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Abstract: A collaborative robot, or cobot, enables users to work closely with it through direct com-
munication without the use of traditional barricades. Cobots eliminate the gap that has historically
existed between industrial robots and humans while they work within fences. Cobots can be used
for a variety of tasks, from communication robots in public areas and logistic or supply chain robots
that move materials inside a building, to articulated or industrial robots that assist in automating
tasks which are not ergonomically sound, such as assisting individuals in carrying large parts, or
assembly lines. Human faith in collaboration has increased through human–robot collaboration
applications built with dependability and safety in mind, which also enhances employee performance
and working circumstances. Artificial intelligence and cobots are becoming more accessible due to
advanced technology and new processor generations. Cobots are now being changed from science
fiction to science through machine learning. They can quickly respond to change, decrease expenses,
and enhance user experience. In order to identify the existing and potential expanding role of artificial
intelligence in cobots for industrial applications, this paper provides a systematic literature review of
the latest research publications between 2018 and 2022. It concludes by discussing various difficulties
in current industrial collaborative robots and provides direction for future research.

Keywords: collaborative robots; human–robot interaction; cobots; artificial intelligence; machine
learning; deep learning; reinforcement learning

1. Introduction

A collaborative robot, or cobot, is designed for direct human–robot collaboration
(HRC) or contact in a shared area or when people and robots are close to each other. In
contrast to conventional industrial robot operations, which keep robots away from people,
cobot applications allow for human interaction [1]. Cobot safety may depend on soft edges,
low-weight materials, speed and force limitations built-in, or sensing devices and program-
ming that enforce safe and positive behavior [2,3]. There are two main categories of robots
recognized by the International Federation of Robots (IFR): industrial or automated robots,
which are used in automation processes in an industrial environment [4], and service robots,
used for personal and business purposes. The service robots are designed to collaborate or
work with human beings and are categorized as cobots [5]. Cobots eliminate the divide
that has historically existed between industrial robots and humans while they work within
fences or any other security barriers [6]. Cobots can be used for a variety of tasks, from
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communication robots in public areas and logistic or supply chain robots that move materi-
als inside a building [7], to articulated or industrial robots that assist in automating tasks
which are not ergonomically sound, such as assisting individuals in carrying large parts, or
assembly lines. They are designed to fill the gap between completely automated industrial
processes and manual system functioning, providing the advantages of automation without
adding to the complexities of a completely robotic testing regime. Cobots are also well
suited for application in the biomedical sector, where increasing automation is frequently
impractical, yet lab productivity, security, and information protection are crucial [8].

The four stages of interaction involved between robots and humans are defined by the
IFR [9]:

• Coexistence: there is no common office, yet humans and robots coexist side by side
without a boundary.

• Human and robot activity occurs in a shared workspace, but their movements are
sequential; they do not simultaneously work on a component.

• Cooperation: while both are in movement, a robot and a person work simultaneously
on the same component.

• Responsive collaboration: the robots react instantly to human worker movement.

In the majority of current industrial cobot applications, a human operator and a cobot
coexist in the same location but carry out separate or consecutive duties. Human faith in col-
laboration has increased through HRC applications built with dependability and safety in
mind, which also enhances employee performance and working circumstances [10]. Robots
and humans work together in the same location during HRC. Cobots are designed to stop
before any unintentional contact with a human teammate could be harmful. Additionally,
cobots should be lightweight in order to reduce their inertia and enable abrupt stops.
Certain cobots may even be taught to perform tasks in logistical operations by having other
individuals direct their arms once to make the motion. This shortens the programming
procedure and expedites the personalized packing process. The use of robotics in logistics
and transportation is growing quickly [11].

A cobot was estimated to cost an average of approximately $28,000 in 2015, but by
2025, that price is predicted to plummet to an unexpectedly low average of approximately
$17,500. The market for collaborative robots was assessed at USD 1.01 billion in 2021, and
is anticipated to increase at a compound annual growth rate of 31.5% from 2022 to 2030.
Figure 1 shows the global collaborative robot market in 2021 [12].
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According to Figure 1, more than 24% of the market in 2021 belonged to the automotive
sector, which is predicted to increase significantly over the next five years. Due to their
capacity to save on floor space and the expense of production downtime, collaborative
robot usage has expanded, which is significantly responsible for the expansion. They
also play a significant role in other processes, such as spot and arc welding, component
assembly, painting, and coating. Innovations that support weight reduction, cost-efficiency,
and low production overheads will be combined with the introduction of new chemicals
and metals to lead the automotive sector.

Artificial intelligence (AI) and robotics have made it possible to find creative answers
to the problems encountered by companies of all sizes across industries. Robots powered
by AI are being used by industries to bridge the gap between humans and technology,
solve issues, and adapt business strategies to changing customer expectations. Robots
with AI capabilities operate in shared environments to keep employees safe in industrial
workplaces. Additionally, they work independently to complete complicated operations
such as cutting, grinding, welding, and inspection. Machine learning is essential to the
ability of AI robots to learn and improve over time at performing tasks. Robots that employ
machine learning can create new learning ways and competencies by using contextual
knowledge learned through experience and real-time data. This enables the robots to
address novel and unusual issues as they arise in their contexts. The most sophisticated
type of machine learning is called deep learning, and like neural networks, it deals with
algorithms that are motivated by the structure and operation of the brain. Deep learning,
which is essentially a “deep” neural network, gets its name from the abundance of layers,
or “depth.” Given that deep learning demands truly enormous quantities of computing
power and data, it is a future objective rather than something that can be achieved now for
cobots. The more of each it has, the better it will function. Figure 2 shows the relationship
between AI, machine learning, and deep learning.
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It can be interpreted from Figure 2 that machine learning is a sub-category of AI, and
deep learning is a sub-category of machine learning, meaning they are both forms of AI.
AI is the broad idea that machines can intelligently execute tasks by mimicking human
behaviors and thought processes. Several recent review articles [4,13–15] were evaluated
and it was found that although article [4] provided a good analysis of machine learning
techniques and their industrial applications from the perspective of flexible collaborative
robots, some of the recent works of 2022 were not covered. The application of only machine
learning techniques in the context of HRC has been reviewed in the literature [13] where
it emphasized the need of including time dependencies in machine learning algorithms.
Article [14] covered five articles only until 2021 where it focused on control techniques
for safe, ergonomic, and efficient HRC in industries. The role of AI in the development
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of cobots was not addressed in this article. Article [15] mainly focused on smart manu-
facturing architectures, communication technology, and protocols in the deployment of
machine learning algorithms for cooperative tasks between human workers and robots.
This article did not cover the deep learning techniques that are providing advanced learning
approaches for cobots. As it was published in 2021, it did not include up-to-date research
and only related articles until 2021 were cited.

There is growing interest in creating a collaborative workspace where people and
robots can work cooperatively because of the supportive nature of their abilities. These
diverse elements of the industrial sector’s dynamic nature and the existing deficiencies in
analyses serve as a high impetus for the development of AI-based HRC. Hence, this paper
aims to precisely respond to the following research questions:

# What have researchers found in the literature on the expanding role of AI on cobots?
# Will the implementation of AI on cobots be able to reduce previous concerns about

industrial applications and contribute to better performance?

It is easy to identify areas where there are gaps that need to be addressed by future
efforts by reviewing the existing literature. As a result, the objectives of the research are
addressed in the following manner:

# to research the key distinctions between robots and cobots
# to research the common characteristics and capacities of robots
# to discuss the various levels of industrial situations including robots, the role of AI,

and collaboration

The main contribution of this research is to examine the interactions and influence
between AI and collaborative robots (cobots) about human elements and contemporary
industrial processes. Apart from machine learning and deep learning methods, recent
works about the role of vision systems that employ deep learning for cobots have been
specifically included. A literature study is selected as an appropriate method to determine
the association between one (or more) of the mentioned aspects to achieve this purpose.
However, details regarding safety concerns over the cobots’ ability to accurately recognize
human emotions and hand movements were not included.

The paper is organized as follows. The methodology presents how the review was
carried out in Section 2. This is followed by the discussion on the findings in Section 3.
Then, a discussion on the collected data is shown in Section 4 and recommendations and
future directions are provided in Section 5. Conclusions are drawn in Section 6.

