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Abstract: Objective: We propose a deep-learning-based underwater target detection system that
can effectively solve the problem of underwater optical image target detection and recognition.
Methods: In this paper, based on the depth of the underwater optical image target detection and
recognition and using a learning model, we put forward corresponding solutions using the concept
of style migration solutions, such as training samples. A lack of variability and poor generalization of
practical applications presents a challenge for underwater object identification. The UW_YOLOv3
lightweight model was proposed to solve the problems of calculating energy consumption and
storage resource limitations in underwater application scenarios. The detection and recognition
module, based on deep learning, can deal with the degradation process of underwater imaging by
embedding an image enhancement module into the detection and recognition module for the joint
tuning and transferring of knowledge. Results: The detection accuracy of the UW_YOLOv3 model
designed in this paper outperformed the lightweight algorithm YOLOV3-TINY by 7.9% at the same
image scale input. Compared with other large algorithms, the detection accuracy was lower, but
the detection speed was much higher. Compared with the SSD algorithm, the detection accuracy
was only 4.7 lower; the speed was 40.9 FPS higher; and the rate was nearly 16 times higher than
Faster R-CNN. When the input scale was 224, although part of the accuracy was lost, the detection
speed doubled, reaching 156.9 FPS. Conclusion: Based on our framework, the problem of underwater
optical image target detection and recognition can be effectively solved. Relevant studies have not
only enriched the theory of target detection and glory, but have also provided optical glasses with a
clear vision for appropriate underwater application systems.

Keywords: underwater imaging; deep learning; object detection; image enhancement; UW_YOLOv3

1. Introduction

Underwater target detection tasks can be divided into two categories according to the
different signals of the target to be detected [1]. The first category uses acoustic images
collected by sonar to detect underwater targets, which is only suitable for the long-distance
detection and tracking of large targets [2]. The second type is underwater target detection
based on the optical image of a machine-vision system.

Visual images have advantages in short-range underwater target detection, with a
high resolution and rich information. Therefore, target detection based on light vision
has gradually become the leading research direction of underwater short-range target
recognition and detection [3]. To accurately identify a target, the key is to determine the
category and location of the underwater target. The most direct method is to collect images
through underwater cameras and implement detection through a deployed underwater
target-detection algorithm. However, shallow aquatic environments are complex and often
lead to problems such as color shifts, uneven illumination, blurring, and distortion in the
imaging process. These scenarios are very unfavorable for the results of the detection
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network. In addition, due to the existence of image domain offset, it is difficult for general
object-detection algorithms to maintain high robustness in underwater environments.

An autonomous underwater vehicle (AUV) is the most advanced aquatic monitoring
and operation equipment, which can replace humans to complete specific tasks in complex
underwater environments [4]. To conduct underwater monitoring and operation tasks, an
AUV must quickly perceive the complex aquatic environment through the visual system
and accurately identify the target of interest. However, due to the attenuation of light at
different degrees in the underwater propagation process, the collected underwater images
generally have problems such as unclear low illumination and color distortion, making the
research of underwater target detection technology face many difficulties.

The underwater target detection process can be divided into three stages: underwater
image acquisition, image feature extraction, and target recognition [5]. Traditional target
detection algorithms generally use manual methods to extract image features, which
is cumbersome; the extracted adequate image feature information is not rich enough,
resulting in an extremely low detection accuracy. In recent years, deep learning has been
developed [6–10], the excellent feature extraction ability of which can achieve recognition
and detection accuracy that traditional methods cannot. Deep learning also has a strong
migration ability for obtaining features [11]. It has a universality and a strong generalization
ability for the feature extraction of targets in various fields. Therefore, applying deep
learning to underwater target detection technology to reduce the impact of uncertain aquatic
environments, and to improve underwater image recognition and detection performance,
is a hot topic in underwater target technology.

Based on the above analysis, it can be seen that effectively solving the problem of
underwater image degradation and introducing deep learning methods to improve the de-
tection of underwater targets are vital points for breaking through the current development
status of underwater target detection technology. Meanwhile, this area of research is also of
great significance to AUV development.

2. Related Work
2.1. Underwater Image Enhancement

In underwater propagation, the light attenuates to different degrees due to water
quality, leading to problems such as unclear low illumination and color distortion in
collected underwater images [12]. These degraded underwater images will significantly
affect the feature extraction process of the deep neural network, thus making it difficult to
detect underwater targets.

In 2017, Perez et al. [13] proposed a deep-learning method for underwater image
defogging. This method first uses an image-recovery algorithm to process underwater
photos, and then trains the deep neural network on the original and processed images.
Finally, the trained network is used to process other fuzzy underwater images. Scholars
have used a convolutional neural network model to learn the process of aquatic image
degradation. This method can enhance unclear and biased images, but the dataset used for
training was artificially stimulated, and thus different from the actual underactuated image
degradation process. In the same year, Fabbri et al. [14] proposed a generative network for
image enhancement that could improve the sharpness of underwater images and restore
actual color. Still, it had strict requirements for the quality of the training dataset [15].

