.33% correct recognition, as shown in Table 30. However, 
the Linear Support Vector Machine classifier has 90.66% correct recognition, as shown in 
Table 31. As indicated in Table 32, the Gaussian Support Vector machine classifier has a 
correct identification rate of 93.83%, which is the same as in Case 1 irrespective of the 
training data used. According to Table 33, the KNN-5 classifier has an accurate identifica-
tion rate of 80.83%. As demonstrated in Table 34, the ensemble classifier achieves a higher 
accuracy of 98.2% for each pattern. 

Table 29. Decision Tree Accuracy = 59%. 

 NOR CYC IT DT US DS 
NOR 99 1 0 0 0 0 
CYC 0 100 0 0 0 0 

IT 0 28 66 0 6 0 
DT 6 0 0 64 0 30 
US 4 86 6 0 4 0 
DS 74 3 0 2 0 21 

Table 30. ANN Accuracy = 81.33%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 5 95 0 0 0 0 

IT 1 0 56 0 43 0 
DT 1 0 0 96 0 0 
US 1 9 0 0 90 0 
DS 48 0 0 1 0 51 
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Table 31. Linear_SVM Accuracy = 90.66%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 12 83 0 0 5 0 

IT 0 0 74 0 26 0 
DT 0 0 0 87 0 13 
US 0 0 0 0 100 0 
DS 0 0 0 0 0 100 

Table 32. Gaussian_SVM Accuracy = 93.83%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 6 89 1 0 4 0 

IT 0 0 97 0 3 0 
DT 0 0 0 95 0 5 
US 2 0 3 0 95 0 
DS 0 0 0 1 0 99 

Table 33. KNN_5 Accuracy = 80.83%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 12 82 3 0 2 1 

IT 0 0 81 0 19 0 
DT 0 0 0 77 0 23 
US 8 0 35 0 57 0 
DS 6 0 0 6 0 88 

Table 34. Ensemble Accuracy = 98.2%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 0 98.5 0 0 1.4 0 

IT 2.2 0 97.7 0 0 0 
DT 0 0 0 98.4 0 1.6 
US 1.7 0 2.1 0 96.1 0 
DS 0 0 0 1.7 0 98.2 

For normal and small shifts, the accuracy of these five classifiers in the Gaussian Sup-
port Vector Machine classifier is 96% and 95.83%, respectively, compared to 97.5% and 
93.83% in Case 1. The decision tree classifier improved from 61.32% and 44.50% for normal 
and small shifts in Case 1 to 75.83% and 59%, respectively. On both datasets, the ensemble 
classifier has a correct recognition rate of 99.07% and 98.2%, respectively. As shown in 
Table 35, with the ensemble classifier the ARL1 improved in Case 2 compared to Case 1, 
from 13.13 and 13.96 to 12.63 and 13.09 for the normal and small shift databases, respec-
tively. 
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Table 35. Correct recognition and ARL1 for all the classifiers. 

Classifier 

Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma 

Training 
Accuracy% 

Testing Accuracy Full 
Developed 

Testing Accuracy  
Moving WS 

ARL1 
Training 

Accu-
racy% 

Testing Accuracy  
Full Developed 

Testing Accuracy  
Moving WS 

ARL1 

DT 98.60 94.58 75.83 13.32 97.75 90.40 59 15.13 
ANN 96.78 96.22 75.16 13.02 93.24 92.75 81.33 13.34 

L_SVM 96.11 95.72 91 12.16 92.76 92.58 90.66 12.87 
G_SVM 96.42 95.90 96 12.35 93.26 92.86 95.83 13.11 
KNN5 97.20 96.04 90.33 12.69 94.84 92.05 80.83 13.16 

Ensemble 98.82 96.14 99.07 12.63 98.54 92.90 98.2 13.09 

• Case3: Data collected during training were interpreted as follows: 75% abnormal and 
25% normal (6 nor + 18 abnormal) from point (25:48). In this case, the abnormal pat-
terns that occurred within the window size of 24 points were labeled as 75% abnor-
mal and 25% normal. This indicates that the study categorized all of the abnormal 
patterns (18 points classified as abnormal and 6 points classified as normal) and la-
beled them as abnormal, as indicated in Table 36.  

