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Abstract: Recently, point-based networks have begun to prevail because they retain more original
geometric information from point clouds than other deep learning-based methods. However, we
observe that: (1) the set abstraction design for local aggregation in point-based networks neglects
that the points in a local region may belong to different semantic categories, and (2) most works
focus on single-scale local features while ignoring the importance of multi-scale global features. To
tackle the above issues, we propose two novel strategies named semantic-based local aggregation
(SLA) and multi-scale global pyramid (MGP). The key idea of SLA is to augment local features based
on the semantic similarity of neighboring points in the local region. Additionally, we propose a
hierarchical global aggregation (HGA) module to extend local feature aggregation to global feature
aggregation. Based on HGA, we introduce MGP to obtain discriminative multi-scale global features
from multi-resolution point cloud scenes. Extensive experiments on two prevailing benchmarks,
S3DIS and Semantic3D, demonstrate the effectiveness of our method.

Keywords: point cloud; deep learning; semantic segmentation; feature aggregation

1. Introduction

With the development of augmented reality, autonomous driving and other technolo-
gies that interact with the real world, 3D scene understanding [1–4] is becoming increasingly
important. As one of the methods for fine-grained 3D scene understanding, semantic seg-
mentation of 3D point clouds has attracted more and more attention recently. Furthermore,
deep learning methods have achieved impressive success in image processing. Therefore,
many recent works have attempted to process point clouds with deep learning networks.
Compared with regular images, point clouds contain more geometric details. However,
point clouds are typically irregularly sampled, unstructured and unordered. In order to
process point clouds with networks, it is necessary to solve a series of problems caused
by these properties. Recent neural network-based point cloud processing methods mainly
include projection-based, voxel-based and point-based methods. We focus on point-based
methods because they preserve more geometrical details than others.

PointNet [2] is the pioneering work of point-based networks. Furthermore, the set
abstract (SA) layer proposed in PointNet++ [3] is usually exploited as a basic structure to
extract local features of point clouds. In the SA layer, a sampling algorithm is introduced
to select a subset of input as center points in this layer and simultaneously as the input
for the next layer. The hierarchical learning is constructed by gradually reducing the
resolution of point clouds through the sampling algorithm. Then, the SA layer uses a
grouping algorithm to find neighboring points for each sampled center point to construct
a local region. Finally, a permutation-invariant operation is applied to aggregate local
representation from neighboring point-wise features. However, most works [4–6] based
on the SA layer have two drawbacks: (1) the SA layer neglects to consider whether the
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points in the local region belong to the same category. Furthermore, the local representation
aggregated from point-wise features of different categories cannot represent any class.
Assuming that the local region is inside the boundary of an object, the local representation
aggregated naturally represents the class to which the object belongs. Nevertheless, in the
junction region with multi-objects of different classes, the local representation may not
represent any class; (2) most works focus on how to extract local features efficiently while
ignoring global features. Moreover, due to the use of a fixed searching field to construct
local regions, most works with the SA layer have only a unicity receptive field, which
limits the expressive ability of features. However, global features contain more implicit
information about large-scale objects than local features, and multi-scale features enable
the network to identify objects with similar spatial structures but different scales. Some
works [7–9] use multi-scale receptive fields simultaneously to extract multi-scale features,
but this leads to increased computational consumption and redundant information.

To overcome the shortcomings mentioned above, we propose two simple but effective
strategies, semantic-based local aggregation (SLA) and multi-scale global pyramid (MGP),
that can plug in the encoders with the SA layer to improve the semantic segmentation ability
of the network. Specifically, for SLA, we embed a semantic augmentation (SeA) module
in each encoding layer to augment local contexts by emphasizing points with semantic
similarity. Semantically augmented local features are then aggregated from local contexts.
Furthermore, we propose MGP to introduce multi-scale global features. MGP contains
multiple hierarchical global aggregation (HGA) modules, and each HGA module outputs a
global feature at a specific scale. Finally, these global features at different scales are fused to
generate a new multi-scale global feature. Through MGP, we obtain discriminative multi-
scale global features without adding multi-scale receptive fields additionally. Therefore, we
avoid redundant information, and the increase in computational consumption is limited.
The main idea of HGA is to divide the global scene into multiple ‘super local regions’,
then extend the local feature aggregation to hierarchical global aggregation to obtain
global features.