2.1.1. Underwater Target Detection

In recent years, with the rapid development of AUVs, underwater short-range target
detection technology based on vision systems has become more critical, and scholars
have conducted many studies. In 2007, Yamashita et al. [16] established a model for the
influence of the underwater environment on color to judge typical underwater artificial
targets through color information. Still, this method did not consider the similarity between
continuous sample data. In 2011, Mukherjee et al. [17] proposed an underwater target
recognition method based on a boundary. However, it achieved better results only when
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the color of the target of interest differed significantly from that of its surroundings. In
the following year, Elberink et al. [18] proposed a method for detecting the reconstructed
target shape of lines. The experimental results showed that the accuracy of non-noise
image detection was 96% and that of noise image detection was 88%, but the algorithm was
only able to detect artificial targets with relatively simple shapes, and was not able to be
applied to biological targets with complex conditions. In 2014, Hsiao et al. [19] proposed an
underwater fish-recognition framework composed of unsupervised feature learning and
fault-tolerant detection, which had a high detection accuracy for imbalanced underwater
fish images.

2.1.2. Target Detection Algorithm Based on Deep Learning

After the emergence of a deep-learning network, a multi-layer neural network could
be used to fully extract target image features and learn abstract deep representation infor-
mation to obtain more accurate recognition and detection results. Region-based recommen-
dations and regression-based methods have become the two most commonly used target
detection methods.

(1) The R-CNN-series algorithm is a classical algorithm based on a recommended region.
It first estimates the last frame containing the target through the region recommenda-
tion method, then uses CNN to perform a feature extraction operation, and finally
inputs the data to the detector for classification and positioning. In 2014, Girshick
et al. [20] proposed the R-CNN detection algorithm [21], which firstly uses target de-
tection and the segmentation of a deep neural network CNN and then applies transfer
learning to improve network performance. Girshick et al. [22] further improved the
R-CNN network. They proposed a FASTR-CNN network, which combined feature
extraction and detection with ROI and a multi-task loss function; they also tested its
speed and found that the training speed was significantly improved. In the same year,
Ren Shaoqing et al. [23] proposed the well-known Faster R-CNN, which offered a
region proposal network (RPN) instead of the traditional region selection method.
The feature graph after convolution was shared and integrated into a network. The
end-to-end training of the detection algorithm was realized for the first time.

(2) Regression-based detection algorithms mainly include the SSD series and YOLO
series, which directly set the last frame on the input image and perform regression
operations on the target in stand-through feature extraction. In 2016, Redmon et al.
proposed YOLO, a single pipeline network viewed only once, to directly perform
regression operations on BBO in the grid and predict the target’s coordinate infor-
mation and category probability. This network dramatically improved the speed of
target detection, reaching a real-time detection rate of 45 FPS. In the following year,
Redmon et al. made improvements based on the YOLO algorithm and proposed the
YOLOv2 algorithm, which introduced batch normalization (BN) [24]. The anchor
frame mechanism and the pass-through operation improved the detection perfor-
mance of the network. In 2018, Redmon et al. [25] proposed the YOLOv3 algorithm
based on YOLOv2. YOLOv3 used DarkNet-53 as the master of the thousand networks,
which is composed of multiple ResNet stacks, making the depth of the entire network
up to 152 layers. Moreover, multi-scale fusion was adopted in the prediction network,
which further improved the feature extraction capability of the network.

2.2. Our Contributions

The research content of this paper mainly includes three parts:
The first part proposes an underwater image enhancement method based on the

generative adversarial network for aquatic image degradation.
In the second part, which aims to solve the problem of the energy consumption calcu-

lation and storage resource limitations in underwater application scenarios, a lightweight
model based on YOLOv3 is proposed for lightweight underwater detection.
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In the third part, which aims to solve the problems of insufficient training samples, a
lack of variability, and the flawed generalization of practical applications, a data network
parameter transfer based on transfer learning is proposed.