2. Methodology

The understanding and evaluation of the methodologies used are aided by a precise,
well-described structure for systematic reviews. As a result, the preferred reporting items
for the systematic review and meta-analysis (PRISMA) model was used in this research. The
PRISMA model, as illustrated in Figure 3, depicts the flow of information from one stage
to the next in a systematic review of the literature, including the total number of studies
identified, excluded, and included, as well as the reasons for inclusion and exclusion. The
databases Web of Science, IEEEXplore, PubMed, ScienceDirect, SpringerLink, Scopus, and
Research Gate, were examined for the literature search on collaborative robots using the
following key words: human–robot interaction (HRI), cobots, AI in robots, collaborative
learning, HRC, reinforcement learning, deep learning in robotics, industrial robots. Peer-
reviewed academic journals, conference papers, and reviews published since 2018 and
written in English, and those that contain qualitative or quantitative information or both,
were included in this systematic review.
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From Figure 3, we have initially identified 156 articles related to collaborative robots
and applications through database searching. Out of 156 articles, 30 duplicate papers were
removed. By screening the remaining 126 papers, 40 records were excluded by reviewing
the title and abstract. A total of 86 full-text articles were considered for eligibility, of which
43 articles were excluded for various reasons, such as inappropriate study design (flawed or
underdeveloped design that produced low-quality results and makes research unreliable),
publications before the year 2018, not relevant to cobots, AI techniques not addressed
in their study, and inconsistency in results (the results were not the same through the
manuscript). Finally, we included 43 full-text articles that were published between 2018
and 2022 to review. The discussion of the findings is provided in the following sub-sections.

3. Findings
3.1. Cobots

The current research on cobots aims to enable cobots to emulate mankind in learning,
adapting, manipulating capabilities, vision, and cognizance. It is necessary to improve
ergonomic HRC for jobs such as welding, assembly, safety checks, handling of materials,
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polishing, etc., by creating robot perception, motion control planning, and learning in a
safe, reliable, and flexible manner. Researchers are striving for cognitive solutions to the
following research problems facing industries [13,16,17]:

• How cobots acquire knowledge and abilities with little or no task-specific coding
• How cobots replicate user perception and motor control to carry out a physical task

and reach objectives
• How cobots with enhanced mobility complete a difficult task in a wide-open area

Safety has always been a top priority in conventional HRC, and people are taught to
only utilize the robot as a device. The industrial sector is finally opening to the human–robot
collaborative work environment, as evidenced by the international norms ISO 10218-1:2011
and ISO/TS 15066:2016 [18,19], and the research is advancing to also look at psycholog-
ical empowerment. These standards can propose alternatives for sustaining safety and
wellbeing without the use of concrete barriers. Operators must engage securely with an
industrial robot throughout the entire production cycle with little to no training in order to
expand the scope of true collaboration. Robots can be made safer and simpler to operate in
production activities by implementing innovative interaction techniques utilizing multi-
sensory interfaces, motion control tools, and augmented reality [20]. These techniques can
also enable rapid prototyping and lower training expenses. Manufacturers of collabora-
tive robots are utilizing the integration of many technological solutions, such as machine
learning, computer vision, and sophisticated gripping techniques in robotic arms to make
them safer to collaborate with, interrupting current robotic strategies and continuing to
expand the application of robotic systems to research labs, the medical sector, assembly,
and silicon wafer handling. Example uses of cobots in industrial applications are shown in
Figure 4 [21].
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Figure 4 shows numerous kinds of examples of cobots in various industrial appli-
cations, such as pick and place, assembly, machine tending, gluing, quality assurance,
palleting, screw driving, intralogistics, and so on.

3.1.1. Difference between the Robot and Cobot

Cobots and robots are capable of doing work that is quite similar to each other. For
example, both are intended to replace the need for a human operator by automating all
or part of the assessment process. Either approach may, therefore, be better than the
other in particular situations due to a few significant distinctions. Industrial collaboration
robots are essentially intended to work with human workers in completing assigned tasks.
Instead of being independent, they are human-powered and utilized to boost productivity
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and effectiveness by providing extra force, energy, accuracy, and intelligence. Industrial
robots, in contrast, replace human workers rather than stand collaboratively with them,
automating repetitive jobs that frequently necessitate a significant amount of force. Table 1
summarizes the key distinctions between conventional robots and cobots [22].

Table 1. Key distinctions between conventional robots and cobots [22].

Characteristics Conventional Robots Cobots

Role Substituting human employee Aiding human employee

Human collaboration Coding used to specify motions,
positions, and grips

Recognizes gestures and voice
commands and predicts
operator movements

Workstation Robot and operator workstations
are typically fenced

A shared workstation
without a fence

Reprogramming Rarely required Necessitates frequently

Mobility Fast movements Slow movements

Handling payloads Capable of carrying large payloads Cannot handle large payloads

Capability to work in a dynamic
environment with moving objects Restricted Yes

Cobots help employees, whereas robots take their place, which is the main distinc-
tion. In addition, cobots benefit from faster learning and easier programming due to AI.
Industrial robots need intricate reprogramming, which calls for a knowledgeable engineer
or programmer. A cobot’s real-time interface allows for interactive human input during
communication, whereas robots require remote interaction. Finally, because cobots are
lightweight and made for collaborating, they are not typically used for heavy-duty pro-
duction; instead, industrial robots handle them. Due to their size and sturdiness, robots
are often caged to safeguard workers from mishaps. On the flip side, a cobot may work
on anything in a similar industry, such as production quality control, testing, or accurate
welding [23].

In a manufacturing setup for industrial applications, some typical tasks that a cobot
can perform are picking and placing, removing trash, packing, testing, quality assurance,
tracking machinery, gluing, bolting, soldering joints, riveting, cutting, polishing, etc. Cobots
are employed in a variety of sectors and industries, such as the production of electronics,
aircraft, automobiles, furniture, plastic modeling, etc., due to their adaptability. They also
work in fields including agriculture, research labs, surveillance, food service and produc-
tion, healthcare, and pharmaceuticals. Soon, cobots will become increasingly complex
and adaptable. Cobots will continue to do precise and sophisticated jobs as long as AI
technology improves. Flexible robots’ connectivity and compatibility further make them
an essential innovation for present and future industrial, medical, manufacturing, and
assistive technological demands.

However, developing robots outside traditional automation presents incomparable
obstacles, particularly for real-world applications, such as autonomous decision making and
cognitive awareness. Modern adaptable robots have a lot of promise, and the integration
of AI and machine learning has sparked the attention of many different study fields [24].
End-to-end autonomy in learning-based robots commonly includes three primary elements,
such as perception, cognition, and control. Due to the complementary nature of these
elements, autonomous control is made possible by sophisticated sensing and cognitive
techniques. A cobot deployed on a mechanical alloying system can significantly increase
lab productivity, operator security, and data variability and reliability in the biomedical
sector. Test laboratories that want to boost productivity but do not have sufficient test
volumes to support the acquisition of a fully autonomous system work especially well
with cobots.
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3.1.2. Advantages of Cobots

Cobots may now replace manual tasks that are ubiquitous across several companies
in the workplace. They may also be given chores that are monotonous, nasty, hazardous,
or otherwise unappealing to people. Among the main advantages of using cobots in
the workplace is the avoidance of injuries. Cobots can perform any tasks that need an
arduous lift or repetitive motion. Cobot use can help prevent contact with poisonous items,
hazardous machinery, and the highest-risk tools. Staff absence declines as a consequence of
fewer casualties.

Numerous cobot safety risk evaluation companies have been established as a result of
the deployment of cobots, and they issue warnings about potential risks. The hazards that
could arise throughout a cobot’s sequence of tasks and the connection of its tools must be
taken into account, despite the fact that cobots are frequently promoted as being harmless
to use right out of the package [1].

Companies may grow exponentially and automate various manufacturing processes
with the aid of cobots, which also makes extra space available for working remotely.
By taking over undesirable duties, they also increase worker safety [25]. Cobots may
supplement human labor and are quite cost-effective, making them perfect for small- and
medium-scale enterprises. Cobots are also creatively and adaptably utilized by AI, ensuring
that they are never idle on the worksite. In summary, cobots in the manufacturing industry
can enhance quality control, maximize effectiveness, and raise output.

3.1.3. Disadvantages of Cobots

The main drawbacks of cobots in production are not related to their functionality, but
rather to the issue of whether an enterprise business should use them. For instance, cobots
cannot perform heavy lifting because they were not designed for that purpose. They are
not completely automated to handle complex tasks, either. However, when it comes to
industrial floors where workers require an extra hand, their strengths are clear.

However, more importantly, cobots still face some challenges in terms of cognitive
and dexterity tasks. Cobots are expected to address these drawbacks as the technology
advances, or the engineers and programmers will [8]. Such cobots remain unable to discern
an individual’s emotional condition [26].