Table 36. The percentage of abnormal pattern points in the labeling step. 

Normal Abnormal 
24 points 36 points 

25% 75% 

The accuracy of the decision tree classifier in recognizing abnormal patterns for cycle 
pattern accurate recognition is high at 82%, and it incorrectly labels only 14% as normal 
and 4% as an increasing trend. The IT pattern has 92% correct recognition, compared to 
66% in Case 2, 7% incorrect recognition as cycle, compared to 32% in Case 2, and 1% as 
normal. The poor recognition rate for the DT pattern is just 66%, compared to 55% for 
Case 2; 33% of incorrect identifications are as normal and only 1% as cycle. The recognition 
rate for the upwards shift pattern is 74%, compared to 69% in Case 2, and 26% of incorrect 
recognitions are as an IT. In addition, the DS pattern has 85% correct recognition, com-
pared to 69% in Case 2. Moreover, 15% of incorrect recognitions are as a DT pattern. The 
decision tree is improved from Case 2. The overall correct recognition is 83.16%, when it 
was 75.83% in Case 2, as shown in Table 37. The ANN classifier has 73.50% correct recog-
nition, as shown in Table 38. The Linear Support Vector Machine classifier has 81.16% 
correct recognition, as shown in Table 39. The Gaussian Support Vector machine classifier 
has 94.50% correct recognition, an improvement from Case 2 at 93.83%, as shown in Table 
40. The KNN-5 classifier improves from Case 2 as well, from 90.33% to 92.50% correct 
recognition, as shown in Table 41. Finally, the Ensemble classifier has higher accuracy at 
98%, as shown in Table 42.  

Table 37. Decision Tree Accuracy = 83.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 14 82 4 0 0 0 

IT 1 7 92 0 0 0 
DT 33 1 0 66 0 0 
US 0 0 26 0 74 0 
DS 0 0 0 15 0 85 
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Table 38. ANN Accuracy = 73.50%. 

 NOR CYC IT DT US DS 
NOR 98 0 0 2 0 0 
CYC 3 80 8 9 0 0 

IT 2 0 98 0 0 0 
DT 44 0 0 56 0 0 
US 0 0 14 0 86 0 
DS 0 4 0 73 0 23 

Table 39. Linear_SVM Accuracy = 81.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 18 81 1 0 0 0 

IT 17 0 83 0 0 0 
DT 8 0 0 92 0 0 
US 0 0 27 0 73 0 
DS 0 0 0 42 0 58 

Table 40. Gaussian_SVM Accuracy = 94.50%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 3 96 1 0 0 0 

IT 14 0 86 0 0 0 
DT 9 0 0 91 0 0 
US 0 0 4 0 96 0 
DS 0 0 0 2 0 98 

Table 41. KNN_5 Accuracy = 92.50%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 5 95 0 0 0 0 

IT 9 0 91 0 0 0 
DT 2 0 0 98 0 0 
US 0 0 19 0 81 0 
DS 0 0 0 10 0 90 

Table 42. Ensemble Accuracy = 98%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 0 97.3 0 0 2.7 0 

