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S; Glučina. M.; Lorencin, I.

Classification of Wall Following

Robot Movements Using Genetic

Programming Symbolic Classifier.

Machines 2023, 11, 105. https://

doi.org/10.3390/machines11010105

Academic Editors: Peter Odry, Akos

Odry and Jan Awrejcewicz

Received: 23 December 2022

Revised: 10 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Classification of Wall Following Robot Movements Using
Genetic Programming Symbolic Classifier
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Abstract: The navigation of mobile robots throughout the surrounding environment without col-
lisions is one of the mandatory behaviors in the field of mobile robotics. The movement of the
robot through its surrounding environment is achieved using sensors and a control system. The
application of artificial intelligence could potentially predict the possible movement of a mobile robot
if a robot encounters potential obstacles. The data used in this paper is obtained from a wall-following
robot that navigates through the room following the wall in a clockwise direction with the use of 24
ultrasound sensors. The idea of this paper is to apply genetic programming symbolic classifier (GPSC)
with random hyperparameter search and 5-fold cross-validation to investigate if these methods could
classify the movement in the correct category (move forward, slight right turn, sharp right turn, and
slight left turn) with high accuracy. Since the original dataset is imbalanced, oversampling methods
(ADASYN, SMOTE, and BorderlineSMOTE) were applied to achieve the balance between class sam-
ples. These over-sampled dataset variations were used to train the GPSC algorithm with a random
hyperparameter search and 5-fold cross-validation. The mean and standard deviation of accuracy
(ACC), the area under the receiver operating characteristic (AUC), precision, recall, and F1− score
values were used to measure the classification performance of the obtained symbolic expressions.
The investigation showed that the best symbolic expressions were obtained on a dataset balanced
with the BorderlineSMOTE method with ACC± SD(ACC), AUCmacro ± SD(AUC), Precisionmacro ±
SD(Precision), Recallmacro ± SD(Recall), and F1− scoremacro ± SD(F1 − score) equal to 0.975 ×
1.81× 10−3, 0.997± 6.37× 10−4, 0.975± 1.82× 10−3, 0.976± 1.59× 10−3, and 0.9785± 1.74× 10−3,
respectively. The final test was to use the set of best symbolic expressions and apply them to the
original dataset. In this case the ACC ± SD(ACC), AUC ± SD(AUC), Precision± SD(Precision),
Recall ± SD(Recall), and F1− score ± SD(F1 − Score) are equal to 0.956 ± 0.05, 0.9536 ± 0.057,
0.9507± 0.0275, 0.9809± 0.01, 0.9698± 0.00725, respectively. The results of the investigation showed
that this simple, non-linearly separable classification task could be solved using the GPSC algorithm
with high accuracy.

Keywords: classification of robot movement; genetic programming; oversampling methods; symbolic
classifier; ultrasound sensors

1. Introduction

Mobile robotics is an ever-growing field with a multitude of research focuses related
to them [1]. Many applications of mobile robots can be seen today, such as transporting
equipment [2], search and rescue [3], security [4], agriculture [5] and many others. One of
the main issues of mobile robotics is the performance of its internal systems. Namely, the
mobile robots in real word applications need to be real-time systems [6], which amongst
other notable things, means that the performance of their internal systems-including all
the calculations that need to be performed, has to be fast enough to allow for the real-
time operation [7]. This can be achieved either by using a higher-performance controller
machine for the mobile robot or by applying advanced algorithmic techniques to improve
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performance. One of the possible techniques is machine learning algorithms. These are data-
driven methods that allow their internal parameters to be adjusted in the so-called training
process [8]. During this process, the data points are used to tune the aforementioned
internal parameters. This approach requires high-performance computers for the initial
training—but once the model is finalized the exploitation of it to achieve results is usually
extremely fast [9]. For this reason, and due to the high precision of the ML-generated
models, a growing application of it for mobile robotics can be seen. Li et al. [10] discussed
the possibility of applying data collected from human behavior for the training of AI-based
methods. The authors showed that these methods can then be applied to the robots to
complete tasks. Sevastopoulos and Konstantopoulos [11] showed that machine learning
methods can be used to determine whether transversal of an area is possible. The authors
demonstrated that the applied models can be used for the quick estimation of an area’s
transversality. Eder et al. [12] demonstrated the use of machine learning for one of the key
tasks in mobile robotics, which is the localization of the robots in space. The authors applied
machine learning to identify the sensor particles, classifying them between noise and real
measurements. Samadi Gharajeg and Jond [13] showed the application of fuzzy systems
and supervised machine learning in mobile robotics. They applied the aforementioned
methods to develop a speed controller for a leader-follower mobile robot.

One of the disadvantages of the previously described research is that after training,
the artificial intelligence (AI) or machine learning (ML) model is obtained, which can be
used for the classification of robot movements, but this model cannot be transformed into
a simple mathematical equation. These trained models require additional computational
resources for the storage and processing of new data from sensors.

The novel idea of this paper is to use a simple GPSC algorithm to obtain a set of
symbolic expressions, which could based on the sensor data used for the detection of robot
movements with high classification accuracy. The obtained symbolic expression does not
require large computational resources when compared to other AI/ML algorithms and
can be easily integrated into a control system of mobile robots as an additional tool for
movement detection.

To obtain these symbolic expressions using the GPSC algorithm, a publicly available
dataset [14,15] will be used, which contains data from 24 ultrasound sensors positioned on
the wall following the robot. Since the original dataset is imbalanced, different balancing
methods will be used to produce balanced dataset variations, which will be used to train
the GPSC algorithm to obtain symbolic expressions. The process of obtaining the best
symbolic expressions with the GPSC algorithm will be investigated by using a random
hyperparameter search method with a 5-fold cross-validation process to obtain the optimal
combination of GPSC hyperparameters, which will generate a robust set of symbolic
expressions that could detect the robot movement with high classification accuracy.

Based on the previous research papers and the idea of this paper, the following
questions arise:

• Is it possible to utilize the GPSC algorithm for the detection of the robot movement
using data from ultrasound sensors with high classification accuracy?

• Does the dataset balancing methods have any influence on the classification accuracy
of the obtained symbolic expressions using the GPSC algorithm?

• Is it possible to achieve the detection of the robot movement class with high clas-
sification accuracy using symbolic expressions that were obtained with the GPSC
algorithm improved with the random hyperparameter search method and 5-fold
cross-validation?

• Is it possible to achieve a similar classification accuracy of the best symbolic expression
that was obtained using a balanced dataset on the original dataset?

The scientific contributions of this paper are:

• Investigate the possibility of implementing the GPSC algorithm on data collected from
24 ultrasound sensor data to detect the movement of the wall following robot;
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• Investigate if the dataset balancing methods have any influence on the classification
accuracy of the obtained symbolic expression using the GPSC algorithm ;

• Investigate if the GPSC algorithm in combination with random hyperparameter search
and 5-fold cross-validation can generate symbolic expressions with a high classification
accuracy of robot movement detection, and;

• Investigate if the set of best symbolic expressions obtained on a balanced dataset
variation can produce similar classification accuracy in robot movement detection
when applied to the original dataset.

The outline of the paper can be divided into the following sections: Section 2, Section 3,
Section 4, and Section 5. In Section 2, the research methodology, dataset with statistical
analysis, dataset balancing methods, one versus rest classifier, GPSC algorithm, random
hyperparameter search with 5-fold cross-validation, evaluation methodology, and used
computational resources in this investigation are described. In the Section 3, the best
results in terms of evaluation metric values are presented as well as the best set of symbolic
expressions and the results obtained with the application of the best symbolic expressions
on the original dataset. In the Section 4, the procedure used in this paper and the results are
discussed. Based on the hypotheses defined in the Section 1 and Section 4, the conclusions
are listed in the Section 5.

2. Materials and Methods

In this section, the research methodology will be described as well as dataset descrip-
tion with statistical analysis, genetic programming-symbolic classifier, random hyperpa-
rameter search method with 5-fold cross-validation, evaluation metrics, methodology, and
computational resources, respectively.

2.1. Research Methodology

As already stated at the end of the Introduction section of this paper, the GPSC
method will be utilized with a random hyperparameter search method and 5-fold cross-
validation. However, since the original dataset is imbalanced, the oversampling methods
will be applied to equalize the number of samples between all classes. When the symbolic
expressions on each dataset variation were obtained, the best will be selected based on
classification accuracy and the size of the symbolic expression in terms of length and depth.
The best symbolic expression will be evaluated on the original dataset. The flowchart of
the research methodology is shown in Figure 1.

Original 
dataset

Application of 
oversampling 

techniques

Adasyn
Dataset

SMOTE 
Dataset

Borderline SMOTE 
Dataset

One Versus Rest 
Classifier with GPSC 
estimator (random 

hyperparameter 
search and 5-fold 
cross-validation)

Results, 
Selection of 

best symbolic 
expression

Final evaluation 
of best 

symbolic 
expression on 

original dataset

Final 
Results

Figure 1. The flowchart of the research methodology used in this paper.