3.2. Artificial Intelligence

As a segment of AI, machine learning refers to algorithmic or statistical operations
that allow computer systems to learn from experience automatically [24]. An intercon-
nected industry with a network of industrial Internet-of-Things (IIoT) devices, such as
robotics that improve and optimize processes as part of the smart manufacturing process, is
made possible largely through machine learning. Assembling can benefit immensely from
machine learning; manufacturing particular items, such as semiconductors, on machine
learning technology can lower expenses associated with maintenance and examination,
leakage, and outage.

Machine learning can also enhance quality control after assembly. A non-destructive
examination can also be carried out by machine learning without human mistakes [8].
The big data produced by IIoT sensors that capture information on the status of the
equipment is used to predict maintenance for industrial robots and other devices. The data
is then analyzed by machine learning algorithms to forecast when a machine will require
repair, preventing expensive downtime from unplanned maintenance and allowing the
opportunity to schedule maintenance for periods of low consumer needs. Supply chain
management can be improved by centralized data insights from digital industries fed into
machine learning algorithms. This includes optimizing logistical routes, switching from
barcode scans to a vision-based inventory system, and making the most of available storage
capacity. Additionally, machine learning can forecast demand trends to assist in preventing
excessive production.
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Big data must be supplied to machine learning algorithms in order for them to identify
trends and gain insights from them. The machine learning model might never be able to
perform to its maximum capabilities without much data. While it may seem apparent, the
right data is also necessary for effective model learning. There are various subcategories of
machine learning, such as deep learning, that are now widely used since the significant
computer power it needs is now widely available and reasonably priced. Neural networks
are networks of nodes where the weights of the nodes are learned from data and are used
in deep learning. These networks are created to replicate how the brains of both humans
and animals adapt to changing inputs in order to acquire knowledge.

Although the use of machine learning in diverse industries and warehouses has
increased recently [27–43], the COVID-19 pandemic has served as a warning call. Some
businesses halted operations to reduce the risk of infection among workers on assembly
lines in close proximity to one another. Nevertheless, companies that made investments
in autonomous robots that were controlled by machine learning techniques were able to
respond quickly, imaginatively, and effectively. AI, known as machine learning, is used to
find patterns in the massive volumes of data produced by digital images, audio, video, and
text. Robots can make intelligent, secure, reliable, and independent choices, such as where
to install the appropriate rivet at the proper force on a production line, using algorithms
that recognize patterns and translate them into rules [44]. There are three key jobs for
skilled workers to fulfill. They must program robots to carry out specific jobs, describe the
results of such activities to non-skilled workers (particularly whenever the conclusions are
illogical or debatable), and uphold the appropriate use of technology.

Machine learning has a big impact that extends well beyond manufacturing or ware-
housing floors. Machine learning and robots are becoming more accessible thanks to new
technology and processor generations. Robots are now being changed from science fiction
to science through machine learning. They can quickly respond to change, decrease ex-
penses, and enhance user experience. However, machine learning techniques have some
shortcomings and do not always yield satisfactory results. For instance, machine learning
approaches are opaque, the results of machine learning are not always precise and reliable
in complex and delicate research papers, and machine learning algorithms are not able to
address all underlying assumptions and circumstances of the issues. Machine learning is
an intriguing research tool for roboticists since it allows robots to understand complicated
behaviors flexibly from unstructured settings. Machine learning can assist cobots, particu-
larly in learning to respond to these kinds of conditions. As a result, current research has
focused on the invention and application of different machine learning approaches, such
as neural networks and reinforcement learning, in order to create natural, smooth, and
flexible HRCs [45].

Deep learning has been very popular recently. This is because this approach makes it
simple to create sophisticated or infeasible image-processing solutions. A neural network
capable of learning from the conveyed picture data is known as deep learning. This
enables the completion of a wide range of activities, including localizing components,
identifying flaws on intricate surfaces, deciphering challenging characters, and classifying.
Numerous parameters around an object may now be examined in conjunction with a robot.
Reinforcement learning and deep learning are both autonomous learning systems. The
distinction is that reinforcement learning learns proactively by modifying behaviors based
on continual feedback to optimize a reward [46], whereas deep learning learns from a
training set and afterward is applied to a new test dataset [20].

3.3. Analysis
3.3.1. Non-Collaborative Workspace-Type Robots

The summary of the state-of-art research on non-collaborative workspace-type robots
is provided in Table 2.
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Table 2. Related works with the non-collaborative workspace-type robots.

No. Author(s) and
Year Robot Type Sensing/Simulation

Tool Task Type Technique Remarks

1. Bagheri et al.
[47], 2022

Franka robotic
arm T-GUI Assemble toys

Interactive
reinforcement

learning

The experiment was carried out
online and potential behaviors of
the cobot across all circumstances
were recorded. During the
learning process using the
cobot’s answers, the human was
not permitted to assist.

2. Amarillo et al.
[48], 2021 Staubli TX40 Optoforce FT

sensor Spinal surgery Control algorithms

Safety issues were not
considered. Therefore, the robot’s
joint accelerations and velocities
have limited use.

3. Nicora et al.
[49], 2021 Virtual robot Azure Kinect

cameras
Predicting mental
health conditions Machine learning

The experiments were carried out
in simulation. No real robot was
utilized to perform the
collaborative tasks.

4. Oliff et al.
[50], 2020 - Deep

learning-4-Java

Pick and place,
move, scrap, and

manipulate products

Deep Q-learning
networks (DQN)

The model that determines the
behavior of the robot was
validated through simulation
only. Safety issues regarding HRI
were not addressed.

5. Story et al.
[51], 2022 UR5 Microsoft Kinect

v2 vision Assembly task Linear mixed
effects model

According to the research, there
are correlations between two
important robot characteristics,
speed and proximity, and
psychological tests that were
created for many other
manufacturing applications with
higher levels of automation but
not for collaborative work.

From Table 2, there were several works that implemented cobots but were not able
to carry out collaborative tasks due to safety concerns. For non-collaborative tasks, AI
was employed in [47,49,50], whereas [48] utilized control algorithms and [51] used a linear
mixed effects model. Bagheri et al. [47] proposed a bidirectional and more transparent
interaction-based learning between human beings and cobots to improve interaction with
enhanced performance using a transparent graphical user interface (T-GUI). A T-GUI
enables the cobot to describe its operations and the operator to add instructions that
are needed to assist the cobot in completing the task. The suggested approach has been
validated by experimenting with 67 volunteers, and it concluded that giving explanations
boosts performance in terms of effectiveness and efficiency. An industrial conventional
robot with cooperative learning was proposed in the work of Amarillo et al. [48] by
providing a physical interaction interface with improved admittance controller algorithms
for robotic-assisted spine surgery. The recommended system was used to communicate
with the robotic assistant in a surgical environment in an understandable manner while
maintaining the mechanical rigidity of the industrial robot. This involved the application
of an admittance control paradigm in hand navigation behavior through the introduction
of a revised inverse kinematics close loop (IKCL) into the joint velocity computation. An
orientation restriction control loop (OCL) was introduced to make sure that the system
maintained the required orientation while being transformed into hand guidance mode.

To help workers who engage with cobots maintain an excellent psychological state,
Nicora et al. [49] presented a control framework. An anticipated human-driven control
structure is described along with a thorough breakdown of the elements needed to create
such an automation system, beginning with the determination of the elements that po-
tentially affect the collaboration environment. They developed a MindBot coworker by
combining a cobot and Avatar, an interactive virtual system, for a better working envi-
ronment through various elements such as gaze, gestures, and talking capabilities with
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physical, voice, and visual interactions. The orchestrator module divides up the duties
between the workman and the MindBot workmate and coordinates the activities of the
cobot and the avatar. The worker’s physiological reactions were recorded using FitBit
Inspire HR. The 3D position and skeletal joints were leveraged by Microsoft Azure Kinect.

Oliff et al. [50] detailed the creation of a modeling approach for robotic devices that
worked well and a reinforcement learning robot that could make decisions on its own
by tailoring its behavior accordingly with respect to human activity. This reinforcement
learning issue was approached using a deep Q-learn network-focused methodology since
the robot controller discretized the functionality of the robotic operators into a set of
protocols. The tripolar production plant, which shows how the robot and user-operated
cells interact, and the Anylogic modeling approach for the robot operator was developed.
Story et al. [51] suggested investigating how the people’s workload and faith during a HRC
activity were affected by the robot’s velocity and proximity settings. Workload and faith
were assessed after every run of a task involving a UR5 industrial robotic arm operating
at various velocities and proximity settings, which involved 83 individuals. Trust and the
setting of velocity or closeness did not significantly interact. This research demonstrated
that a robotic system could impact people’s workload even though it complies with existing
safety regulations.