3. Methods and Materials
3.1. Underwater Image Enhancement Based on a Generative Adversarial Network
Establishment of Underwater-Style Transfer Dataset

The lack of an underwater paired image dataset restricts the application of image
enhancement algorithms based on deep learning in underwater scenes. This dataset needs
to collect images of underwater targets in two states (with and without water), so it is
difficult to organize data that meet the requirements in actual scenes. Therefore, it is
possible to use a theory based on multi-scale retinex (MSR), multi-scale retinex with color
restoration (MSRCR), and automated multi-scale retinex with color restoration (AMSRCR).
The underwater image is enhanced by combining the algorithm with a dehaze net algorithm
based on deep learning to establish an underwater-style transfer dataset, as shown in
Figure 1. Due to the traditional manual method, the generalization ability is terrible, so
after using the conventional method of image enhancement processing, part of the image
experiences color distortion. The phenomenon of supersaturation cannot be directly used
to train convolutional neural networks, as they require further screening of the enhanced
image. The enhancement of the underwater photos in pairs with a better effect was chosen
as the final training for the underwater image enhancement of the network dataset.
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Generative adversarial networks (GAN) make up one of the research hotspots in com-
puter vision. Confrontation refers to the conflict between a generator and a discriminant.
The generator generates realistic samples as much as possible, judging the device as far as
possible to identify the authenticity of the sample through the constant iterative training of
the generator and discriminant criteria. In this way, the thinking ability is continuously
strengthened and the samples from the generator become more accurate, ultimately achiev-
ing improvements in the performance. GAN has been applied in many fields in recent
years, such as image style transfer, image super-resolution reconstruction, image repair,
image segmentation, etc. The traditional image enhancement algorithm is based on GAN.
Image enhancement does not require prior knowledge, and the network can automatically
learn the data distribution of samples.

By GAN’s successful application in the field of migration image style, Section 3.1 of
this paper examined underwater images of the dataset in pairs, divided into two styles
of analysis: a technique for green underwater blurred images and a method for color



Machines 2022, 10, 809 5 of 16

averaging of underwater clear images. Then, by using the concept of image transfer,
Pix2Pix underwater image enhancement was realized. This represented an improvement
in the network generation conditions. The input of network pairs of images is mainly used
to complete a transformation between vision and the idea of image translation. For the
image style, the migration effect has proven to be an excellent application. Therefore, this
paper used the Pix2Pix network model as the basis for underwater image enhancement
network architecture. The underwater image enhancement network designed in this
paper also included two parts: a generator and a discriminator. The network structure is
shown in Figure 2. The design of this network’s generator discriminator and loss function
are introduced.

Machines 2022, 10, x FOR PEER REVIEW 5 of 17 
 

 

Generative adversarial networks (GAN) make up one of the research hotspots in 
computer vision. Confrontation refers to the conflict between a generator and a discrimi-
nant. The generator generates realistic samples as much as possible, judging the device as 
far as possible to identify the authenticity of the sample through the constant iterative 
training of the generator and discriminant criteria. In this way, the thinking ability is con-
tinuously strengthened and the samples from the generator become more accurate, ulti-
mately achieving improvements in the performance. GAN has been applied in many 
fields in recent years, such as image style transfer, image super-resolution reconstruction, 
image repair, image segmentation, etc. The traditional image enhancement algorithm is 
based on GAN. Image enhancement does not require prior knowledge, and the network 
can automatically learn the data distribution of samples.  

By GAN’s successful application in the field of migration image style, Section 3.1 of 
this paper examined underwater images of the dataset in pairs, divided into two styles of 
analysis: a technique for green underwater blurred images and a method for color aver-
aging of underwater clear images. Then, by using the concept of image transfer, Pix2Pix 
underwater image enhancement was realized. This represented an improvement in the 
network generation conditions. The input of network pairs of images is mainly used to 
complete a transformation between vision and the idea of image translation. For the image 
style, the migration effect has proven to be an excellent application. Therefore, this paper 
used the Pix2Pix network model as the basis for underwater image enhancement network 
architecture. The underwater image enhancement network designed in this paper also 
included two parts: a generator and a discriminator. The network structure is shown in 
Figure 2. The design of this network’s generator discriminator and loss function are intro-
duced.  

 
Figure 2. Schematic diagram of underwater image enhancement network. 

Firstly, the generator generated underwater high-quality images from an input of 
underwater degraded images. The concrete structure is shown in Figure 3. The generator 
used a system containing an encoder and a decoder, a reference for the design of the net-
work model for the U-Net network, and a network for the convolutional neural network; 
the input and output were the three RGB channels. The overall structure of the image and 
the network was composed of two symmetric parts of down-sampling and up-sampling. 
The basic unit structure of the down-sampling stage was the convolution batch regulari-
zation ReLU. The sampling phase structure and the similar deconvolution replaced the 
convolution operation sampling, and the sampling under corresponding parts used the 
same number of convolution kernels. Through the jump layer connection manner, which 
lowered the amount of information fusion and high-level information, the details of the 
pixel were kept under different resolutions to a certain extent, thus improving the gener-
ation of the image details. 

  

Figure 2. Schematic diagram of underwater image enhancement network.