As seen from Figure 1 the following oversampling methods were used to balance
the dataset:

• Adaptive Synthetic (ADASYN);
• Synthetic Minority Oversampling (SMOTE);
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• Borderline Synthetic Minority Oversampling (Borderline SMOTE) method.

These balancing methods equalized the number of samples between classes of the
original dataset and were used in GPSC with random hyperparameter search and 5-fold
cross-validation to obtain symbolic expressions with high classification accuracy. However,
since there are four classes in the dataset, the One Versus Rest Classifier method has
been used, where GPSC was the estimator. After the symbolic expressions were obtained,
the selection of the best symbolic expression was performed by analyzing the highest
classification accuracy and the size of the symbolic expression in terms of length and depth.
The final evaluation of the best symbolic expression will be performed on the original
dataset to obtain the classification accuracy.

2.2. Dataset Description

The dataset used in the research is a publicly available dataset titled “Sensor read-
ings from a wall-following robot”[14,15]. The robot in question is the SCITOS G5 robot
with 24 ultrasound sensors arranged around the robot’s midsection. There are a total of
5456 measurements. The measurement values of the individual sensor are stochastic and
do not fit well with any common distribution. The descriptive statistics of the data are
given in Table 1.

Table 1. The descriptive statistics of the used dataset.

180◦ −165◦ −150◦ −135◦ −120◦ −105◦

UNIQUE 1978 2035 1786 1760 1825 1828

MIN 0.400 0.437 0.470 0.833 1.120 1.114

MAX 1977.000 2034.000 1786.000 1767.000 1822.000 1828.000

AVG 1.837 2.701 2.814 3.118 3.288 3.228

STD 26.774 27.559 24.193 23.936 24.679 24.758

−90◦ −75◦ −60◦ −45◦ −30◦ −15◦

UNIQUE 1532 2068 1871 2005 1877 1800

MIN 1.122 0.859 0.836 0.810 0.783 0.778

MAX 1530.000 2068.000 1870.000 2003.000 1873.000 1797.000

AVG 3.628 2.920 3.471 3.201 2.896 2.410

STD 20.730 28.003 25.327 27.128 25.377 24.348

0◦ 15◦ 30◦ 45◦ 60◦ 75◦

UNIQUE 1574 1490 1468 1299 1087 975

MIN 0.770 0.756 0.495 0.424 0.373 0.354

MAX 1570.000 1487.000 1465.000 1295.000 1083.000 971.000

AVG 2.417 2.467 2.479 1.444 1.193 1.093

STD 21.287 20.177 19.891 17.563 14.690 13.174

90◦ 105◦ 120◦ 135◦ 150◦ 165◦

UNIQUE 1046 1140 1359 1739 1759 1858

MIN 0.340 0.355 0.380 0.370 0.367 0.377

MAX 1042.000 1136.000 1355.000 1736.000 1758.000 1856.000

AVG 1.254 1.290 1.270 2.103 1.884 1.926

STD 14.150 15.419 18.366 23.547 23.831 25.150

It can be seen that there is a decent amount of individually unique measurements
for each of the sensor measurements, with 972 points at the lowest. When observing the
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combination of all the individual measurements, there are no duplicated values. Minimal
sensor values are found in the range of 0.354 to slightly above 5.0. The upper value of that
range is most likely the maximum value of the sensor measurement as it is consistent across
the sensors. The average distances measured range between 1.254 and 3.201 without any
general rule. The standard deviations of the dataset are high, indicating a good diversion of
data in the dataset, which is a positive for the application of machine learning algorithms.

Before the use of the dataset for modeling, one final adjustment needs to be made. The
classes are written textually as:

• “Move-Forward”;
• “Slight-Right-Turn”;
• “Sharp-Right-Turn”;
• “Slight-Left-Turn”.

However, the GPSC algorithm expects all the values to be numeric. The values in
question are numerically encoded as 1 for “Move-Forward”, 2 for “Slight-Right-Turn”, 3
for “Sharp-Right-Turn”, and 4 for “Slight-Left-Turn”.

Another important factor in the statistical investigation of the dataset is correlation
analysis. This correlation analysis provides information about the correlation between
input variables and the target (output) variable. In this investigation, Pearson’s correlation
analysis was used. The range of Pearson’s correlation is between −1.0 and 1.0. The value
of −1.0 between one input variable and the target (output) variable means that if the value
of the input variable increases, then the value of the output variable decreases, and vice
versa. The correlation value of 1.0 between the input and output variables indicates that
if the value of the input variable increases, then the value of the output variable will also
increase. The 0 correlation value between the input and output variable indicates that, no
matter if the value of the input variable increases or decreases, it will not influence the
output variable. The results of Pearson’s correlation analysis are shown in the form of a
heatmap in Figure 2.

As seen from Figure 2 there are no highly correlated variables. The highest correlation
is between the same variable. The range of correlation values between different variables
is in the range between −0.3 and 0.5. To better visualize the correlation between all input
variables (V1–V24) and the output (Class) variable, another correlation graph was created,
which is shown in Figure 3.

As seen from Figure 3 the correlation between all input variables and the target ‘Class’
variable is in the −0.2–0.2 range. The highest correlation to the Class variable has the
input variables V15, V13, V9, V3, and V17. Generally, the correlation analysis shows a
low correlation between the input variables and output. However, all input variables will
be used from the dataset in the GPSC algorithm to find symbolic expressions with high
classification accuracy.

In the GPSC algorithm, the input variables will be presented from Xi where
i = 0, . . . , 23, which are readings from ultrasound sensors placed at different positions while
Class is the output (target) variable represented with y variable. In Table 2 the detailed
description of each input variable and the GPSC variable representation are shown.
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Figure 2. The Pearson’s correlation analysis of the dataset variables.

Figure 3. Correlation between the input variables and the class variable.



Machines 2023, 11, 105 7 of 35

Table 2. The list of dataset variables, description of the variables, and the variable names used in the
GPSC algorithm.

Variable
Name

Variable
Description

GPSC Variable
Representation

V1
ultrasound sensor at the front of the robot

(180◦) X0

V2 ultrasound reading (−165◦) X1

V3 ultrasound reading (−150◦) X2

V4 ultrasound reading (−135◦) X3

V5 ultrasound reading (−120◦) X4

V6 ultrasound reading (−105◦) X5

V7 ultrasound reading (−90◦) X6

V8 ultrasound reading (−75◦) X7

V9 ultrasound reading (−60◦) X8

V10 ultrasound reading (−45◦) X9

V11 ultrasound reading (−30◦) X10

V12 ultrasound reading (−15◦) X11

V13
reading of ultrasound

sensor situated
at the back of the robot (0◦)

X12

V14 ultrasound reading (15◦) X13

V15 ultrasound reading (30◦) X14

V16 ultrasound reading (45◦) X15

V17 ultrasound reading (60◦) X16

V18 ultrasound reading (75◦) X17

V19 ultrasound reading (90◦) X18

V20 ultrasound reading (105◦) X19

V21 ultrasound reading (120◦) X20

V22 ultrasound reading (135◦) X21

V23 ultrasound reading (150◦) X22

V24 ultrasound reading (165◦) X23

Class
Move-Forward, Slight-Right-Turn,
Sharp-Right-Turn, Slight-Left-Turn y

Before proceeding further, the number of samples per class should be investigated.
The imbalanced dataset could result in poor classification performance of the ML models.
As already stated in this dataset, there are four classes. The number of samples per class is
shown in Figure 4.

As seen from Figure 4, the samples per class indicate that the dataset is highly imbal-
anced. The lowest number of samples is in the case of the Sharp-Right-Turn class (328),
followed by Slight-Left-Turn (826), Slight-Right-Turn (2097), and Move-Forward (2205).
The next step is to apply different oversampling methods to investigate if the dataset could
be balanced. If the dataset is balanced, i.e., the number of samples per class is equal, then
the GPSC algorithm could be applied. However, due to the small number of the third class
(Sharp-Right-Turn) samples, the idea is to only apply oversampling methods.



Machines 2023, 11, 105 8 of 35

Figure 4. The number of samples per each class.

2.3. Dataset Balancing Methods

In this paper, three different oversampling methods were used, i.e., ADASYN, SMOTE,
and Borderline SMOTE. The undersampling methods were avoided because minority
classes in the original dataset already contain a small number of samples, so further
undersampling does not make any sense at all.

2.3.1. ADASYN

The Adaptive Synthetic (ADASYN) [16] method begins by identifying the number
of samples in the majority (mmaj) and minority (mmin) classes. The minority class is the
class that has a low number of samples when compared to the number of samples of the
majority class (mmin ≤ mmaj), and the sum of both class samples must be equal to the total
number of samples in the dataset (mmaj + mmin = m). To proceed in its execution, the
ADASYN method must calculate the degree of class imbalance, which is the ratio between
the minority and majority class samples, and in mathematical form can be written as:

DCM =
mmin
mmaj

. (1)

The range of degree of class imbalance (DCM) is between 0 and 1.
To allow the ADASYN process to continue, the DCM value must be below the pre-

defined DCMth, which is a preset threshold for the maximum tolerated degree of class
imbalance ratio. The next step is to calculate the number of synthetic data samples that
have to be generated for the minority class, which is done using the expression:

G = (mmaj −mmin)× β (2)

where β is the parameter for specifying the desired balance level after the generation of
synthetic data. If β is 1, a dataset will be balanced.