In summary, our contributions are as follows:

• We discuss the defect in the local feature aggregation of the SA layer and propose a
novel strategy to handle it by exploiting the semantic similarity of neighboring points
in the local region.

• We redesign the local feature aggregation to extend it to aggregate global features.
Without adding additionally receptive fields, we obtain multi-scale global features with
a limited increase in computational consumption and avoid redundant information.

• We conduct extensive experiments on prevailing benchmarks, and the results demon-
strate the effectiveness of our method.

2. Related Work

Firstly, we briefly overview three existing deep learning-based methods for point
clouds: projection-based, voxel-based and point-based methods. Then, we discuss the
expression capacity of various point-based features.

2.1. Projection-Based Method and Voxel-Based Methods

The inherent properties of point clouds, including that they are unordered and unstruc-
tured, make it impossible to extract features through convolutional neural networks directly.
Some works [10–12] project 3D point clouds onto multi-view 2D images to leverage successful
2D CNNs. However, the projection leads to the loss of geometric information, which is the
most significant advantage of point clouds over other data formats. Some works [13–15] vox-
elized point clouds into 3D grids to utilize 3D CNNs. The primary limitation of voxel-based
networks is their heavy memory consumption, and voxelization leads to loss of fine-grained
geometry information. Moreover, the size of the 3D grids will affect the performance of the
network. There is no efficient way to automatically set the size, relying on experience.
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2.2. Point-Based Methods

The point-based networks [16–18] process the raw point clouds directly. The input to
each encoding layer of the pioneer work PointNet [2] are geometric embeddings. Then,
a symmetry function is applied to solve the unordered property of point clouds. Point-
Net++ [3] introduces sampling and grouping layers to construct hierarchical point set
feature learning. Inspired by them, many recent works explore how to extract local features
effectively. Although these networks have shown promising performance, only a few
works consider distinguishing the categories of points within a local region. SASA [19]
and IA-SSD [20] introduce classification operations to retain more important foreground
points in detection during the downsampling stage. CGA-Net [21] inserts a new branch
to identify points before prediction. The new branch re-searches neighboring points to
construct new local regions. Then, it uses a classifier to partition the neighboring points
into two soft collections to obtain augmented local features. However, the new branch
introduces additional computational consumption. We directly utilize the local regions
constructed in encoding layers to avoid excessive computational consumption.

2.3. Point-Based Feature Expression

Local Feature Expression. PointNet++ aggregates local features through a symmetry
function, which makes the network permutation-invariant. Symmetry functions are simple
but effective, achieving strong performance in different backbones. Then, several local
aggregation strategies [5,22] have been introduced to capture geometric structures of
point cloud local regions based on symmetric functions. On the other hand, due to the
inherent permutation-invariance, the attention mechanism is well suited for point clouds.
Attention-based local aggregation methods [4,6] consider neighboring points with different
importance and avoid information loss.

Global Feature Expression. Global features model the entire scene in the environ-
ment understanding task and are helpful in recognizing medium- and large-scale objects.
Recently, many efforts [23–25] have attempted to design global descriptors for point clouds.
However, they did not consider that it is feasible to extend local aggregation to global
aggregation without completely redesigning a new global aggregation scheme. Therefore,
we propose the HGA module to implement this idea.

Multi-scale Feature Expression. Many works construct local regions based on their
pre-defined fixed receptive fields, resulting in only single-scale features being extracted.
However, single-scale features confuse the network when recognizing objects with similar
spatial structures but different scales. PointNet++ [3] uses multi-scale grouping (MSG) to
extract multi-scale local features. The MSG method applies grouping layers with different
scales to capture multi-scale patterns simultaneously. However, extracting point-wise
features with multi-scale receptive fields leads to a huge increase in computational con-
sumption. Furthermore, redundant information is introduced in the overlapping regions of
different-scale receptive fields. We propose the MGP strategy to obtain multi-scale global
features while avoiding the above problems. Specifically, we use multiple HGA modules
on the multi-resolution point cloud scenes generated from the encoding layers to obtain
multiple global features with different-level receptive fields. Then, multi-level receptive
field information is fused to obtain the final multi-scale global features.