3.3.2. Collaborative Workspace-Type Robots

The summary of the state-of-art research on collaborative workspace-type robots is
provided in Table 3.

As per Table 3, a lot of research has been carried out on making robots do collaborative
tasks of numerous kinds for industrial applications. All the works employed AI such
as both deep learning and reinforcement learning for the design of cobots in performing
several industrial activities.

The task order assignment mechanism in assembly operations is presented by Zhang
et al. [52] to optimize using a HRC-reinforcement learning system. Furthermore, a practical
examination of a simulated alternator assembly is conducted to confirm the efficacy of the
technique. The deep deterministic policy gradient was expanded in the creation of the
HRC-RL framework. The technician, the assembling component, the UR5 robot with a
deep image sensor, and the different control instruments comprise the actual collaborative
assembling station. The authors concluded that by using the suggested strategy, the
decision is replaced, the supervisor’s effort is reduced, and irrational sequencing is avoided.
Silva et al. [53] investigated the idea of direct control of a robot using video streams from
cameras. Utilizing homography and deep learning, the robot can automatically map picture
pixels from several camera systems to locations on its global cartesian coordinates. A robot’s
route plan is then superimposed on each camera feed using this map, which also enables
a user to control the robot by engaging with the video sequence immediately. An ArUco
marker is used to locate the robot pixels. The findings were verified in both simulation and
practical tests using a Baxter mobile base as a robot.

Buerkle et al. [54] provided a method for recognizing the purpose of upper-limb
movement using an EEG to improve safety in a human–robot collaborative task. A unique
data processing technology was introduced to identify the EEG signals as quickly as feasible
and to reduce smooth efforts. For training a long short-term memory recurrent neural
network (LSTM-RNN), motion intents were labeled using TimeSeriesKMeans. The authors
concluded that the proposed technology might provide quicker detecting speeds, but it
still must be evaluated in an online platform in a collaborative human–robot setting.

De Winter et al. [55] proposed a method to decrease the problem-solving space in
assembly sequences by appropriate communication between humans and robots using
interactive reinforcement learning (IRL) and potential-based reward shaping (PBRS). Rather
than modifying the cobot programming, transferring the skills can decrease the expenses
of maintenance and accelerates the learning rate. Nevertheless, this method requires that
cobots can define, elucidate, and defend their actions to people and that the people can then
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pass on their expertise to the cobots through feedback in order to assist them in carrying
out their duties in an effective manner.

Table 3. Summary of the state-of-art research on collaborative workspace-type robots.

No. Author(s) and
Year Robot Type Sensing/Simulation

Tool Task Type Technique Remarks

1. Zhang et al.
[52], 2022 UR5 robot Deep image sensor Simulated alternator

assembly
Reinforcement

learning

The overall completion time was
influenced by several factors,
including product features and
process modifications. How to
calculate and adjust the operating
time and resource utilization
during collaborative learning in
real time was not investigated.

2. Silva et al.
[53], 2022

Baxter mobile
base

2D cameras with
1280x720, 30 FPS

Homograph pixel
mapping

Deep learning
(Scaled-Yolo V4)

When the robot was moving with
a significant velocity, a timing
discrepancy between the robot
placement inside the camera as
well as its overlayed position
lead both to cover separate
portions of the video frame.

3. Buerkle et al.
[54], 2021 UR10 mobile EEG Epoc+ Assembly tasks

Long short-term
memory recurrent

neural network

During the pre-movement
period, the EEG data from
multiple subjects often showed
strong comparable patterns that
were consistent, such as a
decrease in amplitude and a
variation in frequency.

4. Winter et al.
[55], 2019 - GUI Cranfield Assembly

task

Interactive
reinforcement

learning

The assembly was not carried out
in real-time, the participant’s
knowledge was represented as a
consequence graph. The type of
robot was not specified.

5. Ghadirzadeh
et al. [56], 2021

ABB YuMi
robot

Rokoko motion
capture suit

Pick, place, and
packing

Graph
convolutional

networks,
recurrent

Q-learning

Unwanted delays were reduced
but the safety issues were not
addressed in the work.

6. Akkaladevi
et al. [57], 2019

UR10 with
SCHUNK

2-finger parallel
gripper

RGBD and 3D
sensors Assembly task Reinforcement

learning

In order to understand how
things are put together, the
robotic system actively suggested
a series of appropriate actions
based on the current situation.

7. Jin Heo et al.
[58], 2019 Indy-7 Force sensitive

resistor Collision detection Deep learning
(1-D CNN)

Model uncertainty and sensor
noise were mostly insensitive to
the proposed deep neural network.

8. Gomes et al.
[59], 2022 UR3 RGBD camera Pick and place Reinforcement

learning (CNN)

The drawback of this model is
the lengthy training process,
which took several hours to
complete the setup before it
could be used. The model has
restricted flexibility as it
excluded the gripper rotation
and adversarial geometry.

9.. Chen et al.
[60], 2020 Robotic arm Force sensor Sawing wooden

piece Neural learning

The EMG signals employed in
this work were used to track the
levels of muscle activation;
muscle exhaustion was not taken
into account. There was no
discussion of safety concerns
during the collaborative task.
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Table 3. Cont.

No. Author(s) and
Year Robot Type Sensing/Simulation

Tool Task Type Technique Remarks

10. Qureshi et al.
[61], 2018

Aldebaran’s
Pepper

2D camera, 3D
sensor, and FSR

touch sensor

Societal interaction
skills (handshake,
eye contact, smile)

Reinforcement
learning (DNN)

The existing system performed
only a few actions and had no
memory. Therefore, the robot
was not able to remember the
actions executed by people and
could not recognize them.

11. Wang et al.
[62], 2018 - - Engine assembly DCNN, AlexNet

A collaborative experiment was
not discussed clearly. The type of
robot and sensors used for the
assembly task were not specified.

12. Q. Lv et al.
[63], 2022

Industrial
robotic arm

Intel RealSense
depth camera

(D435) and GUI

Lithium battery
assembly

Reinforcement
learning

The system required extensive
coding for assembly tasks. Safety
measures were not addressed clearly.

13. Weiss et al.
[64], 2021 UR10 -

Assembling
combustion engine,

polishing molds

Interactive
learning

The task assigned to the robot
during assembly was tightening
the screw and safety precautions
were not discussed.

14. Sasagawa et al.
[65], 2020

Master and
slave robots

Touch USP haptic
device Handling of objects Long short-term

memory model

The robot proved competent at
carrying out tasks using the
suggested technique in reaction to
modifications in items and settings.

15. Lu et al.
[66], 2020

Franka Emika
robot with 7

d.o.f

Joint torque
sensors Handling of objects

Long-short term
memory model,

Q-learning

The findings of the research
demonstrate that the suggested
methodology performs well in
predicting human intentions and
that the controller obtains the
least jerky trajectory with the
least amount of contact force.

16. Karn et al.
[67], 2022

Hexahedral
robot RGB camera Defense Long-short term

memory model

Regarding the length of time it
takes for individuals to converse
with one another, the architecture
is effective.

17.
De Miguel

Lazaro et al.
[68], 2019

YuMi IRB
14000 robot

AWS DeepLens
camera, Apache

MXNet

Identifying human
operator

Deep learning
(CNN)

The developed model was not
tested for the assembly process to
determine the algorithm’s
performance level.

A framework for human-centered collaborative robotic systems based on reinforce-
ment learning was developed by Ali Ghadirzadeh et al. [56] to provide more time-effective
cooperation between humans and robots in packing activities. To handle the sequential
motion data, graph convolutional networks (GCNs) and recurrent Q-learning were used.
An additional unsupervised motion reconstruction network was trained for improving the
data effectiveness for the learning model. The experimental demonstrations prove that
unwanted delays can be minimized by enabling better natural communication between
users and robots.