The next step is to find K nearest neighbors for each dataset sample that belongs to
the minority class based on Euclidean distance in n dimensional space. After the K nearest
neighbors of each sample from the minority class are found, the ri must be calculated using
the following expression:

ri =
δi
K

, i = 1, ..., mmin, (3)

where δi is the number of samples in the K nearest neighbors of xi that belong to the
majority class. The range of parameter ri is between 0 and 1. After the ri parameter is
calculated it must be normalized so that r̂i is a density distribution (∑i r̂i = 1).
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To calculate the number of synthetic data samples that have to be generated from each
minority sample, the following expression is used:

gi = r̂i × G, (4)

where G (Equation (2)) represents the total number of samples that have to be generated
for the minority class. The process of generating a synthetic data sample for each minority
class data sample xi is done in two steps in each iteration. The range of the loop is from 1
to gi and the two steps are:

• Random selection of minority data sample xz from the KNN for data xi
• Generate the synthetic data sample using the following expression:

Si = xi + (xzi − xi) · λ, (5)

where (xzi − xi), and λ represent difference vectors in n-dimensional spaces and a
random number in the 0 to 1 range, respectively.

2.3.2. Smote

The Synthetic Minority Oversampling Technique, according to Ref. [17], oversamples
the minority class by taking each minority class sample and generating a synthetic sample
along the line segments to join any or all K minority class nearest neighbors. The synthetic
samples in SMOTE are generated in the following way:

• Calculate the difference between the sample and its nearest neighbor;
• Multiply the difference by a random number between 0 and 1 and add to the sample

under consideration.

2.3.3. Borderline SMOTE

Borderline SMOTE, according to Ref. [18], begins its execution by calculating K nearest
neighbors from the entire dataset for every xi in the minority class mmin. If the majority
of samples are found among the K nearest neighbors, they are denoted as K’. The second
step is to investigate how many K’ are in K nearest neighbors and there are three possible
combinations, i.e.,:

• K’ = K all the K nearest neighbors are majority samples;
• K

2 ≤ K′ < K the number of xi majority neighbors is larger than the number of its
minority ones. xi is considered to be easily misclassified and put into a DANGER set;

• 0 ≤ K′ < K
2 the xi is excluded from further steps.

The collected samples in the DANGER set represent the borderline data of the minority
class mmin and the DANGER set can be defined as the subset of mmin set.

The final step is to generate s × dnum synthetic positive samples from samples in
DANGER, where s is an integer in range 1 and k. For each sample in DANGER, a random
nearest neighbor is selected from mmin. The differences are calculated (di f j) between the
sample from DANGER and the nearest neighbor from mmin. Then the di f j is multiplied
with a random number in the 0 to 1 range. The synthetic minority sample is generated
between the DANGER sample and its nearest neighbor using the equation, which can be
written as:

Sj = d′i + rj · di f f j, j = 1, 2, ..., s. (6)

where d′i is a sample from the DANGER set.
After the application of previously described balancing methods to the original dataset,

all minority classes (Slight-Right-Turn, Sharp-Right-Turn, and Sligth-Left-Turn) are success-
fully oversampled to reach the number of samples of the Move-Forward class. So, after the
application of dataset oversampling methods, each class contains 2205 samples which are
in total 8820 samples.
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2.4. One Versus Rest Classifier

The one versus rest classifier [19] can be described as a heuristic method that is used
for the application of binary classification algorithms in cases of multi-class classification.
Using this method, the multi-class dataset is split into multiple classification problems.
The binary classifier algorithm is then trained on each binary classification dataset and
evaluations are made using the model that is most confident. The dataset used in this paper
has four classes, i.e., “Move Forward” (1), “Slight-Right-Turn” (2), “Sharp-Right-Turn” (3),
and “Slight-Left-Turn” as (4). The dataset can be divided into four binary classification
datasets as follows:

• First Binary Classification Dataset: “Move Forward” vs. (“Slight-Right-Turn”, “Sharp-
Right-Turn”, and “Slight-Left-Turn”);

• Second Binary Classification Dataset: “Slight-Right-Turn” vs. (“Move Forward”,
“Sharp-Right-Turn”, and “Slight-Left-Turn”);

• Third Binary Classification Dataset: “Sharp-Right-Turn” vs. (“Move Forward”, “Slight-
Right-Turn”, and “Slight-Left-Turn”);

• Fourth Binary Classification Dataset: “Slight-Left-Turn vs. (“Move Forward”, “Slight-
Right-Turn”, and “Sharp-Right-Turn”).

The main disadvantage of this approach is that a GPSC classifier has to be created for
each Binary Classification Dataset. In this case, four different GPSC models, i.e., symbolic
expressions for four different datasets, are generated.

2.5. Genetic Programming-Symbolic Classifier

The execution of a Genetic programming-symbolic classifier (GPSC) starts with the
creation of the initial population. To create the initial population, several hyperparameters
have to be defined, i.e., population_size, number_of_generations, init_depth, functions,
init_method, and constant_range. The population_size as the hyperparameter name
states the size of the population that will be propagated through a specific number of
generations defined with number_of_generations parameter. Each population member
of the initial population is created by randomly selecting the constants from a predefined
range of hyperparameter constant_range, mathematical functions from functions, and
input variables from the dataset. The constantn_range is the range of constants values that
GPSC randomly selects when creating the initial population and later in genetic operations
(mutation). The list of mathematical functions used in this research consisted of addition,
subtraction, multiplication, division, minimum, maximum, absolute value, square root,
natural logarithm, logarithm with base 2 and 10, sine, cosine, tangent, and cube root. This
mathematical function list is defined with hyperparameter functions. Since in GPSC, each
population member is represented in tree form, the size of the tree is determined by the
depth from the root node up to the deepest leaf of the tree. The depth of the tree is specified
with hyperparameter init_depth. To explain the depth in detail, the mathematical equation
max(X1 + X3, X4 − X2) in tree form is shown in Figure 5.

max

add sub

𝑿𝟏 𝑿𝟑 𝑿𝟐𝑿𝟒

Figure 5. The max(X1 + X3, X4 − X2).
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As seen from Figure 5 the root node is the “max” function, which is the 0 level of
a tree node. At level 1, two mathematical functions are located, i.e., addition (“add”)
and subtraction (“sub”). At final level 2, variables X1, X2, X3, and X4 are located. So,
this symbolic expression has init_depth of 2. To explain the procedure of defining the
init_depth the method used to create the initial population must be explained first.

In all these investigations, the init_meth used to create the initial population is a
ramped half-and-half method. This method creates the initial population using the full and
growth method. The full method, according to Ref. [20], creates the initial population by
taking the nodes at random from the function set until maximum tree depth is reached.
Beyond the maximum depth, only variables and constants may be chosen. The problem
with using only the full method to create the initial population is that all generated popula-
tion members have trees with the same depth. The grow method, according to Ref. [20],
creates the initial population by selecting functions, constants, and variables at random
until the predefined depth limit is reached. Once this depth limit is reached, only variables
and constants can be chosen. So, the growth method allows the creation of population
members that have more varied sizes and shapes. The term ramped means that the depth
of the symbolic expression had to be specified in a specific range, i.e., 3 to 12, which means
that the population will have population members of depth between 3 and 12. The range is
specified with init_depth hyperparameter.

After the initial population is created, the population members are executed and the
output produced by each symbolic expression is stored. These outputs are then used in the
Sigmoid decision function, which will produce an output. The Sigmoid decision function
can be written in the following form:

S(x) =
1

1 + e−x (7)

This output is then used in the log loss function to compute how close it is to the
corresponding actual value (0 or 1 in binary classification). So, the output of the log loss
function is the prediction probability, which represents closeness to the actual output values
of the dataset.

After the population members have been evaluated using the log loss fitness function,
the tournament selection is applied to obtain the tournament winners on which the genetic
operations will be applied to produce an offspring of the next generation. The population
members that will enter each tournament selection is defined with tournament_size hy-
perparameter. So, in each generation, the specific number defined with tournament_size
hyperparameter is randomly selected from the population and they are compared. The
population member with the lowest value of fitness function (log loss value) and smallest
size in terms of length and depth of symbolic expression (population member) is then
selected as the winner of the tournament selection.