Firstly, the generator generated underwater high-quality images from an input of
underwater degraded images. The concrete structure is shown in Figure 3. The generator
used a system containing an encoder and a decoder, a reference for the design of the network
model for the U-Net network, and a network for the convolutional neural network; the input
and output were the three RGB channels. The overall structure of the image and the network
was composed of two symmetric parts of down-sampling and up-sampling. The basic
unit structure of the down-sampling stage was the convolution batch regularization ReLU.
The sampling phase structure and the similar deconvolution replaced the convolution
operation sampling, and the sampling under corresponding parts used the same number
of convolution kernels. Through the jump layer connection manner, which lowered the
amount of information fusion and high-level information, the details of the pixel were
kept under different resolutions to a certain extent, thus improving the generation of the
image details.
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encoder and decoder, a reference for the design of the network model for the U-Net network, and a
network for the convolutional neural network; the input and output were the three RGB channels.

The second part was the discriminator part, the function of which was to judge
whether the image input by the network was the accurate data or the data generated by
the generator. The specific structure of the discriminator part is shown in Figure 4. The
basic unit structure of the discriminator part was the same as that of the generator part,
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and the input of the discriminant network was two 3-channel RGBs. The positive sample
of the network was the image pair, composed of the input image and its corresponding
truth value, and the negative sample was the image pair consisting of the input image and
the image generated by the generator.
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Figure 4. Underwater image enhancement network discriminator. The basic unit structure of the
discriminator part was the same as that of the generator part, and the input of the discriminant
network was two 3-channel RGBs.

The loss function of the network consisted of three parts: the conditional admixture
loss, the reconstruction loss, and the perceived loss in a generative admixture network; the
goal of the loss function was to make the distribution of the generated samples and actual
samples as close as possible. The Pix2Pix network is a variant of a conditional GAN. The
loss function is shown in Equation (1):

LcGAN(G, D) = Ex,y[logD(x, y)] + Ex,z[log(1− D(x, G(x, z)))] (1)

where x is an underwater degradation image; y is a clear underwater image; and Z is
random noise.

The goal of generator G was to learn the mapping relationship between the sample
space X and the sample space Y. The purpose of the discriminator D was to identify whether
the image was an actual image as accurately as possible. If the input of the discriminator
was a virtual image, the output of the discriminator was 1; otherwise, the result was 0.
The goal was to minimize the loss function and maximize the loss function of D, thus
achieving learning. Besides the conditions against loss, the loss function of the network
design included refactoring losses to constrain the similarity between the input image and
the generated picture; the most commonly used refactoring losses include the L1 and L2
equidistance measure functions. Studies have shown that images with the L1 distance
constraint, based on Laplacian priors, are more transparent; therefore, the L1 distance, as
shown in Equation (2), was used as the reconstruction loss:

LL1(G) = Ex,y,z[[‖ y− G(x, z) ‖]1] (2)

To preserve the details of the generated image and prevent the loss of the textural
information of the image, perceptual loss was introduced into the loss function. Perceptual
loss is not a constraint on the pixel level of the image, but rather a constraint on the
high-level semantic information of the image. The perceptual loss was calculated by the
generated image and the truth value in the pre-trained VGG16. The distance between
feature maps generated at specific layers of the network and the perceived loss function are
defined in Equation (3):

LPerceptual(G) =‖ ϕ(x)− ϕ(G(x)) ‖2
2 (3)

Therefore, the optimization objective function of the final underwater image enhance-
ment network is shown in Equation (4), where λ and µ are the weights of the L1 loss and
perception loss, respectively:

G∗ = arg min
G

max
D

LcGAN(G, D) + λLL1(G) + µLPerceptual(G) (4)
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where ϕ is the pretrained feature mapping for the RELU4_2 layer of the VGG16 networks
on ImageNet; λ is the L1 loss weight; and µ is the weight of the perceived loss.

3.2. YOLOv3-Based Lightweight Detection Model

Research has shown that the YOLOv3 algorithm can maintain accuracy while en-
suring a fast detection speed. However, underwater robots are generally equipped with
low-performance embedded computing equipment, so it is difficult for this algorithm
to meet the real-time detection requirements. Therefore, this chapter reconstructs the
backbone network and prediction network of the YOLOv3 algorithm and designs a
lightweight model UW_YOLOV3 for the real-time detection of underwater targets. The
experiments showed that the model had a good detection performance and met practical
engineering applications.

3.2.1. UW_YOLOv3 Trunk Network Establishment

To carry out real-time aquatic product detection on the embedded device Jeston T 2,
this section designs a lightweight detection model based on YOLOv3. Table 1 shows the
number of parameters and the calculation amount of the YOLOv3 trunk network, DarkNet-
53. The table only considers the parameters of the convolution operation. It can be seen that
the total number of parameters was over 41 million, and the calculation amount was 48.9 bf.
However, the total number of parameters in the YOLOv3 model was about 62 million, and
the number of calculations was 65.426 bf. After the analysis, it can be seen that the number
of parameters and the amount of research in the trunk network accounted for 66% and 75%
of the overall model, respectively. It can be seen that most of the calculations of YOLOv3
were concentrated in the trunk network. Based on this, the leading network and prediction
network of the YOLOv3 model were improved in this section to reduce the parameters
and computations of the model and maintain the detection performance with a guaranteed
accuracy. The improved lightweight model was named UW_YOLOv3.