IT 1.7 0 98.22 0 0 0 
DT 0 0 0 98.1 0 1.89 
US 0 0 3.8 0 96.17 0 
DS 1.3 0 0 0 0 98.61 

The decision tree classifier has a high level of accuracy when it comes to recognizing 
abnormal patterns for the small shift dataset, with a correct recognition rate of 97% for the 
cycle pattern and a rate of 3% for incorrect detection as normal. For an increased trend, 
correct recognition is at 62%, while incorrect recognition is at 28% as a cycle pattern, and 
normal recognition is at 2%. The accuracy of identifying a decreasing trend increased to 
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87% from 64% in Case 1, with 4% of incorrect recognitions as a cycle, and 2% as normal. 
For the upwards shift pattern, the correct recognition accuracy increases to 49% from 4% 
in Case 2, while the incorrect recognition rate decreases to 27% as a cycle pattern, 22% as 
an increasing trend, and 2% as normal. The downshift pattern is improved as well, from 
21% correct recognition in Case 2 to 35%, with 62% of incorrect recognitions being as a 
decreasing trend, 2% as normal, and 1% as cycle. Previously, it had a correct recognition 
of just 21% in Case 2. As can be seen in Table 43, the total correct recognition is 71.66, when 
in Case 2 it was equal to 59% and in Case 1 to 44.50%. According to Table 44, the ANN 
classifier has a recognition accuracy rate of 77.66%. Table 45 reveals that the Linear Sup-
port Vector Machine classifier achieves a recognition accuracy of 71.83%. According to 
Table 46, the Gaussian Support Vector machine classifier has a correct recognition rate of 
83.33%. According to Table 47, the KNN-5 classifier improves from an incorrect recogni-
tion rate of 80.83% in Case 2 to a rate of 82.33%. According to the data presented in Table 
48, the ensemble classifier achieves a high accuracy of 97.95%. 

Table 43. Decision Tree Accuracy = 71.66%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 3 97 0 0 0 0 

IT 2 28 62 0 8 0 
DT 2 4 0 87 0 7 
US 2 27 22 0 49 0 
DS 2 1 0 62 0 35 

Table 44. ANN Accuracy = 77.66%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 5 95 0 0 0 0 

IT 14 3 65 0 18 0 
DT 11 0 0 87 0 2 
US 4 9 21 0 66 0 
DS 25 0 0 22 0 53 

Table 45. Linear_SVM Accuracy = 71.83%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 16 78 0 0 5 1 

IT 1 0 31 0 68 0 
DT 1 0 0 23 0 76 
US 0 0 1 0 99 0 
DS 0 0 0 0 0 100 

Table 46. Gaussian_SVM Accuracy = 83.33%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 8 87 4 0 1 0 

IT 5 0 87 0 8 0 
DT 3 0 0 44 0 53 
US 0 0 16 0 84 0 
DS 0 0 0 2 0 98 
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Table 47. KNN_5 Accuracy = 82.33%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 7 88 2 0 2 1 

IT 1 0 93 0 6 0 
DT 10 0 0 89 0 1 
US 8 0 36 0 56 0 
DS 0 3 0 29 0 68 

Table 48. Ensemble Accuracy = 97.95%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 2 97 0 0 1 0 

IT 0 0 98.42 0 0 1.3 
DT 1.39 0 0 98.61 0 0 
US 0 0 4 0 95.97 0 
DS 0.2 0 0 2 0 97.71 

Additionally, the ARL1 for each classifier is calculated. The greater accuracy of these 
five classifiers in the Gaussian Support Vector Machine classifier is 94% for the normal 
shift database and 92.05% for the small shift database. The respective normal and small 
shift classification increases from 75.83% and 59% in Case 2 to 83.16 and 71.66. For both 
datasets, the ensemble classifier achieves 97.95% correct recognition. With the ensemble 
classifier, the ARL1 improves in Case 3  compared to Case 2, as shown in Table 49, from 
12.63 and 13.09 to 12.04 and 12.52 for the normal and small shift databases, respectively.  

Table 49. Correct recognition and ARL1 for all the classifiers. 

Classifier 
Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma 

Training 
Accuracy% 

Testing Accuracy 
Full Developed 

Testing Accuracy 
Moving WS 

ARL1 
Training 

Accuracy% 
Testing Accuracy  
Full Developed 

Testing Accuracy  
Moving WS 

ARL1 

DT 98.61 94.27 83.16 12.87 97.58 90.47 71.66 13.05 
ANN 96.38 95.88 73.50 12.02 92.84 91.91 77.66 12.97 

L_SVM 95.65 95.51 81.16 11.25 92.08 91.19 71.83 11.78 
G-SVM 96.08 95.95 94.50 12.09 92.70 92.05 83.33 12.52 
KNN5 97.03 95.69 92.5 12.24 94.70 91.73 82.33 12.86 

Ensemble 98.27 96.15 98 12.04 97.53 92.15 97.95 12.52 

• Case 4: Training data as 67% abnormal + 33% normal (8 normal points + 16 abnormal 
points) from point (23:46). In this case, the study labeled the abnormal patterns dur-
ing the window size (24 points) as 67% abnormal and 33% normal. That means that 
the study labeled all abnormal patterns (16 points abnormal with 8 points normal) 
and labeled them as abnormal patterns during labeling, as shown in Table 50.  