In this paper, on the winners of tournament selections, the four genetic operations
were used, i.e., crossover, subtree mutation, hoist mutation, and point mutation to produce
offspring of the next generation. The sum of these four operations should be near or equal
to 1. If the sum is near 1 then some tournament selection winners might enter the next
generation unchanged. On the other hand, if the value is equal to 1 then on all tournament
selections the winners’ genetic operations will be applied. The crossover operation requires
two tournament selection winners. On the first and second tournament selection winner, a
random subtree is selected and the subtree from the second tournament selection winner
replaces the three of the first tournament selection winner to generate offspring of the
next generation. The subtree mutation requires one tournament selection winner and the
random subtree on the winner is replaced with a randomly generated subtree, which is
created by randomly choosing variables, constants, and mathematical functions. The hoist
mutation requires one tournament selection winner and on this winner, a random subtree
is selected and on that subtree, a random node is selected. Then, a random node replaces
an entire subtree, i.e., the node is hosted in the position of the subtree. The point mutation
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randomly selects nodes on the tournament selection winner. The constants are replaced
with other randomly chosen constants and variables with other variables. In the case of
mathematical functions, the functions that are replacing other functions must have the
same arity (same number of arguments).

The GPSC has two termination criteria that are controlled with two hyperparameters
and these are number_of_generations and stopping_criteria value. The number of gener-
ations is the predefined number of generations for which GPSC is executed. After the last
generation is reached, then the GPSC execution is terminated. The stopping criteria are the
lowest value of the fitness function, in this the case log loss function, and if this value is
reached by one of the population members before the maximum number of generations
is reached, it will terminate the GPSC execution. However, in this investigation, the idea
was to reach the lowest fitness function value possible so the stopping criteria were set
in all investigations to an extremely small value, which means all GPSC executions were
terminated after the maximum number of generations was reached.

During the execution of GPSC, the population members can grow rapidly from genera-
tion to generation without decreasing the fitness function value, i.e., the bloat phenomenon
occurs. This phenomenon can negatively influence the execution time and can cause
MemoryOverflow due to Computational resources. So, the large size of the population
members can prolong the GPSC execution and can result in low classification performance.
To overcome this problem, the parsimony method was used. In the parsimony pressure
method during tournament selection, the fitness value of large population members is
modified using the following expression:

fP(x) = f (x)− cl(x), (8)

where f (x) is the original fitness function of the population member, c is the parsimony
coefficient, and l(x) is the size of the population member. So the new fitness function
value fP(x) is calculated by subtracting the product of the population member size and
parsimony coefficient value from the original fitness value. Modifying the fitness function
value of the population member makes them less favorable for selection, i.e., they will be
less likely to be a tournament selection winner. The value of the parsimony coefficient in
GPSC is regulated with pasimony_coefficient hyperparameter. This hyperparameter is
one of the most sensitive hyperparameters, so initial tests are required to define its range.
If the value is too large the method can prevent the evolution of population members and
if the value is too small it can result in very large population members, i.e., very large
symbolic expressions will be obtained with poor classification performance.

2.6. Random Hyperparameter Search with 5-Fold Cross-Validation

As stated in the estimator of OneVsRestClassifier, the GPSC algorithm is used with
random hyperparameter search and 5-fold cross-validation. For this investigation, the
random hyperparameter search method and 5-fold cross-validation had to be developed
from scratch. However, before the development and implementation of random hyperpa-
rameter search, the initial investigation of the GPSC algorithm was performed to determine
the ranges of specific hyperparameters such as population_size, number_of_generations,
genetic operators, and parsimony_coefficient. The larger the population and the number
of generations, the more time it will take to perform each GPSC execution. The genetic
operations (crossover, subtree, hoist, and point mutation) differently contribute to the
evolution process from generation to generation. The initial investigation found that the
crossover value greatly influences the evolution process and lowers the fitness value from
generation to generation. The most attention during the initial investigation was devoted
to the parsimony coefficient since a large value can prevent evolution while a small value
can lead to a bloat phenomenon. The GPSC hyperparameter ranges are listed in Table 3.
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Table 3. The range of hyperparameters used in random hyperparameter search.

Variable Name Lower Bound Upper Bound

population size 1000 2000

number of generations 200 300

init depth 3 12

tournament size 100 500

crossover 0.95 1

subtree mutation 0.001 1

hoist mutation 0.001 1

point mutation 0.001 1

stopping criteria 1× 10−8 1× 10−7

maximum samples 0.99 1

constant range −100,000 100,000

parsimony coefficient 1× 10−5 1× 10−4

The GPSC hyperparameter ranges shown in Table 3 are defined after the initial in-
vestigation of the GPSC application on the dataset. The range of the population size
hyperparameter range is large in order to ensure the large diversity in population and a
large pool from which the population members will randomly be selected for tournament
selection. In the initial investigation, the number of generations was below 200 and it was
realized that a small maximum number of generations results in symbolic expressions with
poor classification performance, so the maximum number of generation hyperparameters
was set in the 200–300 range. Regarding the genetic operations, the crossover coefficient in
the initial investigation was the most influential so its value for the random hyperparameter
search method was set in the 0.95–1 range. The remaining three mutation operations occupy
a small range between 0.95 and 1 and the starting condition of the GPSC execution is to
ensure that the sum of all genetic operations is 0.999 or equal to 1. This is done because
if the sum is lower than 1, then some of the tournament selection winners enter the next
generation unchanged. The stopping criteria value or lowest log-loss fitness function
value during GPSC execution was set to an extremely low value to stop the premature
termination of GPSC execution. So, all GPSC algorithm executions in this investigation
were terminated when the randomly selected maximum number of generations value is
reached. The maximum number of samples hyperparameter range is the percentage of
the training set used in each generation to evaluate the population members. The idea
was to use the entire training dataset in the evaluation of each population member, so
the value is set to the 0.99–1 range. The constant range was set to a specified range to
ensure a large range from which GPSC will randomly pick numbers during the population
initialization stage and later during the application of mutation operators. The most crucial
hyperparameter was the parsimony coefficient, which is responsible for the prevention of
the bloat phenomena. Since the correlation between input and output variables is pretty
low, it is logical to assume that the GPSC will, during the execution, enlarge the size of
population members to lower the fitness value, which can result in the bloat phenomenon.
However, the initial investigation showed that the value of the parsimony coefficient has
to be lowered to 10−4–10−5 range to ensure the growth of population members. Higher
values of parsimony coefficients resulted in poor classification performance of obtained
symbolic expressions. The entire procedure describing the random hyperparameter search
method with 5-fold cross-validation is graphically shown in Figure 6.
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Figure 6. The GPSC algorithm with random hyperparameter search with 5-fold cross-validation.

The process starts with a random selection of the hyperparameters. This is followed
by OneVsRestClassifier, in which the GPSC algorithm is the main estimator. The algorithm
in question is trained using 5-fold cross-validation. After the training process is completed,
then the mean values of accuracy (ACC), the area under receiving operating characteristic
curve (AUC), precision, recall, and F1− score are calculated. If all the mean values are
greater than 0.99, then the first stage of the process is complete and the next step is to
perform a classic train/test using the same hyperparameters as was used previously. After
training OneVsRestClassifer with the GPSC estimator, the obtained symbolic expressions
were applied on the train and test dataset to calculate the mean and standard deviation
values of ACC, AUC, precision, recall, and F1− score. If all mean values are greater than
0.99, then the process is terminated. It should be noted that standard deviation values are
indications that overfitting did not occur. The large standard deviation value could indicate
a large difference between the evaluation metric values achieved with the train and test
datasets, respectively.

2.7. Evaluation Metrics and Methodology

In binary classification, after identifying the positive and negative classes with a
trained ML model, the true positives, true negatives, false positives, and false negatives are
defined. True positive is an outcome in which the trained algorithm correctly predicts the
positive class. The true negative is an outcome in which the trained algorithm correctly
predicts the negative class. The false positive is an outcome where the trained algorithm
incorrectly predicts the positive class. The false negative class is an outcome where the
trained algorithm incorrectly predicts the negative class.

The accuracy (ACC), according to Ref. [21], can be described as the ratio between the
number of correct predictions versus the total number of predictions. ACC in mathematical
form can be written as:

ACC =
TP + TN

TP + TN + FP + FN
. (9)

The area under the receiver characteristic operating curve [22] (AUC) is an evaluation
metric that measures the ability of a classifier to distinguish between classes.
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Precision [23] can be defined as the ratio between true positive and the sum of true
and false positive. The precision is the ability of the trained classifier to not label a sample
that is negative as positive. The formula for calculating precision can be written in the
following form:

Precision =
TP

TP + FP
(10)

The recall [23] is the ability of the trained classifier to find all the positive samples. The
recall is the ratio between true positive and the sum of true positive and false negative. The
expression for calculating the recall can be written in the following form:

Recall =
TP

TP + FN
. (11)

The harmonic mean of precision and recall is F1-Score. The formula for calculating the
F1-score can be written as:

F1− score = 2 ∗ precision · recall
precision + recall

(12)

The value range of all the evaluation metrics used in this paper is between 0 and 1,
where 1 represents the highest value of all evaluation metrics while the worst value is 0.

Since this is a multi-class problem, the OneVsRestClassifier was used with GPSC as
the estimator. The evaluation metrics used can be applied to multi-class problems although
this feature has to be specified when these metrics are called. Since all the datasets that were
used for training and testing of GPSC are balanced, the macro option of AUC, Precision,
REcall, and F1-Score was calculated. In the case of macro, the evaluation metric value is
calculated for each class, and the unweighted mean is obtained. This method does not take
class imbalance into account and, since all datasets are balanced, this is the perfect method.