3. Method

The overall structure of our method is shown in Figure 1. We utilized [4] with five
encoding layers as the baseline. Firstly, we embedded one SLA into each encoding layer to
augment the local features through semantic similarity. Then, the augmented local features
were fed into the next encoding layer and the HGA module. In MGP, HGAs aggregate
multiple global features at different scales, and these global features are fused to form a
new multi-scale global feature.
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Figure 1. Flowchart of our proposed method. (a) is the overall framework. (b) is the SLA strategy;
we embed a SeA module between the point-wise extractor and the pooling layer to augment local
context. (Different transparencies indicate different levels of semantic similarity). (c) is the HGA
module, and MGP in (a) contains five HGAs.

3.1. Selected-Based Local Aggregation

Given a point cloud P containing N points, the SA layer samples and groups input
points first. Then, it aggregates the local representation through a pooling layer. However,
existing point-based methods hardly consider that not all points in a local region belong to
the same class. The points belonging to different classes may be located in a local region
where multiple objects adhere to each other. A straightforward idea to tackle the problem is
that we need to distinguish which neighboring points belong to the same class as the center
point in feature aggregation. Motivated by this idea, we propose a simple but effective
strategy named semantic-based local aggregation (SLA). It is mainly composed of two parts:
a point-wise feature extractor and a semantic augmentation (SeA) module. First, point-wise
features of input point clouds are extracted through the point-wise feature extractor. Then,
a SeA module is applied to obtain local representations, which are augmented by the
semantic similarity between neighboring points and the center point.

3.1.1. Point-Wise Feature Extractor

Most existing point-based networks follow the structure of the SA layer for hierarchical
feature learning. In the baseline [4], the SA layers sample the input point cloud into subsets
{P1, P2, P3, P4, P5} and then use a fixed-number KNN to find K neighbors for each center
point. Given the input points with coordinates X and per-point raw features F (e.g., color,
normal), we feed them to the encoding layers with the point-wise feature extractor of the
baseline to extract point-wise features before the local aggregation. We use both the 3D
positions and RGB values of each point for training.

3.1.2. Semantic Augmentation Module

As shown in Figure 1, we employ a semantic augmentation (SeA) module to obtain
semantically augmented local representations after extracting the point-wise features of
neighboring points. The SeA module consists of two blocks: a semantic score block and a
semantic augmentation block.
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Semantic Score Block. We design a score function in this block to calculate semantic
scores. The score function consist of a 1 × 1 convolution layer followed by softmax. Specifi-
cally, denoting { f lc

1 · · · f lc
k · · · f lc

K } as the c-dimension neighboring point-wise features in the
local region from the l-th encoding layer, the semantic score pl

j ∈ [0, 1] for each neighboring
point is calculated as:

pl
j
= σ(Conv( f lc

j )), j = 1, 2, · · · , K (1)

where Conv denotes the convolution layer, σ is a softmax function, and K is the number of
neighboring points. The score function maps the input point-wise features to semantic
scores in a learning-based way.

Semantic Augmentation Block. Different semantic scores reflect the different levels
of semantic similarity possessed by neighboring points. In other words, the mutual se-
mantic features of neighboring points are suitable to represent the local region. Given
neighboring point-wise features { f lc

1 · · · f lc
k · · · f lc

K } from the point-wise feature extractor
and their corresponding semantic scores {pl

1 · · · pl
k · · · p

l
K}, firstly, we use the semantic

scores as a soft mask to augment the neighboring features:

f l
jScore

= pl
j � f l

j (2)

where f l
jScore

is the neighboring features augmented by semantic scores, and � means
element-wise multiplication, which makes the point-wise and channel-wise of neighboring
features weighted by the semantic score simultaneously. However, the fitting ability of the
score function is limited, which makes it impossible for the classification of neighboring
points to be completely accurate. Therefore, score mapping errors are inevitable. For
example, some features with semantic similarity may be assigned small scores. As a result,
these features are suppressed after semantic augmentation, and the feature values become
smaller. They may even be values of zero in extreme cases, and information loss occurs at
this moment. Aiming at this problem, we concatenate the original neighboring features to
supplement the features suppressed by the error semantic scores. By concatenating the two
kinds of features together, it not only alleviates the information loss but also ensures the
network knows the implicit semantic level. Theoretically, it follows:

f̂ l
j = f l

jScore
⊕ f l

j (3)

where ⊕ is the concatenation operation. Finally, the pooling layer of the baseline is applied
to obtain the augmented local context representation set f̂ l of the l-th encoding layer. The
progress mentioned above is formulated as:

f̂ l = pool( f̂ l
j ) (4)

where pool denotes the pooling layer.
Losses. The mapping of semantic scores is supervised by the cross-entropy loss, which

is formulated as follows:

Lcls = −
C

∑
c=1

(si log(ŝj) + (1− sj) log(1− ŝj) (5)

where ŝj is the predicted logits, and sj is the ground-truth segmentation label of the j-th
point in the l-th encoding layer. (A classification prediction of 1 means that the label of the
neighbor is the same as the center point, and 0 means it is not the same.)

Our method can be trained end-to-end. The total loss comprises the baseline loss Lori
and the Lcls classification loss as follows:
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Ltotal = Lori + Lcls (6)

3.2. Multi-Scale Global Pyramid

The operations mentioned above focused on local features and ignored global features.
Furthermore, limited by the fixed receptive field, the baseline only extracts single-scale
features. To tackle the above shortcomings, we propose multi-scale global pyramid (MGP)
to introduce multi-scale global features. The architecture of MGP is shown in Figure 1.

3.2.1. Implicit Multi-Scale Information

The downsampling operations in the encoding layers naturally generate multi-resolution
point cloud scenes. To introduce multi-scale features, a straightforward idea is to consider
how to employ existing local representations { f̂ 1 · · · f̂ l · · · f̂ M} from different encoding
layers. These local representations are aggregated from the scenes at different resolutions
with {N1 · · ·Nl · · ·NM} points. Although the baseline uses a fixed number KNN to search
neighboring points to construct local regions, the receptive field of K points in each encoding
layer naturally changes according to the changes in the scene resolution. The reason for
this is that the spaces covered by the K nearest neighbors are diverse when KNN is applied
for scenes with different resolutions. Therefore, the receptive field in each encoding layer
is variational. Technically, multi-scale information is implicit in the local features from
different resolution scenes. However, the local representations contain different numbers of
points; they cannot directly be utilized together to obtain multi-scale information. Therefore,
we aggregate global features, which are equal point-wise, from the local representations to
exploit the multi-scale information explicitly.

3.2.2. Hierarchical Global Aggregation

The most significant distinction between the local region and the global scene is their
coverage, i.e., the number of points they contain. An experiment about permutation in-
variance in PointNet [2] shows that max-pooling performs better than attention-summing
when dealing with all global points at one time. The conclusion is the same as our experi-
ments on how to aggregate global features effectively. However, recent works [4,6] have
utilized attention-based pooling methods to aggregate local features and achieved better
performance than max-pooling. Based on the observation that “max-pooling is suitable for
processing massive global points, attention is suitable for processing local points”, and con-
sidering global scenes as “super-local regions”, we redesign the local feature aggregation
method and extend it to global feature aggregation. Furthermore, we propose a novel hier-
archical global aggregation method. Given the local representation f̂ l = { f̂ l

1 · · · f̂ l
n · · · f̂ l

Nl
}

with Nl points, and that f̂ l is from the l-th encoding layer, firstly, we divide Nl points into T
super-local regions. Each super-local region contains NT points. Then, the max-pooling
operations are used on them to obtain super-local features. The formula for calculating the
t-th super-local feature is:

f̃ l
t = max{ f̂ l

1 · · · f̂ l
nT · · · f̂ l

NT} (7)

where max{} means max-pooling. We repeat the above operation to obtain the super-local
feature set { f̃ l

1 · · · f̃ l
t · · · f̃ l

T}.
After obtaining the super-local feature set, the attention mechanism is used to ag-

gregate a global feature from it. We design a function α() that consists of a multilayer
perceptron (MLP) followed by softmax to regress the attention parameters {γ1 · · · γt · · · γT}
corresponding to { f̃ l