Table 50. The percentage of abnormal pattern points in the labeling step. 

Normal Abnormal 
22 points 38 points 

33% 67% 

For the normal shift dataset, it is clear that all the classifiers have recognition accuracy 
of 100% when detecting a normal pattern (stable process). The decision tree classifier has 
good recognition accuracy for abnormal patterns, with a cycle pattern correct recognition 
rate of 75%; when wrong, it classifies 20%as normal and 5% as an IT pattern. The 
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increasing trend pattern has 64% correct recognition, and for incorrect recognitions 32% 
are as a cycle and 4% as normal. The accuracy in the DT pattern is poor, with just 51% 
correct recognition; 48% of incorrect recognitions are as normal and 1% as a cycle. The 
upwards shift pattern improves from 74% correct recognition in Case 3 to 82%,  and all 
18% of incorrect recognitions are as an increasing trend. Likewise, the downward shift 
pattern has 82% correct recognition, with 17% of incorrect recognitions as a decreasing 
trend and 1% as normal. The overall correct recognition is 75.66%, as shown in Table 51. 
The ANN classifier improves from 73.50% correct recognition in Case 3 to 86.33%, as 
shown in Table 52. The Linear Support Vector Machine classifier achieves 79% correct 
recognition, as shown in Table 53. The Gaussian Support Vector machine classifier has 
95.16% correct recognition, improving from 94.50% in Case 3 and 93.83% in Case 2, as 
shown in Table 54. The KNN-5 classifier has 88% correct recognition, as shown in Table 
55. the ensemble classifier achieves a high accuracy of 98.32%, as shown in Table 56.  

Table 51. Decision Tree Accuracy = 75.66%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 20 75 5 0 0 0 

IT 4 32 64 0 0 0 
DT 48 1 0 51 0 0 
US 0 0 18 0 82 0 
DS 0 1 0 17 0 82 

Table 52. ANN Accuracy = 86.33%. 

 NOR CYC IT DT US DS 
NOR 99 1 0 0 0 0 
CYC 1 98 1 9 0 0 

IT 3 2 95 0 0 0 
DT 12 4 0 84 0 0 
US 0 0 19 0 81 0 
DS 0 0 0 39 0 61 

Table 53. Linear_SVM Accuracy = 79%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 10 88 2 0 0 0 

IT 14 0 86 0 0 0 
DT 10 0 0 90 0 0 
US 0 0 37 0 63 0 
DS 0 0 0 53 0 47 

Table 54. Gaussian_SVM Accuracy = 95.16%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 3 96 1 0 0 0 

IT 9 0 91 0 0 0 
DT 6 0 0 94 0 0 
US 0 0 4 0 96 0 
DS 0 0 0 6 0 98 
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Table 55. KNN_5 Accuracy = 88%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 8 89 2 1 0 0 

IT 9 1 90 0 0 0 
DT 13 0 0 87 0 0 
US 0 0 23 0 77 0 
DS 0 0 0 15 0 85 

Table 56. Ensemble Accuracy = 98.32%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 0 98.1 0 0 1.8 0 