2.8. Computational Resources

In this paper, all investigations were conducted on a desktop computer with an
Intel CPU i7 4770 with 16 GB of DDR3 RAM. All program codes were written in Python
Programming Language (version 3.7). The dataset was balanced with help of imblearn
library (v. 0.9.0). The OneVsRestClassifier, as well as evaluation metrics, were imported
from the sklearn library (V.1.12). The GPSC algorithm was imported from the gplearn
library (v.0.4.0). The random hyperparameter search method was built from scratch using
Python random library to randomly select each hyperparameter from the prespecified
range, which is shown in Table 3. The 5-fold cross-validation was also built from scratch
with procedures for exporting and cleaning symbolic expressions.

3. Results

In this section, the results of the conducted investigation were shown. First, the results
obtained on each dataset variation were presented in terms of evaluation metrics, size of
symbolic expressions (length), and average CPU time required to obtain the solution. Then
based on the detailed analysis, the best set of symbolic expressions is presented and finally
evaluated on the original dataset.

3.1. The Classification Performance of Symbolic Expressions Obtained for Each Dataset Variation

The results of a conducted investigation using OneVSRestClassifier with GPSC esti-
mator, random hyperparameter search, and 5-fold cross-validation are shown in Figure 7,
and Table 4. The results are presented in a table format due to the small standard deviation
values shown as error bars in Figure 7 and, besides that, some additional information about
the length of symbolic expressions as well as the average CPU time that was required
to obtain the symbolic expressions are given. The hyperparameters used to obtain these
symbolic expressions are shown in Table 5 for each dataset variation.
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Figure 7. The mean and standard deviation (error bars) values of ACC, AUC, precision, recall, and
F1− score achieved for different dataset variations.

As seen in Figure 7 the best classification accuracy was obtained in the case where the
GPSC algorithm was trained on the dataset balanced with the BorderlineSMOTE method
followed by the symbolic expressions obtained on datasets balanced with SMOTE and
ADASYN methods. The standard deviation values represented as error bars are fairly small,
which indicates that overfitting did not occur during the training of the GPSC algorithm.
In Table 4 the mean and standard deviation values of the evaluation metrics are shown for
each dataset variation, and from these values, it can be seen that standard deviation values
are in 10−3–10−4 range.
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Table 4. The mean and standard deviation values of ACC, AUC, Precision, Recall, and F1-Score obtained with the best symbolic expressions in each dataset
variation.
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ADASYN
0.938

±1.79× 10−3
0.9909

±2.809× 10−4
0.94

±1.143× 10−3
0.939

±1.63× 10−3
0.939

±1.49× 10−3

2400

1046/594/402/302

SMOTE
0.966

±3.28× 10−3
0.9956

±1.13× 10−3
0.9663

±3.4× 10−3
0.9662

±3.39× 10−3
0.9661
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944/556/544/466
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SMOTE
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±6.37× 10−3

0.975
±1.82× 10−3

0.976
±1.59× 10−3

0.9758
±1.74× 10−3

1183/1657/850/1450
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The average CPU time required to obtain the set of four symbolic expressions for the
detection of robot movement of the wall-following robot is equal to 2400 [min] regard-
less of the dataset variation on which the GPSC algorithm was trained. Since this is a
multi-class problem and OneVsRestClassifier was used with GPSC algorithm and 5-fold
cross-validation, the total number of GPSC executions for a set of randomly chosen hyper-
parameters (one value for each hyperparameter) is 24. There are four classes and for each
class, 5-fold cross-validation was performed. After the process of 5-fold cross-validation
for each class is done, the mean values of evaluation metrics were computed and if they
are greater than 0.95, then the final train/test is performed. In this final stage, each class is
trained on the train part of the dataset to obtain symbolic expression. Since there are four
classes, this final stage is repeated 4 times. So, there are 20 GPSC algorithm executions in
the 5-fold cross-validation process and 4 additional GPSC algorithm executions in the final
train/test, which equals in a total if 24 GPSC algorithm executions. The average CPU time
for one GPSC algorithm execution is 100 [min], so the total average CPU time required to
obtain a set of 4 symbolic expressions (one symbolic expression per class) for one set of
randomly chosen hyperparameters is equal to 2400 [min].

The length of the symbolic expression is measured in the number of elements (mathe-
matical functions and variables) that the symbolic expression contains. From Table 4 it can
be noticed that the size of symbolic expressions regardless of the dataset variation on which
they obtained is large. The best symbolic expressions in terms of classification accuracy
are obtained on the dataset balanced with the BorderlineSMOTE method. The smallest
symbolic expressions in terms of length were obtained in the case of the dataset balanced
with the SMOTE method however, the classification performance is lower than in the case
of BorderlineSMOTE dataset variation. The symbolic expressions obtained on the dataset
balanced with the ADASYN method achieved the lowest classification performance, and
the length of these symbolic expressions is slightly higher than those obtained in the case
of SMOTE dataset.

The symbolic expressions obtained in the case of the BorderlineSMOTE dataset are
chosen as the best symbolic expressions. Although these expressions are very large they
achieved the highest classification accuracy with a small standard deviation, which indi-
cates that overfitting did not occur. The reason why these expressions were chosen is the
assumption that if they achieved the highest classification accuracy on a balanced dataset,
then they will most likely achieve similar results on the original imbalanced dataset since
imbalanced datasets have a huge influence on classification performance on ML models in
general.

The best symbolic expressions for each case were obtained with a GPSC algorithm
with the combination of randomly chosen hyperparameter values that are listed in Table 5.

From Table 5 it can be noticed that the population size, crossover, and the maximum
number of samples hyperparameters are similar in all three cases. In the case of the
BorderlineSMOTE dataset, the parsimony coefficient is the lowest, which contributed to
the size of generated symbolic expressions; however, these symbolic expressions achieved
the highest classification accuracy.

The best symbolic expressions that are obtained on the BorderlineSMOTE dataset will
be presented and evaluated on the original imbalanced dataset in the next subsection.

3.2. The Best Set of Symbolic Expressions and Final Evaluation

Based on the obtained results, the best set of symbolic expressions was obtained
in the case of the BorderlineSMOTE dataset. Since there are four equations in the set,
each symbolic expression is used to detect a specific class, i.e., the first expression for the
detection of the “Move-forward” (1) class, the second expression for the detection of the
“Slight-Right-Turn” (2) class, the third for detection of the “Sharp-Right-Turn” (3) class, and
finally the fourth expression for detection of the “Slight-Left-Turn” (4) class. The set of best
symbolic expressions obtained in the case of the dataset borderlineSMOTE method can be
written in the following form given in the Appendix A.
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Table 5. The GPSC hyperparameters are used to obtain the best symbolic expressions on each dataset
variation.

Dataset
Type

GPSC Hyperparameters
Population_size, Number_of_generations,

Tournament_size, Initial ial_depth,Crossover,
Subtree_mutation, Hoist_mutation, Point_mutation,

Stopping_criteria, Max_samples, Constant_range,
Parsimony_coefficient

ADASYN
1590, 102, 115, (4, 7),

0.95, 0.033, 0.0073, 0.0019, 3× 10−5,
0.995, (−57,908, 56,911), 1.2× 10−5

SMOTE
1557, 233, 272, (7, 11),

0.965, 0.0022, 0.0079, 0.023, 9.7× 10−6,
0.997, (−34,176, 89,128), 1.27× 10−5

Borderline
SMOTE

1421,279,139, (6, 7),
0.95, 0.011, 0.0067, 0.027, 3.65× 10−6,
0.99, (−91,766, 19,819), 6.75× 10−6

Looking at Equations (A1)–(A4) they are very large. However, after close inspection,
each equation contains a different combination of input variables, i.e., readings from
ultrasound sensors. The Equation (A1) is used to detect the “Move-Forward” (class value
1) motion of the wall following the robot. The equation consist of X1, X2, X4, X5, X6, X8,
X12, X14, X17, X19, and X20 variable. These input variables (Table 2) are readings from
ultrasound sensors placed at angles −165◦, −150◦, −120◦, −105◦, −90◦, −60◦, 0◦, 30◦, 75◦,
105◦, and 120◦, respectively. The Equation (A2) is used to detect the “Slight−Light−Turn”
(class value 2) motion of wall following robot and consists of X1, X2, X3, X7, X8, X11, X12,
X13, X14, X15, X17, and X18 variable. These input variables (Table 2) are readings from
ultrasound sensors placed at angles: −165◦, −150◦, −135◦, −75◦, −60◦, −15◦, 0◦, 15◦, 30◦,
45◦, 75◦, and 90◦, respectively. The Equation (A3) is used to detect the “Sharp−Right−Turn”
(class value 3) motion of the wall following robot and consists of X0, X1, X2, X7, X11, X13,
X14, X16, and X18 variable. Looking at Table 2 these input variables are readings from
ultrasound sensors at reference angles −180◦, −165◦, −150◦, −75◦, −15◦, 15◦, 30◦, and 60◦,
respectively. The final Equation (A4) is used to detect the “Slight−Left−Turn” (class value
4) motion of the wall following robot and consists of X1, X2, X3, X6, X8, X9, X10, X11, X12,
X14, X16, X18, X19, and X21 variable. From Table 2 these input variables represent readings
from ultrasound sensors at the following reference angles: −165◦, −150◦, −135◦, −90◦,
−60◦, −45◦, −30◦, −15◦, 0◦, 30◦, 60◦, 90◦, and 135◦, respectively.