1 · · · f̃ l
t · · · f̃ l

T} based on learning. It is formally defined as follows:

γl
t = α( f̃ l

t , W) (8)
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We exploit the attention parameters in the adaptive fusion of the super-local feature
set and finally obtain a comprehensive global feature map r̃l . This is formulated as:

r̃l =
T

∑
t=1

(γl
t · f̃ l

t ) (9)

By repeating the above operations on the point cloud scenes with M different resolu-
tions, we obtain M global features with different receptive fields, denoted as {r̃1 · · · r̃l · · · r̃M}.

3.2.3. Multi-Scale Global Feature Representation

Aiming to form a new global feature including multi-scale information with minimal
computational consumption, we concatenate {r̃1 · · · r̃l · · · r̃M} together simply. This is
formulated as:

r̃ = Concat(r̃1 · · · r̃l · · · r̃M) (10)

where Concat() is the concatenation operation. Finally, we fuse the comprehensive global

feature map r̃ with each local representation
_

f to make predictions. Theoretically, it follows:

Fpre =
_

f ⊕ r̃ (11)

4. Experiments

We conducted experiments and evaluated our method on two prevailing benchmarks,
S3DIS [26] and Semantic3D [27]. We used the complete network of [4] as the baseline,
including all its encoding and decoding layers. For the encoding layers, we only inserted
our two strategies into the basic local feature aggregation modules and kept the other
structures unchanged. For the decoding layers, we did not modify any settings. In addition,
the random sampling algorithm was still used in the downsampling process. The official
implementation of it was conducted by TensorFlow; we remained on the same platform.
All experiments were implemented in Tensorflow 1.14.0 on a single NVIDIA RTX2080Ti
GPU with CUDA 10.0 and cuDNN v7. The experimental results demonstrate the baseline
is improved by our method.

4.1. Datasets and Training Settings

S3DIS. The Stanford 3D Large-Scale Indoor Spaces (S3DIS) dataset contains 6 sub-
areas with 271 rooms, covering about 6020 square meters. Each area has different functional
attributes, architectural structures and interior decoration details, mainly including office
areas, walkways and restrooms. The point clouds that make up each room range from
0.5 million to 2.5 million, and each point labelled as one of 13 semantic categories. All
points are provided with 3D coordinates and color information.

Semantic3D. The Semantic3D dataset is a large-scale 3D point cloud dataset of outdoor
scenes consisting of more than 4 billion points covering a variety of natural landscapes and
artificial buildings in rural and urban settings: churches, streets, villages, castles, etc. The
coverage area reaches 160 × 240 × 30 cubic meters. All points are labeled into 8 classes, and
each point contains 3D coordinates, RGB information, and intensity value information. We
used the 3D position and the colors of points for training and testing.

Training Settings. We trained for 100 epochs with the Adam optimizer to minimize
the overall loss. The initial learning rate was 102, and it was set to decay with a rate of 5%
after every epoch. The batch size was set as 4 or 2 when training with S3DIS or Semantic3D.
The number of K in the KNN algorithm was set to be 16 for both datasets. The amount of
input points was 40× 210 and 64× 210 for S3DIS and Semantic3D, respectively.
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4.2. Evaluation on S3DIS

We evaluated our method on Area5 of S3DIS and compared it with recent works on
the semantic segmentation task. The mean intersection over union (mIoU) is utilized as a
standard metric. Table 1 presents the quantitative results of different approaches on S3DIS,
and Figure 2 shows the visual comparison of the segmentation results of our method and
the baseline in three typical indoor scenes.

Figure 2. Visualization results of S3DIS. From the left to the right: RGB-colored input point clouds,
ground truths, baseline, ours, and the different areas between the baseline and ours.

As seen from Table 1, our method achieves the best performance on three classes,
including walls, boards, and columns. The segmentation accuracy of the door class is
also greatly improved. The common property of these objects is that they have similar
simple spatial structures but different scales. This structural property confuses the net-
work with only single-scale features when recognizing objects. Nevertheless, our method
distinguishes the objects well, demonstrating the effectiveness of the introduced multi-
scale global features. The visualization of results shown in Figure 2 also demonstrates the
superiority of our method. A major difficulty in indoor scene segmentation is that some
objects, such as columns close to white walls, are difficult to distinguish. However, as seen
in Figure 2, our method improves the areas where the baseline segment is wrong.