Table 1. Number and computations of DarkNet-53 parameters.

Type Filter Size Output Calculated
Quantities/106

Number of
Arguments

Conv2d 32 3 × 3 416 × 416 299.04 864
Conv2d 64 3 × 3/2 208 × 208 1594.88 18,432
Conv2d 32 1 × 1

×1 = 1772.09 ×1 = 20,480Conv2d 64 3 × 3
Residual 208 × 208
Conv2d 128 3 × 3/2 104 × 104 1594.88 73,728
Conv2d 64 1 × 1

×2 = 3544.18 ×2 = 163,840Conv2d 128 3 × 3
Residual 104 × 104
Conv2d 256 3 × 3/2 52 × 52 1594.88 294,912
Conv2d 128 1 × 1

×8 = 14,176.00 ×8 = 2,621,440Conv2d 256 3 × 3
Residual 52 × 52
Conv2d 512 3 × 3/2 26 × 26 1594.88 1,179,648
Conv2d 256 1 × 1

×8 = 14,176.00 ×8 = 10,485,760Conv2d 512 3 × 3
Residual 26 × 26
Conv2d 1024 3 × 3/2 13 × 13 1594.88 4,817,592
Conv2d 512 1 × 1

×4 = 7088.04 ×4 = 20,971,520Conv2d 1024 3 × 3
Residual 13 × 13

Sum DarkNet-53 structure 48,960.11 40,549,216

The YOLOv3 backbone network had a total of 52 convolution layers, was made up
of 23 pairs in 1 × 1 and 3 × 3 convolutions of a residual block, and used five convolution
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layers for the sampling operation. The 1 × 1 channel convolution was mainly used for
compression characteristics. To reduce the model size, a 3 × 3 traditional convolution was
used to extract the feature, while at the same time extending the output channel number.
The number of convolutional layers in the UW_YOLOv3 trunk network designed in this
paper was reduced, as shown in Figure 5. The trunk network had only 20 layers in total.
Secondly, the convolution mode was improved. The original standard 3 × 3 convolution
was replaced by the improved depth-separable network module RI-DSC. In addition, the
Conv module with a step size of 2 was used for the down-sampling operation, which
further strengthened the information communication ability between the channels of the
feature graph. The above process reduced the network parameters and calculation amount
and maintained specific feature extraction abilities.
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In Figure 5, the shape of the output feature graph for the layer is in parentheses for each
module. The number on the left of the module represents how many times the module was
repeated. Crow-1 represents the first lower sampling layer of the image input. The scale
transformation was realized by extracting features with a step size of 2 through standard
convolution. After each Conv module, the depth of the feature graph doubled, but it did
not increase in the RI-DSC module. The specific structural parameters of the UW_YOLOv3
trunk network are shown in Table 2, where the filter shape represents the width, height, and
depth of the convolution kernel, which were 1, 1, and 3 × 3, respectively. The parentheses
after the convolution represent the number of convolution kernels. Since multi-scale
convolution kernels were used in this paper, the output channel of the features of the layer
was equal to the sum of the number of the two convolution kernels. By comparing the
UW_YOLOv3 and YOLOv3 trunk networks, it can be seen that the parameter number and
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computation amount of the main thousand networks after lightweight were significantly
reduced by orders of magnitude. The parameter number and computation amount were
only 20.3% and 9.93% of the YOLOv3 trunk network, respectively, while the effective
3 × 3 convolution layer of feature extraction was only reduced to layer 20 and the 1 × 1
convolution layer of the compression channel was canceled.

Table 2. Comparison of quantitative results of underwater image enhancement.

Image Original Image MSRCR MSRCR +
DehazeNet Methods

Entropy 6.35 6.48 7.18 7.26
Standard deviation 20.4 23.6 36.0 38.4

3.2.2. UW_YOLOv3 Prediction Network Establishment

A high-resolution net (HRNet) is a network that can maintain high-resolution features
throughout the whole process. The network can support a large resolution feature map
through the same operation and use it as the leading network. Then, low-resolution sub-
networks are gradually added in parallel to the top grid, and the parallel networks are
connected to form the feature of multi-scale fusion. In this way, semantic information from
different low-resolution parts can be received in the main primary work to improve the
representation ability of the large-scale aspects of the network. As a result, the predicted
key features are more spatially accurate [17].