Akkaladevi et al. [57] anticipated a reinforcement learning framework that provides a
full collaborative assembly process intuitively. There are two steps to the learning strategy.
The first phase entails utilizing task-based formalism to model the straightforward tasks
that make up the assembling process. The use of the framework to address errors or unusual
circumstances that arise during the actual implementation of the assembly operation was
then demonstrated. The robot system uses 3D sensors to observe the operator and the
surrounding area, and a dynamic GUI to communicate with the user. Additionally, the
framework enables various users to instruct the robot in various assembly procedures.
Heo et al. [58] proposed a deep learning-based collision detection framework for industrial
cobots. A deep neural network system was created to understand robot collision signals
and detect any accidents. High-dimensional inputs from robot joints have been analyzed by
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1-D convolution neural networks (CNN) which determined whether there was a collision
that happened as an outcome. Quantitative research and experimentation have been
carried out using six-degrees of freedom (DoF) cobots to confirm the effectiveness of
the suggested approach. The authors concluded that the framework demonstrated great
collision sensitivity while also being resistant to false-positive findings brought on by
erratic signals and/or dubious models. The framework was applied to general industrial
robots only.

Gomes et al. [59] investigated the usage of deep reinforcement learning to guide a
cobot through pick-and-place activities. They demonstrated the creation of a controlling
system that allowed a cobot to grip objects that were not covered in training and to respond
to changes in object placement. A collaborative UR3e robot with a two-finger grip and a
mounted RGBD camera pointed toward the workspace ahead of the robot. Convolution
neural networks were used to estimate the Q-values. CNN models, namely ResNext,
DenseNet, MobileNet, and MNASNet, were employed to compare the system performance.
From the simulation and experimental results, when handling a previously unseen object
using the pre-trained CNN model MobileNet, the proposed system achieved a gripping
success of 89.9%. For the human–robot collaborative activity, Chen et al. [60] suggested
a unique neural learning improved admittance control technique. A smooth stiffness
mapped between the human arm terminal and the mechanical arm joint was created to
inherit the properties of the human arm electromyography signals, which was influenced
by cognitive collaboration. To build a better-integrated HRC, they suggested a stiffness
mapping approach between the human and the robot arms based on the estimated stiffness.
A neural network-based dynamic controller was developed to accommodate uncertain
dynamics and unknown payloads in order to improve the tracking performance of the
mechanical arm. The task chosen in this work was sawing wooden pieces. Comparative
studies were carried out to confirm the efficacy of the suggested method.

Qureshi et al. [61] provided a framework for intrinsic motivational reinforcement
learning where an individual receives incentives based on their intrinsic motive via an
action-conditional prediction model. By employing the suggested technique, the robot
acquired interpersonal skills from experiences with HRI obtained in actual chaotic cir-
cumstances. The suggested approach consists of a policy network (Qnet) and an action-
conditional prediction network (Pnet). The Pnet provides self-motivation for the Qnet to
acquire societal communication abilities.

Wang et al. [62] explored deep learning as a data-driven method for constant human
movement observation and predicting future HRC demands, resulting in better robotic
control and planning when carrying out a collaborative activity. A deep CNN (DCNN) was
utilized to identify human activities. Using a video camera, people’s actions were captured.
Each video’s frames underwent preprocessing to provide sequential steps (grasping, hold-
ing, and assembling) needed to finish the given task. They achieved an accuracy of 96.6%
in classifying the task through the network.

The paradigm for collaborative assembly between humans and robots proposed by
Q. Lv et al. [63] is based on transfer learning and describes the robot taking part in the
cooperation as an operator with reinforcement learning. To achieve quick development and
validation of assembling strategy, it comprises three modules: HRCA strategy development,
similarity assessment, and strategy transferring. According to the findings, the proposed
method can increase assembling efficiency above developed assembly by 25.846%. In
order to investigate the socio-technological environment of Industry 4.0, which involves
cobots at the personal, workgroup, and organizational levels, Weiss et al. [64] established
a study plan for social practice and workspace research. They established cutting-edge
collaboration concepts for a cobot in two distinct scenarios, polishing molds and assembling
automobile combustion engines, as part of the AssisstMe project. Bilateral control and
imitation learning were employed to conduct the collaborative activity. According to
Sasagawa et al. [65], bilateral control retrieves human involvement abilities for interrelations
by extracting responses and commands separately. The cobot carried out meal-serving
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activities for validation. A total of 4ch bilateral control was employed to collect the necessary
data, and long-short term memory was utilized to train the model. Meal serving activity
was carried out for validation of the proposed approach. The experimental findings
unequivocally show the significance of controlling forces, and the predicted force was
capable of controlling dynamic interactions.

Lu et al. [66] predicted user intention by relying on the dynamics of the user’s limbs
and subsequently developed an assistance controller to support humans in completing
collaborative tasks. The efficiency of the prediction technique and controller was evaluated
using the Franka Emika robot. The controller that was suggested integrates assistance
control and admittance control. The best damping value was determined using reinforce-
ment learning, and the assistant movement was created using predictions of user intention.
Using a knowledge-based architecture, Karn et al. [67] suggested that people and robots
may collaborate to comprehend the environment of defense operation. The context-aware
collaborative agent (CACA) model, which was established on an ontology, provides con-
textual patterns and enhances robot army collaboration and communication. In order to
extract information from past data that is helpful to the actor and critic, a recurrent actor–
critic model was created. De Miguel Lazaro et al. [68] developed a method for modifying
a cobot workspace to accommodate human workers within a deep learning camera that
was mounted on the cobot. The worker who works with the cobot was recognized by the
camera. The operator’s data was analyzed and used as the input by a module that adapts
particular robot attributes. The cobot was adjusted to the worker’s abilities or provided
pieces for the operator to handle depending on how they were handled.

3.3.3. Industrial Robots Employing Machine Learning

The summary of the state-of-art research on industrial robots employing machine
learning is presented in Table 4.

Table 4. Summary of the state-of-art research on industrial robots employing machine learning.

No. Author(s) and
Year Robot Type Sensing/Simulation

Tool Task Type Workspace
Type Technique Remarks

1. Mohammed
et al. [69], 2022 ABB IRB 120 RobotStudio Assembly

tasks Collaboration Machine
learning

Outside interference was not
prevented during the practice
session. The changes in brain
activity throughout the day
were not considered.

2. Wang et al.
[70], 2022

Industrial
Robot

Smart sensors
andcamera

Traffic
monitoring HRI Machine

learning

The researchers took into
account social, technical, and
economic aspects regarding
safety. They did not take into
account other human
elements. Robot abilities were
not discussed.

3. Aliev et al.
[71], 2021 UR3 Sensors, Real-time

data exchange

Predict
outages and

safe stops

Online
monitoring
(AutoML)

Machine
learning

The research was not carried
out on various working
environments and the human
factors were not reviewed clearly.

4. Malik et al.
[72], 2021 UR-5 e-series

Tecnomatix process
simulation, CAD,
proximity sensor

Assembly,
pick, and

place tasks
Sequential Machine

learning

The physical robot performed
the tasks without a worker.
The collaborative tasks were
explained with the help of
digital twins only.

From Table 4, collaborative workspace robots have been implemented by
research works [69,70], non-collaborative robots by [71], and [72] by utilizing machine
learning techniques.

Mohammad et al. [69] built a smart system that could control a robot utilizing hu-
man brain EEG signals to complete cooperative tasks. To record brainwaves, an EEG
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collection device called a g.Nautilus headset was chosen. Various pre-processing steps,
such as compression and digitization of EEG signals, were performed to remove abnor-
malities from the recorded EEG signals and to prepare them for the following phase.
Furthermore, feature extraction and classification were performed using discrete Fourier
transform and linear discriminant analysis, respectively. In order to achieve the desired
assembling tasks, the classification result was converted into control signals that were then
transmitted to a robot. To validate the system, a case study was accomplished for an auto-
mobile manifold. To prevent outside interference, the practice session must be conducted
in a strictly restricted setting. Brain activity might change throughout the day. A ma-
chine learning-assisted intelligent traffic monitoring system (ML-ITMS) was suggested by
Wang et al. [70] for enhancing transportation security and dependability. ITMS incorporates
automobile parking, medical care, city protection, and road traffic control using installed
signals from the LoRa cloud platform. To determine whether a path is crowded or not,
preprocessed data from traffic lights was sent to a machine learning algorithm. When
compared to other current task-adaptation in physical HRI (TA-HRI), gesture-based HRI
(GB-HRI), and emotional processes in HRI methods (EP-HRI), the suggested technique
reaches the greatest traffic monitoring accuracy of 98.6%. The authors concluded that HRI
made it possible for suppliers and customers at the two ends of transport networks to
concurrently resolve significant issues.