It is interesting to notice that each symbolic expression does not require all 24 readings
from ultrasound sensors. The Equation (A3) requires readings of 9 ultrasound sensors
to compute the output followed by the Equations (A1), (A2) and (A4) that require 11, 12,
and 14 ultrasound sensors. The final evaluation of the best symbolic expression will be
performed on the original dataset and, to evaluate these expressions, the following steps
are:

• Calculate the output of each symbolic expression using original dataset values,;
• Use this output in the Sigmoid function to generate the output;
• Transform the obtained output into integer form for each symbolic expression, and;
• Compare the obtained results with the original output and calculate the evaluation

metric values.

The results of evaluating the best symbolic expressions obtained in the case of the
dataset balanced with the BorderlineSMOTE method on the original dataset are shown in
Table 6.
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Table 6. The mean and SD values of ACC, AUC, Precision, Recall, and F1-Score obtained with the
set of best symbolic expressions on the original dataset.

Evaluation
Metric

Mean
Value

SD
Value

ACC 0.956 0.05

AUC 0.9536 0.057

Precision 0.9507 0.0275

Recall 0.9809 0.01

F1-Score 0.9698 0.00725

To obtain the mean and standard deviation of evaluation metric values shown in
Table 6 the output of each symbolic expression is calculated and used in the Sigmoid
decision function to compute the output (in integer form). Then this output is compared
to the output from the original dataset and ACC, AUC, Precision, Recall, and F1-Score
were computed for each symbolic expression. After these values were obtained, the mean
and standard deviation values were calculated. As seen from Table 6 the evaluation
metric values showed that the set of best symbolic expressions achieve slightly lower
classification accuracy on the original dataset than on the dataset on which they were
obtained (BorderlineSMOTE dataset).

4. Discussion

Initial correlation analysis showed that all input variables have a low correlation with
the output (target) variable (Figure 2). The correlation values are in the −0.2 to 0.2 range
(Figure 3). However, to investigate which input variables will end up in the best symbolic
expressions, all input variables were used for training the GPSC algorithm.

Since the original dataset is highly imbalanced, three different balancing methods
were applied: ADASYN, SMOTE, and BorderlineSMOTE. These methods equalized the
number of samples per class by oversampling three minority classes. Using these three
balancing methods, three different dataset variations were obtained.

On each dataset variation, the OneVsRest classifier was applied with the GPSC algo-
rithm as the classifier estimator and was trained using a 5-fold cross-validation method. The
random hyperparameter search method was used to find the combination of hyperparame-
ters used, which for each class used the symbolic expression with the highest classification
accuracy obtained.

Before implementing the previously described procedure, the initial investigation was
conducted to define the ranges of each hyperparameter from which the hyperparameters
will be randomly selected before each GPSC algorithm execution. The most sensitive
hyperparameter was the parsimony coefficient, which is responsible for the prevention of
the bloat phenomenon. As seen from Table 5 the best symbolic expressions obtained on each
dataset variation had a very large population, which was propagated through 100 to almost
300 generations. The stopping criteria value in all investigations was never met, since the
idea was to terminate the GPSC execution when a maximum number of generations was
reached. The dominating genetic operation in all investigations was crossover, since in
the initial investigation used for the development of the random hyperparameter search
method it was noticed that this genetic operation is the most influential.

The parsimony coefficient in all investigations is low to ensure the growth of the
population members. Since the correlation between dataset variables is low, the size of the
symbolic expressions grew from generation to generation, intending to lower the fitness
function value. The bloat phenomenon did not occur since the fitness function value
was successfully lowered from generation to generation which resulted in the symbolic
expressions with high classification performance. The best set of symbolic expressions is
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large due to the low correlation between the variables; however, the classification accuracy
is high.

The best set of symbolic expressions was obtained on the dataset balanced with
the BorderlineSMOTE method. The implementation of random hyperparameter search
with a 5-fold cross-validation method produced symbolic expressions with high mean
values of evaluation metrics and small standard deviation values, which indicates that
overfitting did not occur. The investigation showed that the symbolic expressions do not
require all input variables from the dataset. From 24 input variables in the dataset, 9 input
variables are required for the detection of “Move-Forward” movement, 11 input variables
are required to detect “Slight-Right-Turn” movement, 12 input variables are required to
detect “Sharp-Right-Turn” movement, and 14 input variables are required to detect the
“Slight-Left-Turn” movement.

The final test of implementing the set of symbolic expressions on the original imbal-
anced dataset showed that slightly lower classification performances were achieved when
compared to the classification performance achieved on the BorderlineSMOTE dataset.

The achieved models could be used in the manner shown in Figure 8. The data col-
lected from the 24 sensors positioned around the mobile robot is collected to the sensor bus
(marked with “Sensor readings”). This data is then transferred to an internal computation
device at which the achieved models, as presented in equations, have been stored. This
process will return a vector of possible classes, in which one will be near equal to 1.0 due
to the application of the sigmoid function, while the other will be near zero, for the same
reason. This vector is then passed to the control system, which will actuate the motors
which constitute the movement system of the robot in such a manner as to achieve the ex-
pected movement (forwards, slight or sharp right turn, or slight left turn). The pseudocode
showing this implementation is given in Appendix B.

Figure 8. The flowchart of the model application on a theoretical mobile robot that uses the
developed system.

5. Conclusions

In this paper, the OneVSRestClassifier was applied with GPSC estimator, random
hyperparameter search, and 5-fold cross-validation on the publicly available dataset to
obtain symbolic expressions, using the detection/classification of the robot movement
with sensor readings as the output, with high classification accuracy. Since the original
dataset is imbalanced, oversampling methods (ADASYN, SMOTE, and BorderlineSMTOE)
were used to balance the dataset (equalizing the number of samples per class). These
balanced dataset variations were used to obtain symbolic expressions and the set of best
symbolic expressions was evaluated on the original imbalanced dataset. The methods,
such as the one explored in this paper, have a wide possibility of applications due to the
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generated format. A large amount of data is generated during the use of various robotic
systems, thanks to the sensors that exist in such systems [24]. This allows for the application
of machine learning methods in various robot-based systems, such as telemedicine [25],
remote sampling [26], human–robot collaboration [27], and others. Based on the conducted
investigation, the following conclusions are:

• The GPSC algorithm successfully generated the symbolic expressions, which can be
used for the detection/classification of the robot movement with high classification
accuracy;

• The dataset balancing method (ADASY, SMOTE, and BorderlineSMOTE) balanced
the original dataset and provided a good starting point for the training of the GPSC
algorithm, which resulted in symbolic expressions with high classification accuracy.
So the investigation showed that dataset balancing methods have a great influence on
the classification accuracy of the obtained symbolic expressions;

• The GPSC algorithm with the random hyperparameter search method and 5-fold
cross-validation proved to be a powerful tool in obtaining robust and highly accurate
symbolic expressions;

• The investigation showed that the best set of symbolic expressions obtained on a
dataset balanced with the oversampling method can be applied to the original dataset
and achieve high classification accuracy. This shows the validity of the proposed
method;

• The procedure showed that a dataset with a low correlation between variables can be
used to obtain symbolic expressions with GPSC and that these symbolic expressions
do not require all the input variables to classify the movement of the robot.

The advantages of the approach are:

• Using the proposed method, symbolic expressions are obtained, which are easier to
use and understand in comparison to ML models, and require less computational
resources for storage and processing than other ML-trained models;

• The oversampling methods can balance the dataset and, by using these datasets, the
classification accuracy can be improved;

• Random hyperparameter search and 5-fold cross-validation are useful tools for ob-
taining robust solutions with high classification accuracy,

The disadvantages of the approach are:

• The initial hyperparameter range definition is a painstaking process as the range of
each hyperparameter has to be tested. Special attention must be paid to the parsimony
coefficient value since this parameter is the most sensitive. Small values can result in a
bloat phenomenon, while large values can result in obtaining symbolic expressions
with low classification accuracy;

• Regardless of the computational resources used, the execution of GPSC can be a time-
consuming process especially if the correlation between input variables is low. If the
correlation values between variables are low, GPSC will try to minimize the fitness
function value by enlarging the population member’s size, which can in some cases
result in the bloat phenomenon.