IT 0.18 0 99.8 0 0 0 
DT 0 0 0 98.63 0 1.3 
US 1.2 0 2.4 0 96.4 0 
DS 0 0 0 2.99 0 97.01 

For the small shift dataset, the decision tree classifier has good accuracy in recogniz-
ing the abnormal patterns for cycle patterns, with correct recognition of 94%; of incorrect 
recognitions, 3% are as an increasing trend and 3% as normal. For increasing trend pat-
terns, recognition improves from 62% in Case 3 to 76%, with 10% of incorrect recognitions 
as normal, 7% as cycle patterns, and 7% as upwards shifts. The accuracy of the DT pattern 
is 74%. Moreover, 18% of incorrect recognitions are as normal, 7% as downshifts, and 1% 
as cycles. The upwards shift pattern has 47% correct recognition, with 47% of incorrect 
recognitions as an increasing trend, 5% as a cycle pattern, and 1% as normal. The down-
shift pattern improves from 35% correct recognition in Case 3 to 56%, with 34% of incor-
rect recognitions as a decreasing trend, 7% as a cycle, and 3% as normal. The overall cor-
rect recognition is 74.50%; in Case 3 it was 71.66%, in Case 2 it was 59%, and in Case 1 it 
was 44.50%, as shown in Table 57. The ANN classifier improves from 77.66% correct 
recognition in Case 3 to 85%, as shown in Table 58. The Linear Support Vector Machine 
classifier has 67.5% correct recognition, as shown in Table 59. The Gaussian Support Vec-
tor machine classifier improves from 83.33% correct recognition in Case 3 to 85.66%, as 
shown in Table 60. The KNN-5 classifier has 97% correct recognition, as shown in Table 
61. The ensemble classifier achieves high accuracy of 97.03% for each pattern, as shown in 
Table 62. 

Table 57. Decision Tree Accuracy = 74.50%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 3 94 3 0 0 0 

IT 10 7 76 0 7 0 
DT 18 1 0 74 0 7 
US 1 5 47 0 47 0 
DS 3 7 0 34 0 56 
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Table 58. ANN Accuracy = 85%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 4 96 0 0 0 0 

IT 10 1 68 0 21 0 
DT 0 0 0 91 0 9 
US 3 4 3 0 90 0 
DS 2 0 0 33 0 65 

Table 59. Linear_SVM Accuracy = 67.50%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 10 82 0 0 7 1 

IT 11 0 17 0 72 0 
DT 4 0 0 19 0 77 
US 1 0 3 0 96 0 
DS 0 0 0 9 0 91 

Table 60. Gaussian_SVM Accuracy = 85.66%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 5 86 2 0 6 1 

IT 4 0 92 0 4 0 
DT 7 0 0 87 0 6 
US 1 0 25 0 74 0 
DS 0 0 0 25 0 75 

Table 61. KNN_5 Accuracy = 79%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 10 85 2 0 1 2 

IT 2 0 89 0 9 0 
DT 5 0 0 90 0 5 
US 1 2 44 0 53 0 
DS 4 0 0 39 0 57 

Table 62. Ensemble Accuracy = 97.03%. 

 NOR CYC IT DT US DS 
NOR 100 0 0 0 0 0 
CYC 3.5 96.59 0 0 0 0 

IT 0 0 95.9 0 4 0 
DT 0 0 0 98.98 0 1.02 
US 0 0 4.2 0 95.71 0 
DS 1.8 0 0 3 0 95 

The highest accuracy of these five classifiers is the Gaussian Support Vector machine 
classifier, with 95.16% and 85.66% for the normal and small shift datasets, respectively. 
The ensemble accuracy is 98.32% and 97.03% correct recognition for the normal and small 
shift ranges, respectively. The ARL1 is improved in Case 4 compared to Case 3, from 12.04 
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and 12.52 to 11.65 and 11.94 for the normal and small shift databases, respectively, with 
the results for the ensemble classifier shown in Table 63.  

Table 63. Correct recognition and ARL1 for all the classifiers. 

Classifier 
Normal Shifting (1.5–2.8) Sigma Small Shifting (Less than (1.5) Sigma 

Training Ac-
curacy% 

Testing Accuracy  
Full Developed 

Testing Accuracy  
Moving WS 

ARL1 
Training 

Accuracy% 
Testing Accuracy  
Full Developed 

Testing Accuracy  
Moving WS 

ARL1 

DT 98.37 94.06 75.66 11.72 97.17 89.30 74.5 12.30 
ANN 95.78 95.52 86.33 11.38 91.50 91.42 85 11.89 

L_SVM 94.51 94.80 79 11.09 89.97 90.57 67.5 11.21 
G-SVM 95.27 95.40 95.16 12.07 90.81 91.49 85.66 12.19 
KNN5 96.53 95.26 88 11.94 94.02 91.14 79 12.31 

Ensemble 98.59 95.70 98.32 11.65 98.02 91.84 97.03 11.94 

The current study is compared with, Lu, Wang [2], who proposed an approach with 
dynamic observation window sizes (OWS) to study the different cutting parameters, im-
plementing four different classifier algorithms. The shift range in their study was just (1.5–
2.5 sigma), a different range than that in the present study, which used a normal shift 
range of (1.5–2.8 sigma) and small shift range of less than (1.5 sigma) with five different 
classifier algorithms and an ensemble classifier.  