4.3. Evaluation on Semantic3D

Table 2 presents a comparison of quantitative results of various methods on the dataset,
leveraging the mIoU and the overall accuracy (OA) as the standard metric. Compared to the
baseline, our method achieves improvements in high vegetation and low vegetation, two
classes with similar structures but different scales. There is also a certain improvement in the
classes of buildings and hardscapes. Figure 3 shows the visualization of the segmentation
results.
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Table 1. Quantitative results of different approaches on Area5 of S3DIS dataset.

Method mIoU (%) Ceil. Floor Wall Beam Col. Wind. Door Chair Table Book. Sofa Board Clut.

PointNet [2] 41.1 88.0 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
PointCNN [18] 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

PCCN [28] 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
PointWeb [22] 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

HPEIN [29] 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
PointASNL [30] 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1
Seg-GCN [31] 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3
SCF-Net [6] 63.4 90.9 97.0 80.8 0.0 18.6 60.3 44.8 79.2 87.8 73.8 71.4 68.6 50.5

Baseline [4] 62.4 91.1 95.6 80.2 0.0 25.0 61.9 47.3 75.9 83.4 60.7 70.7 65.4 53.8
Ours 65.2 91.8 97.2 81.5 0.0 39.4 63.4 50.4 78.3 86.8 65.1 70.6 70.3 52.9

Table 2. Quantitative results of different approaches on the reduced 8 split of Semantic3D dataset.

Method mIoU (%) OA (%) Manmade Natural High Veg. Low Veg. Buildings Hardscape Scanning Art Cars

SnapNet_ [32] 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SEGCloud [33] 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

SPG [34] 73.2 94.0 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2
RF_MSSF [35] 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6
KPConv [36] 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7
GACNet [37] 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8
BAAF-Net [5] 75.3 94.3 96.3 93.7 87.7 48.1 94.6 43.8 58.2 79.5
SCF-Net [6] 77.6 94.7 97.1 91.8 86.3 51.2 95.3 50.5 67.9 80.7

Baseline [4] 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8
Ours 78.0 94.9 96.0 89.9 88.3 53.7 97.1 52.6 70.6 74.0
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Figure 3. Qualitative results of our method on the reduced 8 split of Semantic3D. Left: RGB-colored
point clouds; right: predicted semantic results. Note that the ground truth of the test set is not
publicly available.

4.4. Ablation Study

We conducted ablation studies to prove the effectiveness of our method. All experi-
ments were conducted on Area5 of S3DIS under the same baseline configurations, except
for the controlled conditions.

4.4.1. Semantic-Based Local Aggregation

The goal of SLA is to augment the local representation through the semantic similarity
between neighboring points and the center point. A vanilla idea is to divide the neighbors
in a local region into two sets according to whether they belong to the same class as the
center point. Then, these two sets are utilized to augment local context. Based on this
idea, we employed softmax to model a binary classifier. Specifically, we used a linear
layer to map the input features to a 2-dimensional feature space, and the two dimensions
represented the probability of whether the neighbors and the center point belonged to the
same class. The experiment results are shown in Table 3. A1 was the baseline model, and
its local representation was aggregated from the baseline local context. BLC, FSS and FIS
indicate different local contexts. From Table 3, we observe that: (1) the performance of
A2 is lower than A1 because the information of points with low-level semantic similarity
is discarded, and the local information is incomplete; (2) comparing model A2 with A3,
the neighboring points with irrelevant semantics improve their performance when the
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augmented local context is not concatenated with the baseline local context because FIS
is beneficial for modeling the relationship between the neighbors belonging to specific
semantic categories around the center point; (3) from A3&A4, concatenating with a baseline
local context is better than two types of augmented local context concatenation. This may
be because SeA augments the local context according to the calculated semantic scores.
However, error calculations inevitably occur due to insufficient modeling ability, especially
in shallow networks. Using two augmented local contexts simultaneously results in the
superposition of errors. The baseline local context only provides the original information
without any predictive operation that may be incorrect. Therefore, A4 is better than
A3; (4) the performance of model A5 is lower than model A4, which shows that more
information does not necessarily lead to better results but valuable information.