Another limitation of the article that must be noted is the lack of verification on a
real robot. This would serve as further proof of the achieved performance. The current
level of validation on existing data should be of a satisfactory level for a proof-of-concept,
indicating the possibility of using equations generated via a symbolic classifier for robot
movement. The aforementioned real-life validation may be part of future work, especially
in combination with an online training system for the further tuning and improvement of
the achieved models. Future work may also be focused on obtaining symbolic expressions
that are smaller in size and have higher classification accuracy than those presented in this
paper. This will be achieved by using different synthetic data generation methods, which
can in some cases improve the correlation between input variables. One of the ideas for
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future work is to obtain the original dataset by using data from multiple sensors that are
positioned on the mobile robot.
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Appendix A

This appendix contains the best performing equations obtained using the methods
described in the main body of the paper.
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√

log(X19)

+ 1.13 3
√

log( 3
√

X12))
)/(

max(1.4 log(
√

X2), sin(cos(1.4 log(|min(X16, X18)|))))
)
− sin(0.43 log(0.43 log(log(1.4 log(X19))

+ 1.13 3
√

log(|min(X16, X18)|))− 1.4| log(
X1

X18
)|))), sin(sin(cos(1.4 log(|min(X16, X18)|)))))

)/(
log(X19)

)
)

+ 1.13
3

√
log(min(X16, | log(max(0.983456, X22)) + sin(X20) + 1.01367 27

√
log(|X16|) + 1.13 3

√
log( 3

√
X12)|)))

+ 1.13 3
√

log(min(X16, X18)))
)/(

max(1.4| log(|min(X16, X18)|)|, 1.4 log(log(log(max(0.983456, X22)))),

1.4 log(1.13
(

log(| log(max(X20, X22)) + min(X16, X18) + 1.13 3
√

log(|min(X16, X18)|)

+ 1.13
3

√
log(1.13| 3

√
log(| log(max(X20, X22)) + 1.13 3

√
log(|min(X16, X18)|) + 0.98|)|)|)

) 1
3
))
)
) + 1.13 3

√
log(X19))

)/
(

max(1.4 log(
√

X2), 1.4 log( 3
√

X12))
)
+
(

max(log(
(
|max(−52888.2, 1.4 log(

√
X2))|

)/(
max(1.4 log(X20), max(X22,

1.4 log(|min(X16, X18)|) + log(log(max(X20, X22)))) +
√

X20)
)
) + 1.13 3

√
log(X19), log(

(
max(−0.024, max(1.4

log(1.4 log(1.13 3
√

log(X19))), log(
(

0.69 max(−52888.2, (max(| log(max(15.6907, X22) + 1.04156 9
√

log(|X16|))
log(X19)

|

+ 0.43 log(X12 − 52888.2), min(X16, X18)) + min(X16, X18))(−1.4 log(log(max(X22, 0.43 log(X12 − 52888.2)))

+ 6.06) + 1.4 log(sin(X20) + 1.01367 27
√

log(|X16|) + 1.13 3
√

log( 3
√

X12))− sin(0.43 log(0.43 log(log(log(max(0.024, X22)))

+ 1.13 3
√

log(|min(X16, X18)|))− 1.4| log(
X1

X18
)|)) +

(
max(X12 − 52888.2, log(

(
max(|min(X16, X18)|, log(

0.69X19

log(X19)
)

+ 1.13 3
√

log(min(X16, X18)))
)/(

max(1.4| log(|min(X16, X18)|)|, 1.4 log(1.13
(

log(| log(max(X22,
X1

X18

+ max(X22, log(| 3

√
log(X22) + 1.13 3

√
log( 3

√
X12)|)))) + sin(X20) + 1.13 3

√
log(min(X16, X18))|)

) 1
3
))
)
)
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+ 1.13 3
√

log(X19))
)/(

max(1.4 log(
√

X2), sin(X16))
)
), sin(max(1.4 log(

√
X20), sin(0.43 log(X12 − 52888.2)))))

)/
(

log(X19)
)
) + 1.13 3

√
log(|min(X16, X18)|)) + 1.13 3

√
log(min(X16, X18)))

)/(
max(1.4| log(|min(X16, X18)|)|,

1.4 log(log(log(max(0.98, X22)))), 1.4 log(1.13
(

log(| log(max(X20, X22)) + min(X16, X18)

+ 1.13
3

√
log(| 3

√
log(max(X20, X22)) + 1.13 3

√
log(|min(X16, X18)|)|)|)

) 1
3
))
)
) + 1.13 3

√
log(X19))

)/(
max(1.4 log( 3

√
X12),

sin(cos(1.4 log(|min(X16, X18)|))))
)
− sin(0.43 log(0.43 log(1.4 log(1.13 3

√
log(X19)))− 1.4| log(

X1

X18
)|))

− sin(1.4 log(0.43 log(X12 − 52888.2)− 0.016)−
(

max(min(X16, X18) + 1.13 3
√

log(X19), log(
(

max(X16, 1.4| log(

0.43 log(X12 − 52888.2) + 1.4 log(X19))|, 1.4 log( 3
√

X12))
)/(

max(1.4| log(min(X16, X18))|, 1.4 log(X20))
)
)

+ 1.13 3
√

log(sin(1.4 log(
√

X2))))
)/(

max(1.4 log(
√

X2), sin(cos(1.4 log(1.4| log(max(X22, min(X16, X18)) +
√

X20)|))))
)

+ sin(0.43 log(log(log(max(0.983456, X22)))− 1.4| log(
X1

X18
)|)))− sin(1.4 log(0.43 log(X12 − 52888.2) + log(X12))

−
(

max(
(

0.69 max(X12 − 52888.2, 1.4| log(|min(X16, X18)|)|)
)/(

log(X19)
)

, log(
(

max(1.4| log(0.43 log(X12 − 52888.2)

+ min(X16, X18))|, 1.4 log( 3
√

X12))
)/(

max(1.4| log(min(X16, max(0.98, X22)))|, 1.4 log(X20))
)
) + 1.13 3

√
log(X19))

)/
(

max(1.4 log(
√

X2), sin(cos(1.4 log(|min(X16, X18)|))))
)
+ sin(0.43 log(−1.4| log(

X1

X18
)|+ log(

0.69X19

log(X19)
)

+ 1.13 3
√

log(min(X16, X18)))))

y4 = −max(log(0.43 log(0.43 log(|X19| log(min(X12, X2))))), 1.44 log(min(X11, X12, |X14|, log(0.43 log(max(X14, | tan(X14)|))), (A4)

1.2

√
log(1.2

√
log(sin(|X19|))), log(min(

√
X8, |X14|)),−max(1.44 log(1.44 log(log(1.44 log(log(min(X18, |X19|)))))),

log(min(1.44 log(1.44 log(1.44 log(log(min(X18, |X19|))))), 1.44 log(max(X10, X3)), 0.43 log(min(|X14|, max(X10, X3))),

max(X10, X3))))−max(1.44 log(1.44 log(log(min(X18, |X19|)))), log(min(0.43 log(1.44 log(0.62 log(X10) log(|X19|))),

0.43 log(max(1.44 log(1.44 log(X11)), log(min(log(|X14|), 0.43 log(log(min(X12, max(X10, X3)))))))),
√

min(X18, |X19|))))
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+ min(X11, X12, min(1.44 log(log(X12)), log(0.43 log(min(|X14|, max(X21, X6)))))−max(log(sin(|X14|)), min(X18, |X19|))))))
− max(1.44 log(1.44 log(log(min(X18, |X19|)))), log(min(1.44 log(|X14|), 0.43 log(1.44 log(min(X11, X12))))))

− max(1.44 log(1.44 log(log(min(X14, X18, |X19|)))), log(min(
√

X8, log(X12), 1.44 log(1.44 log(1.44 log(log(min(X18,

|X19|))))), 0.43 log(min(|X14|, log(min(X10, X3)))))))−max(log(min(1.44 log(|X14|), 0.43 log(1.44 log(min(X18,

|X19|, max(X10, X3)))), 0.43 log(max(1.44 log(1.44 log(log(1.44 log(log(min(X18, |X19|)))))), log(min(1.2
√

log(|X14|),
0.43 log(min(X18, |X19|)))))))), 1.44 log(min(0.43 log(1.44 log(0.43|X19| log(|X19|))), 0.43 log(1.44 log(min(X14, X18,

1.2

√
log(1.2

√
log(sin(|X19|)))))), 0.43 log(max(log(min(

√
cos(X21X3), 0.43 log(min(|X14|, max(X21, X6))))),

log(min(1.44 log(1.44 log(1.44 log(log(min(X18, |X19|))))), 0.43 log(1.44 log(min(X11, X12))), 0.43 log(min(X14, X18)),

0.43 log(min(X18, |X19|, log(min(X10, X3)))))))),−max(log(0.43 log(0.43 log(|X19| log(min(X12, X2))))),

1.44 log(min(X11, X12, |X14|, log(0.43 log(max(X14, | tan(X14)|))), 1.2

√
log(1.2

√
log(sin(|X19|))), log(min(

√
X8, |X14|)),

− max(1.44 log(1.44 log(log(1.44 log(log(min(X18, |X19|)))))), log(min(1.44 log(1.44 log(1.44 log(log(min(X18, |X19|))))),
1.44 log(max(X10, X3)), 0.43 log(min(|X14|, max(X10, X3))), max(X10, X3))))−max(1.44 log(1.44 log(log(min(X18,

|X19|)))), 1.44 log(log(min(X18, |X19|)))) + min(X11, X12, log(
√

X8), min(1.44 log(log(X12)), log(0.43 log(min(|X14|,
max(X21, X6)))))−max(log(sin(|X14|)), min(X18, |X19|))))))−max(1.44 log(1.44 log(log(min(X18, |X19|)))),
log(min(1.44 log(|X14|), 0.43 log(1.44 log(min(X11, X12))))))−max(1.44 log(1.44 log(log(min(X14, X18, |X19|)))),
log(min(