By adjusting the robot’s physical and event parameters while handling the collabora-
tive duties, Aliev et al. [71] suggested an online monitoring system for cobots to predict
breakdowns and safe stops. To predict potential disruptions or effects during interactions
between humans and robots, an automated machine learning model was utilized. The
physical parameters, such as speed, vibrations, force, voltage, current, and temperature of
the robots were collected by installing the appropriate sensors, and the event data includes
breakdowns, working status, and software or hardware failures. The acquired data were
transmitted through RTDE (real-time data exchange) and MODBUS protocols over Wi-Fi.
Various data preprocessing steps, namely data standardization, normalization, transforma-
tion, and correlation analysis have been performed to extract significant information by
removing noisy data. Thereafter, multiple linear regression and automatic classification
models were employed to predict the quantitative and qualitative parameters by assessing
various performance metrics. Malik et al. [72] investigated the potential of adopting a
digital twin to handle the intricacy of collaborative production environments. A digital
twin, a pacemaker, was created during the design, construction, and use of a human–robot
assembly process for validation. The authors discussed various phases and forms of the
digital twin, namely design, development, commissioning, operation, and maintenance.

3.3.4. Cobot-Related Works without AI

A summary of cobot-related works without employing AI is provided in Table 5.
According to Table 5, few research works successfully achieved collaborative tasks

using industrial robots without AI. Walker et al. [73] demonstrated a robotic system for
cuffing chickens. The system is made up of an Intel Realsense 435d RGB-D camera, a
Universal Robots UR5 manipulator, and various software modules. The cameras could
detect an entire, de-feathered chicken item and could precisely estimate the location and
direction of the hock. Using a unique cutting head, the UR5 operator then independently
grabbed this joint and secured it to a cuff. Edmonds et al. [74] developed a comprehensive
framework that consisted of a neural network-based sensory prediction model to serve as
the data-driven representation and a symbolic action planner employing a deterministic
language as a planner-based representation. The model was evaluated in a robot system uti-
lizing an interaction-handling task of unlocking medicine bottles. An enhanced generalized
Earley Parser (GEP) was utilized to merge both the sensory model and symbolic planner.
The task was carried out on numerous bottles with different locking mechanisms. The
symbolic planner produced mechanical explanations, whereas the sensory model generated
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functional ones. The authors concluded that an automated system can learn to open three
pharmaceutical bottles from a modest number of human instructions.

Table 5. Summary of cobot-related works without AI.

No. Author(s) and
Year Robot Type Sensing/Simulation

Tool Task Type Workspace
Type Technique Remarks

1. Walker et al.
[73], 2021 UR5 Realsense 435d

RGB-D camera
Shackling
chickens Collaborative Machine

vision

Robot learning methods and
abilities were examined without
considering the implications for
contemporary production plants.
However, no additional human
aspects were examined.

2. Edmonds et al.
[74], 2019 Baxter robot

Tactile glove with
force sensors,

Generalized Earley
Parser

Medicine
bottle cap
opening

Human
explanations -

The robot learning techniques
and safety issues were
not discussed.

3. Grigore et al.
[75], 2020

Firefighting,
Hexacopter,
HIRRUS V1

Electro-optical/
infrared cameras

Disaster and
recovery tasks

UAV-UGV
collaborative -

The operating scope of the robots
in the article did not consider
AI techniques.

4. Bader et al.
[76], 2021 UR5e Transducer, GUI

Histotripsy
ablation
system

Collaborative -

The low resolution of the passive
cavitation images employed in
this study was a drawback. AI
techniques were not addressed.

5. Eyam et al.
[77], 2021 ABB YuMirobot EEG Epoc+ headset Box alignment

task Collaborative Human
profiling

The work has not focused on the
internal effect caused by the
stress that may produce unstable
robot reactions.

6. Yang et al.
[78], 2018 Baxter robot Bumblebee2 camera Object picking

task Collaborative Least squares
method

The experiments were validated
with only two healthy subjects.

7. Cunha et al.
[79], 2020

Articulatedrobotic
arm with7 DoF

The vision system,
Rethink robot sawyer

Pipe joining
task Collaborative Dynamic

neural fields

The conceptual framework
suggested in this study was
validated in a real cooperative
assembly activity and is flexible
enough to accommodate
unforeseen events.

Grigore et al. [75] assessed the mobility of robots (three autonomous vehicles) to
determine the effectiveness of collaborative robot systems in accomplishing challenging
disaster and recovery operations. The primary areas of this study’s originality are the
control, communication, computing, and integration of unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs) into real-time applications.

Bader et al. [76] investigated the use of a cobot-histotripsy system for the in vitro
therapy of venous thrombosis ablation. A flow channel containing a human complete
blood clot was used to test mechanical repeatability and bubble cloud targeting. The
histotripsy system was translated by a six-degree-of-freedom cobot. The cobot could
rotate around 360 degrees on each axis at a maximum speed of 180 degrees per second. To
operate the cobot, a unique GUI was created in MATLAB. The cobot served as a zero-gravity
support to permit controlled placement of the transducer when the GUI turned on free drive
mode. The research findings show that cobots could be utilized to direct the histotripsy
ablation of targets that are outside the transducer’s normal field of view. Eyam et al. [77]
provided a method for leveraging the electroencephalography technique to digitize and
analyze human emotions to tailor cobot attributes to the individual’s emotions. The cobot’s
parameters were changed to maintain human emotional states within acceptable bounds,
fostering more trust and assurance between the cobot and the user. They also studied
several technologies and techniques for recognizing and feeling emotions. The suggested
method was then validated using an ABB YuMi cobot and widely accessible EEG equipment
in the box alignment task. Sentience-based emotions were segmented, and the robot’s
settings were changed using a first-order regulation-based algorithm. The work did not
focus on the internal effect caused by the stress that may produce unstable robot reactions.

By merging a steady-state visual evoked potential (SSVEP)-based brain–computer
interface (BCI) with visual servoing (VS) technology, an intuitive robotic manipulation
controlling system was created by Yang et al. [78]. They suggested the least squares method
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(LSM) for camera calibration, the task motion and self-motion for avoiding obstacles,
and a dynamic color alteration for object recognition. Numerous tests were run to see
whether the distributed control system was reliable in picking the correct object as per the
subject order and whether the suggested techniques were effective. The study concluded
that the produced system could assist disabled people in readily operating it without the
requirement for considerable training. Cunha et al. [79] presented the outcomes of the
use of a neuro-inspired model for action choice in a human–robot collaborative situation,
using dynamic neural fields. They tested the concept in a real-world construction setting
in which the robot Sawyer, working alongside a human worker, chose and verbalized the
next component to be installed at every stage and produced the suitable way to install it.
The 2D action execution layer enabled the simultaneous visualization of the constituents
and action.

3.3.5. Vision Systems in Cobots

Visual inspection in industrial applications generally can be divided into manual
visual inspection and automated visual inspection. The disadvantages of manual visual
inspection are that it can be monotonous, laborious, fatiguing, subjective, lacking in good
reproducibility, costly to document in detail, too slow in many cases, and expensive. On the
other hand, automated visual inspection shows it is more reliable if programmed accurately
(although it is not expected to be error-free). It poses minimal to no safety concerns, but
some operational conditions must apply.

Collaborative robots are becoming increasingly perceptive to their environment be-
cause of developments in sensors, cameras, AI, and machine vision. These advanced
robots can operate more safely and effectively in specific types of workplaces due to their
enhanced visibility [80]. The little end effectors and payload can nevertheless be dangerous
even though they are intended for safe interaction with human staff [81]. In completely au-
tomated packing and loading systems, the cobots must be able to identify items, determine
their posture in space so they may be grasped, and design pick-and-place trajectories that
avoid collisions. To determine an object’s posture, it is often not enough to just record raw
sensor data. The data must be processed using specialized machine vision techniques [82].

Computer vision enables cobots to have a highly developed sense of perception and
knowledge of their surroundings. A cobot’s inbuilt sensors, including proximity, LiDAR,
motion, torque, and 2D vision, all work together to make it safer on its own. Systems
that employ 3D depth cameras and computer vision algorithms enable cobots to operate
alongside people and have complete knowledge of their environment [83]. The summary
of the state-of-art research on vision systems employed in cobots is provided in Table 6.