Figure 6 is a schematic diagram of the HDNet network model structure. The abscissa
represents the depth of the network and the ordinate represents the width of the network.
The sub-networks of the second and third lines were low-resolution networks built in
parallel in the leading network process, and the information exchange between networks
of different scales was realized through up-sampling and down-sampling operations. The
features of different scales were fused many times.
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The network had two advantages:

(1) HRNet can always maintain high-resolution features and will not lose feature details
due to down-sampling operations, nor will it be unable to fully represent all upper-
level information due to up-sampling recovery features.

(2) The HRNet feature fusion method can make predictions more accurate. In this
network, different scale fusions are used many times, and low-resolution high-level
semantic information is used to improve the capability of the high-resolution feature
representation.
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To improve the detection accuracy of the network, this paper improved the original
feature fusion part of the network, introduced the HRNet network to increase the capability
of high-resolution feature characterization, and realized multi-scale prediction from the
output of low-resolution features. As shown in Figure 7 for the improved feature fusion
part, components with scales between 13, 26, and 52 were connected in parallel. DSC was
used at the same-scale layer to amplify the network depth. When multiple features were
combined, they were stacked along the direction of the depth of the feature map, and then
the 1 × 1 convolution was adopted to carry out the channel fusion. Finally, the multi-scale
prediction was retained with the YOLOV3 sample.
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3.2.3. UW_YOLOv3 Network Construction

In this paper, the UW_YOLOv3 network model was built by combining the designed
backbone network and the prediction network. The prediction part first used convolution
for scale adjustment. The characteristic output depth of the last layer was required to conform
to the detection principles of the YOLOv3 algorithm, with a depth = 3 × (5 + Len (class)). The
overall network structure was improved as follows compared with the YOLOv3 network:

(1) The standard 3 × 3 convolution was replaced with a profoundly separable network,
significantly compressing the network model;

(2) Inception was introduced for multi-scale feature extraction to improve the feature-
extraction capability of the convolutional layer;

(3) A reset structure was adopted so that the network only learned residuals and speed-up
training;

(4) The parallel connection mode of HRNet was used to improve the expression ability of
the high-resolution features of the network.

3.3. Data Network Parameter Transfer Based on Transfer Learning
3.3.1. Transfer Learning

The concept of transfer learning was born in the NIPS seminar in 1995 and has
attracted extensive attention from experts and scholars at home and abroad. Its main idea
is to transfer the knowledge learned from one or more source fields with a large amount
of data to another target field with a small amount of data. Transfer learning has been
comprehensively reviewed and is divided into three types: inductive transfer learning,
direct transfer learning, and unsupervised transfer learning [22], wherein the data of the
source domain and target domain of the inductive transfer learning are labeled, but the tasks
of the source domain and target domain are different. The source domain of direct transfer
learning has labels, while the target domain does not; however, the missions of the source
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domain and target domain are the same. In machine learning, inductive transfer learning is
a widely used transfer-learning method, which is also divided into instance-based, feature-
based, parameter-based, and knowledge-based transfers. Parameter transfers in inductive
transfer learning are the most used in deep-learning-based object detection.

3.3.2. Design and Implementation of Parameter Transfer Algorithm

In computer vision, the most influential extensive sample dataset is the ImageNet
image classification dataset, which contains about 1.2 million training images, 50,000 verifi-
cation images, and 100,000 test images. There are 1000 different categories. Since target
detection tasks and image classification have certain commonalities, target detection net-
works usually use an image classification network as their backbone, as shown in Figure 7.
The Faster R-CNN network used in this paper adopted the VGG16 classification network
as its backbone. Because the labeling cost of object detection data is much higher than that
of image classification data, the number of general object detection datasets (such as the
Pascal VOC and Microsoft COCO dataset) is much smaller than the number of ImageNet
image classification datasets. At present, almost all target detection algorithms based
on depth studies will advance using the ImageNet dataset classification task of training.
Using trained model parameters as the initial weights of target detection network avoids
overfitting the problem of small sample data and can, to a certain extent, improve the
convergence speed and precision of the models.

However, the ImageNet dataset categories are common categories of raw images taken
on land, such as cars and cats, which are different from the target domain of underwater
target detection problems. Therefore, using VGG16 for the parameter initialization of
an underwater target detection network trained on ImageNet does not help improve the
detection accuracy of submerged targets. To solve this problem, this section proposes
specific steps of parameter migration based on the underwater target detection network
as follows:

(1) An underwater biological classification dataset was constructed. The acquisition of
tags in the biological classification dataset was much easier than in the underwater
target detection dataset. There were many seafood image data with corresponding
labels on the Internet. In this paper, many sea cucumbers and sea urchins were ex-
tracted from Google and Baidu, respectively. Crawling scallop images were screened.
Finally, a dataset of three seafood categories was obtained, including 10,230 images:
3105 sea urchin images, 3715 sea cucumber images, and 3410 scallop images.