√
X8, log(X12), 1.44 log(1.44 log(1.44 log(log(min(X18, |X19|))))), 0.43 log(min(|X14|, log(min(X11, X12)))))))

− max(log(min(1.44 log(|X14|), 0.43 log(1.44 log(min(X18, |X19|, max(X10, X3)))), 0.43 log(max(1.44 log(1.44 log(log(1.44

log(log(min(X18, |X19|)))))), log(min(1.2
√

log(|X14|), 0.43 log(min(X18, |X19|)))))))), 1.44 log(min( 4
√

X8,

0.43 log(1.44 log(0.43|X19| log(|X19|))), 0.43 log(1.44 log(min(X14, X18, 1.2

√
log(1.2

√
log(sin(|X19|)))))),

0.43 log(max(1.44 log(1.44 log(log(log(X16)))), log(min(0.43 log(log(min(X19, X2))), 1.44 log(log(sin(min(X11,

X12)))))))), 0.43 log(max(log(min(
√

cos(X21X3), 0.43 log(min(|X14|, max(X21, X6))))), log(min(1.44 log(1.44 log(1.44

log(log(min(X18, |X19|))))), 0.43 log(1.44 log(min(X11, X12))), 0.43 log(min(X14, X18)), 0.43 log(min(X18, |X19|,
log(min(X10, X3))))))))))) + min(X10, X3, 1.44 log(1.44 log(log(sin(min(X11, X12))))), min(X11, X12, X14, X18, |X14|,
|X19|, log(

√
X8), log(0.43 log(X10)), 1.44 log(log(X12)), log(1.44 log(|X19| log(X10))),
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1.2

√
log(1.44 log(1.2

√
log(sin(|X19|)))), log(0.43 log(max(X14, | tan(|X14|)|))), log(min(X14, X18)), max(X6, |X19|),

− |X19| −max(1.44 log(0.43|X18| log(min(X10, X3))), log(max(1.44 log(1.44 log(log(X12))), log(sin(|X14|)))))
+ min(X11, X12, X14, |X12|, min(X11, X12, log(log(1.44 log(0.18 log(max(X10, X3)) log(min(|X14|,

1.2

√
log(1.2

√
log(sin(|X19|)))))))), log(log(|X12| log(max(X10, X3)))), log(0.43 log(1.44 log(min(X12, X2)))),

1.44 log(max(X10, X3)))−max(1.44 log(1.44 log(log(X12))), log(sin(|X14|)))))−max(1.44 log(1.44 log(log(min(X10,

X3)))), log(min(X12, 1.2

√
log(1.2

√
log(sin(|X19|))), 1.44 log(max(X10, X3)), 0.18 log(|X19|) log(min(|X14|,

log(min(X10, X3)))),−max(1.44 log(1.44 log(log(min(X14, X18)))), log(min(0.43 log(1.44 log(0.62 log(1.44

log(|X14|)) log(0.18 log(0.43 log(X10)) log(max(X10, X3))))), 1.2
√

log(1.44 log(1.44 log(log(sin(|X19|))))),
0.43 log(max(1.44 log(1.44 log(log(sin(1.44 log(log(sin(|X19|))))))), min(0.43 log(max(X14, | tan(X14)|,

1.44 log(sin(min(X11, X12))))), 1.2
(

log(min(1.44 log(1.44 log(1.44 log(log(sin(|X19|))))), 0.43 log(min(|X14|,

max(X21, X6)))))
) 1

2
))))))−max(log(max(1.44 log(1.44 log(log(X12))), log(sin(|X14|)))), 1.44 log(1.44 log(cos(X21X3)

+ tan(min(X6, X9)))min(0.43 log(log(min(X12, X2))), sin(min(X11, X12))))) + min(X11, X12, log(sin(|X19|)),
min(X11, X21X3, log(|X14|), log(1.44 log(log(min(X18, log(X12))))), 1.44 log(max(X10, X3)), log(min(X18, |X19|)),
min(X18, |X19|, log(X3), log(log(|X19| log(max(X10, X3)))), log(0.43 log(max(X14, | tan(X14)|))), 1.44 log(max(X10, X3)))

− max(|X19|, 1.44 log(log(log(1.44 log(log(min(X14, X18))) log(max(X10, X3)))))))−max(|X19|, 1.44 log(1.44 log(max(X10,

X3))))), sin(1.44 log(|X14|))))))))) + min(X10, X3, 1.44 log(1.44 log(log(sin(min(X11, X12))))), min(X11, X12, X14, X18,

|X14|, |X19|, log(
√

X8), log(0.43 log(X10)), 1.44 log(log(X12)), log(1.44 log(|X19| log(X10))), 1.2
(

log(1.2√
log(1.44 log(log(min(X14, X18)))))

) 1
2
, log(0.43 log(max(X14, | tan(|X14|)|))), log(min(X14, X18)), max(X6, |X19|),

− |X19| −max(1.44 log(0.43|X18| log(min(X10, X3))), log(max(1.44 log(1.44 log(log(X12))), log(sin(|X14|)))))
+ min(X11, X12, log(X3), 1.44 log(max(X10, X3)), min(X11, X12, log(log(1.44 log(0.18 log(max(X10, X3))

log(min(|X14|, 1.2

√
log(1.2

√
log(sin(|X19|)))))))), log(log(|X12| log(max(X10, X3)))), log(0.43 log(1.44 log(min(X12, X2)))),

1.44 log(max(X10, X3)))−max(1.44 log(1.44 log(log(X12))), log(sin(|X14|)))))−max(1.44 log(1.44 log(log(min(X10, X3)))),
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log(min(X12, 1.2

√
log(1.2

√
log(sin(|X19|))), 1.44 log(max(X10, X3)), 0.18 log(|X19|) log(min(|X14|, log(min(X10, X3)))),

− max(1.44 log(1.44 log(log(min(X14, X18)))), log(min(0.43 log(1.44 log(0.626554 log(1.44 log(|X14|)) log(0.18 log(0.43

log(X10)) log(max(X10, X3))))), 1.2
√

log(1.44 log(1.44 log(log(sin(|X19|))))), 0.43 log(max(1.44 log(1.44 log(log(sin(1.44

log(log(sin(|X19|))))))), min(0.43 log(max(X14, | tan(X14)|, 1.44 log(sin(min(X11, X12))))),

1.2

√
log(min(

√
cos(X21X3), 0.43 log(min(|X14|, max(X21, X6)))))))))))−max(log(max(1.44 log(1.44 log(log(X12))),

log(sin(|X14|)))), 1.44 log(1.44 log(cos(X21X3) + tan(min(X6, X9)))min(0.43 log(log(min(X12, X2))), sin(min(X11, X12)))))

+ min(|X19|, log(sin(|X19|)), min(X11, X21X3, log(|X14|), log(1.44 log(log(min(X18, log(X12))))), 1.44 log(max(X10, X3)),

log(min(X18, |X19|)), min(X18, |X19|, log(X3), log(log(|X19| log(max(X10, X3)))), log(0.43 log(max(X14, | tan(X14)|))),
1.44 log(max(X10, X3)))−max(|X19|, 1.44 log(log(log(1.44 log(log(min(X14, X18))) log(max(X10, X3)))))))

− max(|X19|, 1.44 log(1.44 log(max(X10, X3))))), sin(1.44 log(|X14|))))))
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Appendix B

This section contains the pseudocode for the proposed control algorithm based
on the classification equations obtained using the described methodology (given in the
Appendix A).

Algorithm A1 An algorithm with caption

S ← −→0 . Define the vector for sensor readings of length 24
Y ← −→0 . Define the vector for results of length 4
y1[S ], y2[S ], y3[S ], y4[S ] . Define the equations, per Appendix A
RC← “0′′ . Robot control unit
F, SlRT, ShRT, SLT . Define possible robot movements
while True do
S ← St . Get current vector readings
Y [0]← y1[S ] . Calculate and store the predicted class for “Move Forward”
Y [1]← y2[S ] . Calculate and store the predicted class for “Slight Right Turn”
Y [2]← y3[S ] . Calculate and store the predicted class for “Sharp Right Turn”
Y [3]← y4[S ] . Calculate and store the predicted class for “Slight Left Turn”
if Y [0]−→= 1 then

RC← F . Instruct robot to move forward
else if Y [1]−→= 1 then

RC← SlRT . Instruct robot to do a slight right turn
else if Y [2]−→= 1 then

RC← ShRT . Instruct robot to do a sharp right turn
else if Y [3]−→= 1 then

RC← SLT . Instruct robot to do a slight left turn
end if

end while
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