We note here that it is very clear that the previous study has a drawback with normal 
pattern recognition, as the present work achieves 98.32% recognition on all pattern classes 
with the ensemble classifier. The maximum recognition accuracy for the previous work, 
with Gaussian-SVM, is 95.6%, while this study the same classifier achieves 95.16%. How-
ever, the ensemble classifier has 98.32% recognition accuracy. The comparison of this 
study with [2] for a normal shift range is shown in Table 64.  

Table 64. Comparison of the present work with Lu [2]. 

Classifier 

This Work Lu, Wang [2] 
Training 

Accu-
racy% 

Testing Accuracy  
Moving WS 

Training Accuracy% Testing Accuracy% 
Normal 

Condition 
Abnormal 
Condition Average Normal 

Condition 
Abnormal 
Condition Average 

DT 98.37 75.66 100 100 100 67.2 98.4 82.8 
ANN 95.78 86.33 99.1 99.5 99.3 63.5 99.1 81.3 

L_SVM 94.51 79 ---- ---- ---- ---- ---- --- 
G-SVM 95.27 95.16 100 100 100 71.4 98.9 85.15 
KNN-5 96.53 88 98 99.6 98.8 59.2 98.1 78.8 

Ensemble 98.59 98.32 ---- ---- ---- ---- ----- --- 

In detail, they combined their two OWS for improved recognition accuracy. The 
highest recognition accuracy they were able to reach with Gaussian-SVM was 95.6%. This 
study investigated four cases for different training datasets with five different classifier 
algorithms and ensemble classifiers with (MV) techniques. The highest recognition accu-
racy is 99.55%, achieved with the ensemble classifier, as shown in Table 65.  

Table 65. Four cases in the present study versus two OWS in [2]. 

Classifier This Work Lu,  Wang [2] 
Widows Size Case1 Case2 Case3 Case4 OWS1 OWS2 OWS1+OWS2 

DT 61.1 75.9 83.2 75.7 85.2 88.7 93.4 
ANN 81.5 75.1 73.5 86.3 86.8 89.5 91.7 

L_SVM 95.1 91 81.2 79 ---- ---- ---- 
G-SVM 97.5 96 94.5 95.2 87.2 84.9 95.6 
KNN-5 91.8 90.3 92.5 88 82.8 83.9 89.9 

Ensemble 99.6 98.7 98 98.3 ---- ---- ---- 
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This approach was compared to others used in earlier studies to recognize control 
chart patterns with small change variation. The results of the present study indicate that 
the ensemble classifier has greater recognition accuracy in CCPR, attaining 99.55% and 
99.14%, respectively, when using a normal shift range and a small shift range.  

4. Discussion 
The classification that was produced by the ensemble classifier was more accurate 

than the classifications produced by the individual classifiers. The decision-making of the 
ensemble classifier is the result of a collaborative effort made by five different classifiers, 
with the vote of the majority of classifiers serving as the final decision. We discovered that 
the proportion of incorrect answers for the final decision dropped. The purpose of this 
study was to classify abnormal patterns with a mean shift less than 1.5 sigma by analysing 
small shifts. This process replicates the online growth of a process through the use of 
moveable windows. It can recognize abnormal patterns as soon as is feasible, reducing 
production waste if at all possible. The purpose of the four training scenarios was to de-
crease the average run length for the abnormal patterns (ARL1). The run rules differenti-
ate between normal and abnormal patterns, contributing to the improvement of the model 
and the reduction of misclassification. The similarities and differences between this study 
and previous research are presented in Table 66. 

Table 66. Comparison of this work with previous works. 