Table 6 summarizes the deep learning-based vision systems employed in the cobots for
collaborative environments to work with human workers. A stable intelligent perceiving
and planning system (IPPS) for cobots was developed by Xu et al. [84], using the deep
learning method. A well-designed vision system was employed to provide a novel method
of observing the environment. A hand-tracking approach, fingertip marking method, new
grasping method, and trajectory planning method were also suggested. The perceivable
image was utilized as input to the deep learning neural networks to implement planning.
For intelligent robot planning, a vision system was created with the help of two 3D RGB
cameras, a depth camera, and an eye tracker. The RGB object images from the perception
process were used as the input for a convolutional neural network, and the output was the
type of object that was grasped. It can be said that IPPS has undergone real-world testing
and has proven to be capable of realizing intelligent perception and planning with high
efficacy and stability that can satisfy the needs of intelligence. Jia et al. [85] present a deep
learning-based technique for autonomous robot systems to detect computer numerical
control (CNC) machines and recognize their operational status. First, a system called
the SiameseRPN was suggested to recognize the target CNC device and human–machine
interface (HMI). The collected, pre-processed HMI images were then utilized as sources
for working status recognition. To determine the target CNC device’s operational status, a
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unique text recognition technique was created by fusing projection-based segmentation
with a convolutional recurrent neural network (CRNN). When compared to the benchmark
method Faster-RCNN, the proposed method was 16.5% more accurate.

Table 6. Summary of the state-of-art research on vision systems employed in cobots.

No. Author(s)
and Year Robot Type Sensing Tool Task Type Workspace

Type Technique Remarks

1. Xu et al.
[84], 2021

Seven DoF
manipulator and

three-finger
robot hand

Two 3D RGB cameras,
one depth camera,

eye tracker

Hand tracking,
environment
perceiving,

grasping, and
trajectory planning

Collaborative Convolutional
neural network

The experiments demonstrate
a decrease in planning time
and length as well as a posture
error, suggesting that the
planning process may be more
accurate and efficient.

2. Jia et al.
[85], 2022

DOBOT CR5
manipulator

Webcam with
1920 × 1080 pixels

Text recognition,
working status

recognition
Autonomous

Siamese region
proposal network,

convolutional
recurrent neural

network

Compared to broad object
recognition, text detection and
recognition are much more
susceptible to image quality.
Lettering may also appear
blurry when an image is taken
due to camera movement.

3. Xiong et al.
[86], 2022 UR5

3D camera, Basler
acA2440-20gm GigE

(Basler AG)
Port surgery Collaborative Machine vision

Throughout simulating port
surgery, the cobot effectively
served as a reliable
scope-carrying system to
deliver a steady and optimized
surgical vision.

4. Comari et al.
[87], 2022

LBR iiwa has seven
degrees of freedom

Laser pointer,
monochrome 2D

camera

Raw material
feeding Collaborative Computer vision

The suggested robotic device
can load raw ingredients
autonomously into a
tea-packaging machine while
operating securely in the same
space as human workers.

5. Zhou et al.
[88], 2022

UR5e, Robotiq
2F-85 gripper

PMD 3D camera and
See3Cam 2D camera

Printing and
cutting of nametags,

plug-in charging
Collaborative

Point-voxel
region-based

CNN (PV-RCNN)

Presented a broad robotic
method using a mobile
manipulator that was outfitted
with cameras and an adaptable
gripper for automatic nametag
manufacture and plug-in
charging in SMEs.

6. Ahmed Zaki
et al. [89], 2022

RV-2FRB
Mitsubishi

industrial robot
and Mitsubishi
Assista cobot

Intel Realsense D435
3D stereo cameras Industrial tasks Collaborative Computer vision

The implemented system,
which was built on dynamic
road-map technology, enables
run-time trajectory planning for
collision prevention between
robots and human workers.

7. Zidek et al.
[90], 2021 ABB YuMi

Dual 4K e-con,
Cognex 7200, and MS

Hololens cameras
Assembly process Collaborative Deep learning

(CNN)

The work discussed in this paper
introduces a CNN training
approach for implementing
deep learning into the assisted
assembly operation.

8. Olesen et al.
[91], 2020

UR5 manipulator,
Schunk WSG

50-110 gripper

Intel RealSense D415
Camera,

URG-04LX-UG01
scanner

Mobile phone
assembly Collaborative CNN, YOLOv3

network

The suggested method deals
with the assembly of sample
phone prototypes without
engaging in actual
manufacturing procedures.
However, the overall success
rate was achieved as 47% only.

9. Amin et al.
[92], 2020

Franka Emika
robot

Two Kinect V2
cameras

Human action
recognition, contact

detection
Collaborative 3D-CNN and

1-D CNN

The human action recognition
system achieved an accuracy of
99.7% in an HRC environment
using the 3D-CNN algorithm,
and 96% of accuracy in physical
perception using 1D-CNN.

10. Bejarano et al.
[93], 2019

A 7 DoF dual arm
ABB YuMi robot Cognex AE3 camera Assembling a

product box Collaborative Machine vision
The design, development, and
validation of the assembly process
and workstation are shown.

Xiong et al. [86] developed a cutting-edge robotic device that can identify ports and
automatically position the scope in a strategic location. They carried out an initial trial to
evaluate the accuracy and technical viability of this system in vitro. A cobot can locate a
marker attached to the surgical port’s entrance using its 3D camera and machine vision
program. It can then automatically align the scope’s axis with the port’s longitudinal axis
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to provide the best possible brightness and visual observation to save the time and effort
of specialists. Comari et al. [87] proposed a robotic feed system for an automatic packing
machine that incorporated a serial manipulator and a mobile platform, both of which
featured collaborative characteristics. To identify targets for the cobot near stationary plant
components and to examine raw materials before loading operations, a vision system with
a laser pointer and a monochrome 2D camera were used. To create trustworthy target
objects for manipulating raw materials and interacting with static components of the fully
automated production cell, appropriate computer vision techniques were used in this work.
Zhou et al. [88] created a deep learning-based object detection system on 3D point clouds
for a mobile collaborative manipulator to streamline small- and medium-sized enterprise
(SME) operations. Robust detection and exact localization problems were addressed by the
development of the 3D point cloud method. The mobile manipulator’s position in relation
to workstations was calibrated using the 2D camera. Utilizing the deep learning-based
PV-RCNN, the identification of the targeted objects was acquired, and the localization was
carried out utilizing the findings of the detection.

The implementation of a commercial collision prevention platform was proposed by
Ahmed Zaki et al. [89] in order to carry out simultaneous, unplanned industrial operations
including robots, cobots, and human workers. A robotic cell was deployed with two robotic
manipulators. An Intel Realsense D435 camera-based 3D vision system was used to detect
and recognize the products to be chosen. The implemented technology made it possible
to control the two robots’ real-time trajectory planning, allowing for simultaneous use of
both robots even while the items to be collected were being placed onto the conveyor belt
relatively closely together. A CNN training based on deep learning was employed for
the aided assembly operation by Zidek et al. [90]. The approach was tested in a SMART
manufacturing system with an aided assembly workstation that used cam switches as
the assembling product of choice from actual production. The authors trained two CNN
models (single shot detection and mask region-based CNN) using 2D images created
from 3D virtual models as the training data and created a communication framework for
cobots that aided in assembly operation. Olesen et al. [91] examined the advantages of
integrating a collaborative robot for mobile phone assembly with a cutting-edge RGB-D
imaging system and deep learning principles. To get around the difficulties in gripping the
cellphone parts, a multi-gripper switching approach was put into place employing suction
and several fingertips. The system employed a YOLOv3 model to identify and locate the
various components, and a separate CNN to precisely adjust each component’s orientation
during phone assembly.

A hybrid vision safety solution was suggested by Amin et al. [92] to increase produc-
tivity and security in HRC applications by enabling the cobot to be aware of human actions
by visual perception and to differentiate between deliberate and unintentional touch. The
authors collected two distinct datasets from the subjects which included contact and visual
information. For human action recognition they utilized 3D-CNN and for physical contact
detection they utilized 1D-CNN algorithms. The authors investigated the effectiveness of
these networks and provided the outcomes with the help of the Franka Emika robot and
vision systems. In order to assemble a product package, Bejarano et al. [93] suggested a
HRC assembly workspace made up of the ABB YuMi robot. The IRB 14000 gripper, which
is outfitted with a Cognex AE3 camera, was utilized to perform image acquisition and
recognition. This study also outlined the benefits and difficulties of using cobots by using
an actual example of collaborative contact between a cobot and a human worker that could
be used in any industrial plant. They concluded that the cobot was able to carry out a
collaborated assembly process within allowable precision, coexistence, and simultaneity
characteristics without endangering a human involved directly in the process.