(2) The parameter migration of the ImageNet classification network was due to VGG16.
The parameter space was ample, and it was easy to overfit and slow to converge
when using the constructed seafood classification dataset to train the VGG16 network
directly. Therefore, this paper firstly initialized the seafood classification network by
using the parameters obtained by VGG16 training on the ImageNet dataset, and then
carried out the first parameter migration.

(3) The network was fine-tuned. The parameters of the first 15 layers of the initialized
VGG16 network were fixed and the last layer was fine-tuned.

(4) Several iterations were performed on the seafood dataset, restoring the learning rate
of the first 15 layers and the trained VGG16.

(5) Parameter migration was performed for the marine classification network. The model
parameters obtained in the previous step initialized the backbone network of the
underwater target detection network and carried out the second parameter migration.

4. Experiments and Results
4.1. Underwater Image Enhancement Based on a Generative Adversarial Network

The dataset used in the experiment came from the offline target detection group of the
Underwater Robot Target Capturing Contest (URPC2017). The dataset had 19,967 underwa-
ter images; the proposed method to deal with the dataset was to build an underwater-style
migration dataset, deal with the filtered data, and choose 1500 underwater images. The
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underwater-style migration dataset is established in this paper. In this chapter, through
the established underwater-style migration datasets, 375 images from 18,467 photos in the
URPC2017 dataset that did not participate in underwater image enhancement network
training were randomly selected for testing in order to train the network on underwater
image enhancement.

When training the underwater image enhancement network based on an adjunctive
generative network, the image input size was set to 256 × 256; the initial learning rate was
0.0002; the number of network training samples each time was 1; the weight coefficient of
L1 loss and the weight coefficient of perceived loss were set to 120 and 0.0001, respectively;
and the Adam optimizer was used with a momentum of 0.5 for gradient updates.

Table 2 compares the quantitative results of different underwater image enhancement
methods on the test dataset. In the table, the data with the best performance are bolded. As
the original image had poor detail and low contrast, its entropy and standard deviation
were small. The methods involved, to a certain extent, improving the quality of the image,
the image’s entropy, and the traditional deviation values; however, this paper adopted the
MSRCR DehazeNet method based on further enhancing the image entropy and standard
deviation values, which showed that the proposed underwater image enhancement method
resulted in better image texture retention and image contrast enhancement performance.

This paper adopted the alternate training method. To further visualize the loss during
the training process, loss curves of four training stages of the model were drawn, as shown
in Figure 8. Note that Figure 8a–d represent YOLOv3-416, YOLOv3-tiny-416, UW_YOLOv3-
416, and UW_YOLOv3-224, respectively.
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4.2. Yolov3-Based Lightweight Detection Model

As shown in Table 3, the detection accuracy of the UW_YOLOv3 designed in this
paper improved on the lightweight algorithm YOLOV3-TINY by 7.9% at the same image
scale input. Compared with other large algorithms, the detection accuracy was lower, but
the detection speed was much higher. Compared with the SSD algorithm, the detection
accuracy was only 4.7 times lower; the speed was 40.9 FPS higher; and the rate was nearly
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16 times higher than Faster R-CNN. When the input scale was 224, although part of the
accuracy was lost, the detection speed doubled, reaching 156.9 FPS. Therefore, it can be
seen that the lightweight network designed in this paper was able to maintain a guaranteed
detection accuracy and a high speed, basically meeting the real-time detection requirements
for embedded devices.

Table 3. Comparison of the detection effects of different algorithms.

Algorithm Trunk Network AP50 AP75 FPS

Faster RCNN-600 ResNcl-101 75.6 62.7 5.1
SSD-512 VGGNet-16 66.5 51.6 39.3

YOLOv3-416 DarkNet-53 71.9 53.5 48.7
YOLOv3-tiny-4l6 DarkNet-tiny 53.9 38.1 96.5
UW_YOLOv3-4l6 RI-DSC 61.8 49.3 80.2
UW_YOLOv3-224 RI-DSC 54.1 39.7 156.9

4.3. Data Network Parameter Transfer Based on Transfer Learning

The dataset used in the experiment came from the data of the offline object detection
group of the Underwater Robot Target Picking Contest (URPC2018). The dataset included
four categories: sea cucumbers, sea urchins, scallops, and starfish, with 3701 underwater
images, including 2901 training data points and 800 test data points.