Ref. Model Learning Algorithm Optimization Input 
No. of 

Patterns % 

[29] KELM MGWO 
kernel entropy component analy-
sis KECA as a feature reduction 

algorithm 

feature fusion extraction 
(FFE) 

6 Basic + 
4 mixes 

99.5 

[21] MLP 
scaled conjugate gra-

dient algorithm 
(SCG) 

Bees’ algorithm (BA) to find the 
best features 

shape features 6 99.5 

[53] MLP 
resilient back-propa-

gation 
EWMA computation the incom-

plete data Statistical features 6 99.2 

[31] RBF Bees’ algorithm association rules (AR) 
Statistical & shape fea-

tures 8 99.36 

[25] MLP 
Levenberg-Mar-

quardt (LM) 

a hybrid system based on statisti-
cal and shape features and multi-
layer perceptrons neural network 

(MLPNN) 

Statistical & shape fea-
tures 8 99.5 

[24] MLP Back-propagation 
(BP) 

Recognition patterns in bivariate 
SPC 

Statistical features Nain 
Category 

96 

[67] MLP descending gradient 
algorithm 

new feature belief variable Statistical features 6 97.36 

[68] MLP 
Levenberg-Mar-

quardt (LM) algo-
rithm 

One feature with three values Statistical features 5 100 

[20] MLP Levenberg-Mar-
quardt (LM) 

cuckoo optimization algorithm 
(COA) 

Shape features 6 99.21 

[69] RBF Back-propagation 
(BP) 

bee’s algorithm (BA) Shape features 6 99.61 

[70] MLP descending gradient 
algorithm 

MEWMA-ANNs Statistical features 8 86.57 
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[71] MLP Levenberg-Mar-
quardt (LM) 

One feature with three values Statistical features 5 100 

[72] MLP 
Back-propagation 

(BP) 
two-stage intelligent monitoring 

scheme (2S-IMS) Statistical features 7 98.5 

[73] MLP BP 
(ICA) for the separation step and 

a decision tree Shape features 
6 basic + 
6 mixed 87.96 

[38] MLP 
Levenberg– Mar-

quardt (LM) -------- 
Statistical & shape fea-

tures 6 99.15 

[39] MLP BFGS 
new feature extraction method 
without defining the basic pat-

terns 

pattern displacement into 
account 

7 98.05 

[74] MLP RBF PSO Euclidean distance 6 99.26 

[40] MLP ABP 
improvement of the training algo-

rithm 
Statistical & shape fea-

tures 6 99.21 

This 
work  MLP 

Levenberg-Mar-
quardt (LM) 

New feature selection approach 
(RCF) 

Statistical & shape fea-
tures 6 99.05 

This 
work Ensemble  

New feature selection approach 
(RCF) 

Statistical & shape fea-
tures 6 99.55 

The ensemble classifier significantly improves recognition accuracy (99.55%), as seen 
in Table 66. This demonstrates that the performance of the ensemble classifier is superior 
to that of the individual classifiers for the normal shift range. Within a small variation 
range, the ensemble approach achieved 99.14% recognition accuracy. The run rules uti-
lized in this article demonstrate that the classification of both datasets (small and normal) 
is nearly flawless (100%) for a stable process.  

5. Conclusions 
This study presents an improved control chart pattern recognition (CCPR) model fo-

cusing on small mean shifts for X-bar chart patterns. We began with the commonly uti-
lized ANN-MLP algorithm from previous CCPR experiments. The MLP classifier 
achieved a classification accuracy of 98.88% for normal mean shifting and 98.13% for small 
mean shifting. Our study revealed that the recognition accuracy is enhanced when imple-
menting an ensemble of five classifiers, namely, decision tree, ANN, linear support vector 
machine, Gaussian support vector machine, and KNN-5. The ensemble classifier reached 
an improved recognition accuracy of 99.55% for mean shifting within (±3σ) and 99.14% 
for small mean shifting within (±1.5σ). We observed that the ARL1 was reduced from 15.5 
to 11.94 for small mean shifting, suggesting that the implemented ensemble classifier en-
ables faster and more accurate detection. This study is a step forward in the intelligence 
manufacturing domain. It provides production and quality managers a tool for address-
ing process variability, particularly within small changes in the process mean. It can pro-
vide a useful guide for quality engineers in developing and implementing automated 
CCPR systems. This research can be extended in the future to investigate multivariate 
patterns, as well as other pattern classes. 
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