From the above literature, a cobot now processes a substantial portion of 3D video
information and responds swiftly due to sophisticated machine-vision methods and its
underlying bespoke computer capability. When it notices obstacles close to its workspace,
it will immediately stop moving to protect its human coworkers from damage.
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4. Discussion

Robots are now able to collaborate closely with people thanks to new technology.
In the previous two decades, there existed a wall separating the human workspace from
where the robot was located. In the next five years, this will change because the robot will
be capable of coexisting with humans in our living environments, including our homes,
workplaces, and industries, and they will be ready to do so safely and securely. A new
generation of robots that have sensing elements all over them, meaning their joints are
independently operated, have started to appear in the last five years. As a result, if a
person approaches a robot and touches it, the robot will halt as it would recognize that a
person is nearby. The collision rate has been successfully decreased and the success rate
has been improved with reinforcement learning comparatively without RL [63]. The work
time for a robot is more than that of a human. According to Weiss et al. [64], there are
presently just a few areas where cobots are used in the workplace. Cobots have not yet
effectively overtaken career opportunities; rather, their use has been focused on automating
simple parts of team projects. Even though robots excel at routine and tedious jobs, human
workers still manage unexpected and unscheduled duties better than their computerized
coworkers. In a way, people continue to be the system’s most adaptable resource. HRC
may be superior to solely robotic processes by utilizing the heterogeneous benefits.

The preceding section discussed the findings in five different tables (Tables 2–6). In
Table 2, the discussion on the related works with the non-collaborative workspace-type
robots with five articles shows that only a few of the studies that implemented cobots were
not able to carry out the collaborative tasks due to safety concerns. For non-collaborative
tasks, AI was employed where performance in terms of effectiveness and efficiency has
improved. Table 3, which discussed 17 articles, provided a summary of the state-of-art
research on collaborative workspace-type robots, where a lot of research has been carried
out in making the robots do collaborative tasks of numerous kinds for industrial application.
All studies employed AI methods, such as deep learning and reinforcement learning, for
the design of cobots in performing several industrial activities with improved execution.
The summary of the state-of-art research on industrial robots employing machine learning
in Table 4 with four articles shows that the implementation of collaborative workspace
robots by utilizing machine learning techniques is showing better output. Table 5 with the
summary of cobot-related works without AI with five articles has shown the poor quality
of performance in their output. The summary of the state-of-art research on vision systems
employed in cobots with 10 articles is provided in Table 6. It shows the influence of deep
learning on improving performance.

In addition, the robot’s usage in collaborative research works in the last five years
from Tables 2–6 is given in Figure 5.

From Figure 5, the use of robots in collaborative research work has been increasing
between 2018 and 2022. Cobots provide robustness, reliability, and data analytical skills
to adaptable and collaborative technology, enhancing human abilities and contributing
positively to the cobot’s enterprise customers.

The tasks performed by the robot in collaborative research works are given in Figure 6.
According to Figure 6, most studies utilized collaborative robots to perform the assem-

bly tasks followed by pick and place tasks. The development of cobots is aimed at sharing
a workstation with people in order to improve a workflow (co-existence) and scalable
automation for different activities with human involvement (collaboration). Nevertheless,
in any kind of task human behavior can be unexpected, making it challenging for robotics
to interpret a person’s intentions. Therefore, it is still difficult for some people and robots
to work together in industry sectors.

From the analysis of the literature, it can be safely stated that quite a number of recent
articles have shown the expanding role of AI on cobots. In addition, the implementation of
AI on cobots has resulted in better performance as clearly stated in Section 3.
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5. Recommendations and Future Directions

The published research shows that the investigations have mostly concentrated on
a particular set of fixed tasks. For dynamic circumstances with several kinds of tasks, an
in-depth study is lacking. Additionally, such collaboration techniques depend on static
feature-based techniques or robots that are controlled by humans. Most of the decisions
are still made by the supervisor, who is still a human being, and thus the robots providing
services are not cognitive. To execute the activities effectively and safely, it can be difficult
to develop healthy cooperation between robots and workers. Although, if any of the
commands are incorrect or missed, the cobot likely will not be able to complete the task
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successfully on time. In this instance, assistance from a human worker is needed, which
calls for the person to be aware of the cobot’s prior activities [47].

Existing deep learning techniques are not time-efficient and do not offer the essential
adaptability for cobots in complicated circumstances, in which real-time robotic application
is not possible. It is required to make strides in several areas, notably online deep learning
for dispersed teams of cobots and human operators communicating with one another, to
bring up the data-driven control systems to the next generation level. The exchange of
knowledge regarding prior actions and experiences across numerous cobots is not taken
into account by current technologies in order to enhance and speed up learning. To ensure
each cobot will learn from both its own and the experiences of other cobots, necessitates
unique distributed sensor signal processing and data aggregation across the numerous
wirelessly networked robots.

The degree of autonomy in robots has recently been increased in the industrial and
service sectors by using machine learning methods, which have seen a growing success rate.
Most significantly, techniques utilizing reinforcement learning or learning from demon-
stration have produced impressive outcomes, such as training robots to carry out difficult
tasks by examining the range of potential behaviors in the environment or following hu-
man instructors. However, the application of these strategies in automated robotic coding
is constrained.

Reinforcement learning successfully automates the trial-and-error method by enabling
the robots to continuously interact with their surroundings, which is not possible during the
normal operating stage of an actual production unit. In simulated situations, RL necessitates
highly precise and computationally costly simulators, so reconciling the associated gap
between the simulation model and reality is regarded as an unanswered problem.

The sophisticated machine-vision methods with the use of deep learning enable cobots
to have a highly developed sense of perception and knowledge of their surroundings. With
these capabilities, these advanced robots can operate more safely and effectively in specific
types of workplaces due to their enhanced visibility.

5.1. Advanced Autonomous Algorithms

For cobots to fully realize their enormous potential for manufacture in high-mix, low-
volume production situations, cutting-edge algorithms are required. Cobots should be
capable of operating without clear instructions in new circumstances. In situations where
its surroundings are well known, the cobot’s movement planning algorithm enables it
to reach a position of the object, while collision-avoiding algorithms enable responsive
behavior in environments where its surroundings are dynamic. These algorithms rely on
the contextual information supplied by the cobot’s sensors as it moves.

5.2. Safety Devices

It is imperative to understand, create, and verify an environment where the cobot
can perform its tasks and safely coexist with humans. Several ISO-regulated requirements
must be fulfilled aiming to create a stable and safe environment, such as safety-rated stop
monitoring, hand guiding (teaching by demonstration), speed and separation monitoring,
power and force limiting, and so on.

A technical challenge to the wider usage of robots is safety barriers. Cobots are created
to meet safety standards with inherent safety designs that permit the cobot to communicate
safely with human beings and handle things carefully in its workplace. Cobots incorporate
adaptive elements, namely joint torque sensors, to absorb the force of unintended hits,
reducing the momentum exposed to possible accidents. The development of cobots also
makes use of a wide range of external sensing devices (vision systems) such as cameras,
lasers, depth sensors, and so on, fusing the data obtained to enable accurate vicinity and
action recognition between humans and robots.

The majority of cobots integrate the following security features, among others: firstly,
when a robot detects a human entering its functional workspace, it immediately stops
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moving. This is known as safety-rated stop monitoring. To recognize the presence of
people, it is frequently implemented by utilizing one or more sensors. Secondly, it has a
hand-guiding capability that enables a human to securely train the robot to adhere to a
predetermined operating trajectory. In the event of an unexpected touch, the robot will
immediately decrease its force to avoid hurting the human. The safety and health of people
working with robotics have been a topic of active research in recent years, and progress has
been made.

6. Conclusions

It was found that based on our review of the state-of-the-art publications, various
cobots have been widely applied in various areas. These areas include communication
robots in public areas. These logistic or supply chain robots move materials inside a
building and articulated or industrial robots assist in automating tasks that are not er-
gonomically sound, such as assisting individuals in carrying large parts, or assembly lines.
Since the cobot and robot can both undertake similar tasks, the differences between the
two approaches were demonstrated to highlight their usage and to show which is better
than the other in certain scenarios. The advantages and disadvantages of cobots were
discussed. Several metrics can affect the performance of the cobot, including different
sensing, preprocessing techniques, and control methods. This work presents an overview
of robot and cobot types, sensing or simulation tools, the task and where it can be achieved,
and the types of control technology based on AI. Many reviewed studies implemented
machine learning and deep learning techniques for managing the cobot task. In addition,
this review discussed the outcomes of the selected papers, including the accuracy, safety
issue, time delay, training process, and robot ability. Finally, this systematic review pro-
vided recommendations and future direction for the interaction between the cobot and the
ever-advancing AI domain.
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