Figure 9 shows the comparison of the mAP curve trends for parameter migration based
on the seafood classification network and parameter migration based on the ImageNet clas-
sification network for target detection networks in small-sample scenarios, with an increase
in iteration times during the training process. The network parameters of migration, which
were found for the marine classification, not only sped up the convergence rate to save
network training time, but also improved the accuracy of the detection network, which
enhanced the performance of the target detection. Table 4 shows that after 70,000 iterations,
the different target detection models for different categories of detection precision were
based on ImageNet only. When a parameter migration of the classification network was
carried out, the average accuracies of the detection network for sea urchins, scallops, and
sea cucumbers were 84.6%, 44.7%, and 64.9%, respectively, and the overall average accuracy
was 69.7%. When a parameter migration based on the seafood classification network was
carried out, the overall average accuracy of the detection network for sea urchins, scallops,
and sea cucumbers was 84.8%. The average accuracies for sea urchins, scallops, and sea
cucumbers were increased by 0.2%, 3.7% and 4.5%, respectively, compared with the former.
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Table 4. Accuracy comparison of detection network, with or without parameter migration, in different
categories.

Method Sea Urchin Scallop Sea Cucumber MAP (%)

ImageNet Parameters of the
Migration 84.6 44.7 64.9 64.7

Classification of Seafood
Parameters of the Migration 84.8 48. 4 69.4 67.5

Based on the classification of marine network parameters, the use of migration to
improve the detection precision of the target model was especially important for the
detection of scallops and sea cucumbers, but not for sea urchins. This is mainly because sea
urchins are characteristically bright, making it easy to distinguish the original network once
the identification precision of sea urchins reaches a reasonable level. Hence, the parameters
of the transfer operation through the marine classification network for the ascension of the
detection accuracy were not significant. Still, for scallops, parameter migration can transfer
the knowledge learned in the classification network to the detection network to improve
the detection ability for scallops and sea cucumbers in the detection network.

5. Discussion

In this paper, the problem of underwater target detection based on deep learning
was studied. The main factors restricting the improvement of underwater target detection
accuracy were analyzed in depth. The research results are as follows:

(1) To solve the problem of underwater image degradation, an underwater image en-
hancement method based on a generative adventure network was proposed and im-
plemented to establish an underwater-style migration dataset by combining MSRCR
and DehazeNet.

(2) Aiming to solve the problem of insufficient real-time detection of the YOLOv3 al-
gorithm in embedded devices, the lightweight network model UW_YOLOv3 was
designed by improving the structure of its backbone network and predictive network.
In the trunk network, a deep convolution separable network was introduced to re-
place the standard convolution, a 1 × 1 convolution was introduced to increase the
network width, and a 20-layer trunk network was built by using this unit to replace
DarkNet-53. This was introduced to the predictive network to improve the traditional
feature fusion method so that the network always maintained the capability of high-
resolution feature representation. The experimental results showed that the number
of parameters of the improved backbone network was only 20% of the original, which
achieved the purpose of being lightweight, and the detection speed doubled to 98.1
FPS while maintaining a detection accuracy of 58.1%. The detection accuracy of the
improved predictive network was improved by 3.7%. Compared with other algo-
rithms, the lightweight UW_YOLOv3 network designed in this paper dramatically
improved the detection speed at the expense of a small part of the accuracy, and
its 61.8% accuracy and 80.2 FPS detection speed met the requirements of practical
engineering applications.

(3) Given the small in-sample problem caused by the difficulty of the large-scale acquisi-
tion of underwater images, a solid supervised underwater target detection method
was proposed and implemented in a small-sample scenario. The idea of transfer learn-
ing was used to realize the transfer of seafood classification knowledge to underwater
target detection knowledge and improve the convergence speed and detection accu-
racy of the detection network. The data augmentation of an underwater image was
completed using a spatial variation network, which strengthened the robustness of the
detection network in the targeting of spatial transformation. This solved the problem
of the network model being easy to overfit under the condition of small samples.
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6. Conclusions

This paper conducted in-depth research on underwater target detection methods
based on deep learning. From data enhancement, to network model design, to embedded
device realization, good results were achieved. However, there are still some shortcomings,
which in-depth glasses could further improve:

(1) Due to the influence of a complex underwater environment, accurate underwater
image data are seriously lacking. Although data amplification can increase a part of the
data in this paper, it is still much lower in order of magnitude than the above-ground
database, which significantly limits the accuracy of underwater target detection. At
the same time, this paper has not considered the fuzzy problem of dynamic robot
images, which affects the accuracy of underwater target detection in practice. In
subsequent underwater target detection technologies, more attention should be paid
to the study of data quantity and quality, and the problem of non-target occlusion in
underwater target detection should be further studied.

(2) The high-resolution network-holding model was introduced into the underwater
lightweight model prediction network to maintain the feature expression ability of
a high resolution, which improves the detection ability of small targets to a certain
extent. However, there is still an issue of the partial detection of large targets, and the
positioning deviation is significant, especially for some targets that account for more
than 30%. Therefore, we need to investigate a detection method that accounts for a
relatively large target.
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