Table 3. Ablation studies for the semantic augmentation module on Area5 of the S3DIS dataset. BLC
indicates baseline local context; FSS indicates augmented local context by neighboring features with
semantic similarity; FIS indicates augmented local context by neighboring features with irrelevant
semantics.

Model BLC FSS FIS mIoU (%)

A1 X 62.38
A2 X 62.09
A3 X X 63.24
A4 X X 64.32
A5 X X X 62.76

4.4.2. The Number and Location of SeA Modules

There are two aggregation operations in the local feature aggregation module of [4],
so we validated how many times and where the SeA module would result in better perfor-
mance when used. The results are shown in Table 4. Intuitively, two stacked SeA modules
in each encoding layer with two semantic classifications should distinguish the points with
semantic similarity better. Nevertheless, more SeA modules lead to lower mIoU than base-
line (B1&B2). The reason may be that the network does not have enough model capacity to
classify the neighboring points correctly in the first aggregation operation, leading to poor
performance. To verify this conjecture, we designed a comparison experiment (B3&B4).
The result is that B4 performs poorer than B3, proving our conjecture.

Table 4. Ablation studies for the number and location of SeA module on Area5 of the S3DIS dataset.
B1 is the baseline; B2 means plugging two SeA modules in the first and second feature aggregation
operations; B3 means plugging one SeA in the first feature aggregation operation; B4 means plugging
one SeA in the second feature aggregation operation.

Model B1 B2 B3 B4

mIoU (%) 62.38 62.12 62.26 64.32

4.4.3. Multi-Scale Global Pyramid

In Table 5, we study the structure of MGP by investigating the components individually.
C1 is the baseline model with SLA. From models C2, C3 and C4, we observe that the
max-pooling operation achieves the best performance when processing global points.
Comparing C4 with C5, the concatenation operation is better than the summation operation.
Comparing models C6, C7 and C8, the suitable number of super-local region on S3DIS is
shown to be 4.
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Table 5. Ablation studies on the MGP strategy tested on Area5 of the S3DIS dataset. max indicates
max-pooling; mean indicates mean-pooling; attention-sum indicates attention-based weighted sum; T
indicates the number of super-local regions; and concat and sum, respectively, represent concatenating
and summing multiple global features to form a new multi-scale global feature.

Model Aggregation Manner T Fusion Method mIoU (%)

C1 none none none 64.32
C2 mean none concat 64.43
C3 attention-sum none concat 64.29
C4 max none concat 64.81
C5 max none sum 63.76
C6 max 2 concat 62.75
C7 max 4 concat 65.21
C8 max 8 concat 61.89

4.4.4. Network Complexity

Table 6 shows the changes in network complexity caused by the two strategies of
SLA and MGP. It can be seen that as these two strategies are embedded in the baseline,
the parameters and FLOPs of the network gradually increase. However, we obtain more
effective and accurate semantic segmentation results.

Table 6. Complexity analysis of different semantic segmentation networks on Area5 of S3DIS.

Model Parameters (Millions) FLOPs (M) mIoU (%)

Baseline 4.99 31.35 62.38
Baseline + SLA 6.39 35.90 64.32

Baseline + SLA + MGP 7.85 46.12 65.21

5. Conclusions

In this paper, we propose two novel strategies for point-based 3D semantic segmen-
tation. Firstly, we exploit the semantic similarity between neighboring points and the
center point in the local region to augment the local context. Then, the semantic augmented
local representation is aggregated. Additionally, we divide global scenes into super-local
regions, extending local aggregation to aggregate global features in a hierarchical aggrega-
tion manner. Finally, we leverage the implicit multi-scale information in local features to
obtain multi-scale global features. Experiments on prevailing benchmarks illustrate that
our method effectively improves the baseline performance, and we analyze our method by
conducting related ablation studies. In the future, how to model the relationship between
local regions will be our next goal.
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