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Abstract: Nuclear safety has always been a focal point in the field of nuclear applications. Mobile
robots carrying specific sensors for nuclear-radiation detection have become an alternative to manual
detection. This work presents an autonomous α/β radiation mapping framework, using a mobile
robot carrying a light detection and ranging (LiDAR) and a nuclear-radiation-detection sensor.
The method employs simultaneous localization and mapping (SLAM) techniques and radiation-
detection sensors. Cartographer is adopted as a demonstration example to map the unknown
environment. Radiation data are obtained through the radiation detection sensor and projected onto
the environment map after coordinate alignment. The color-coded radiation map is shown on the
environment map according to the dose rate. The simulation and real-environment experiments in a
robot-operating system (ROS) validate the effectiveness of the proposed method in different radiation
scenarios for both indoor and outdoor environments.

Keywords: SLAM; map fusion; nuclear radiation; surface contamination

1. Introduction

The threat of nuclear leakage is growing as nuclear energy becomes more widely
used in the new energy-generation field. Quantification of radiation dose in and around
a nuclear facility (radiation mapping) is crucial. Thanks to advances in robotics and the
increasing concerns about human and environmental safety [1], using robots carrying
radiation-detection sensors has become a promising alternative to manual detection, as it
avoids human exposure to radiation.

Different radiation-detection methods are used according to the types of radiation.
There are two common types of radiation in nuclear applications: charged particles, such as
α-rays, β-rays, and protons; and uncharged particles, such as X-rays, γ-rays, and neutrons.
Currently, most of the detection of nuclear radiation is for X-rays and γ-rays [2], while
there seems to be relatively little research on the detection of α/β radiation. Although
α/β radiation is relatively easier to shield, both internal exposure from α-rays and external
exposure from β-rays can cause substantial damage to the human body. In addition,
the accurate detection of α/β radiation allows the location of the radiation source to be
identified, thus avoiding radiation interference with the micro-components in the integrated
circuit board. Detection for α/β radiation can be divided into three categories: direct
detection, indirect detection, and scan detection [2].

Both direct and indirect measurement methods, mainly operated by humans in the
potentially contaminated area, are unable to measure total regional radiation levels, and the
accuracy of the measurements is hardly guaranteed. On the other hand, the scan-detection
method, which achieves autonomous radiation detection by fixing a radiation detector
to a mobile robot, has attracted attention in recent years [3]. Scan detection allows for
better radiation detection due to the robot’s autonomous exploration capabilities. However,
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detecting the radiation intensity and its location and then projecting the results on an
environment map for better man–machine interaction is still an open problem. SLAM is an
effective technique to solve this problem.

In the absence of a priori environmental information, SLAM uses a robot carrying
specific sensors to model the environment during motion, while estimating its motion [4].
SLAM has become one of the essential technologies for the autonomous localization and
navigation of unmanned systems since it does not rely on satellite signals but only uses
sensor information to achieve localization and navigation. An intuitive idea to achieve
autonomous nuclear-radiation detection is to equip the robot with a radiation detector and
build a map of the environment by using SLAM methods. The radiation-detection results
are then aligned and fused with the scene map. Autonomous nuclear-radiation detection
consists of two steps: scene map building and the fusion of radiation detection results with
the scene map.

Scene mapping uses SLAM to represent information about the scene. Maps have
different forms depending on their characteristics and applications, such as sparse-feature
maps, point cloud maps, topological maps, and grid maps [5–8]. In order to enable the
robot to navigate autonomously through the radiation environment, as well as follow a
specified path to detect the radiation results, the prerequisite is to build a grid map of the
radiation scene. The grid-map-building method was first proposed by Elfes [9]. The idea is
to divide the entire working environment into homogeneous grids and propose the use
of probabilities to indicate the likelihood of obstacles in each grid. The grid map plays an
important role in numerous robotic applications such as localization [10], exploration [11],
and mapping performance benchmarking [12]. The Gmapping algorithm is an open-source
SLAM algorithm based on a filtering SLAM framework, which is also commonly used for
grid map building [13]. The Gmapping algorithm is widely used to implement SLAM in
robots with LiDAR and overcomes the disadvantages of particle dissipation of the RBPF
algorithm [14]. Today, the most famous open-source SLAM algorithm is Cartographer,
which was developed by Google [15]; it combines LiDAR and inertial measurement unit
(IMU) data to generate a real-time two-dimensional grid map.

The projection of the radiation results on the scene map is essentially a multi-source-
information-fusion problem. The basic principle is to make full use of multi-sensor obser-
vation information. According to certain criteria, the complementary information from
multiple sensors is combined in space or time to obtain consistent information. Asharif et al.
proposed the use of Bayes’s method and De Morgan’s rule in a grid map to accomplish
the fusion of different sensor data [16]. Besada-Portas et al. proposed a delay estimation
TDE algorithm for mobile chassis environment-aware sensor fusion [17]. This algorithm
completes the data synchronization of all types of sensors according to the timestamp, thus
ensuring the accuracy of all types of sensor inputs and the fused model. Krystian Chachuła
et al. proposed an enhanced algorithm for multi-sensor data fusion that is used for the
detection of pollutants in wastewater [18]. Kai et al. combined scene-data fusion (SDF) with
localization and mapping (LAMP) to propose a method for imaging three-dimensional γ
nuclear-radiation sources [19]. Manish K. Sharma et al. proposed a statistic-based grid-
refinement method for backtracking the position of a γ-rays source in a three-dimensional
domain in real time [20].

With regard to the location of different types of nuclear radioactive sources, researchers
have been focusing on estimating the location of radioactive sources from radiation dose
rates measured by nuclear-radiation detectors on mobile robots. Typical methods include
the least-squares methods, maximum likelihood estimation methods, geometric methods,
and Bayesian estimation algorithms [21–24]. These methods are good choices when it
comes to X-rays and γ-rays since these rays can travel to a much farther distance compared
to α/β radiation, and the detector has to determine the source location according to the
radiation data.

The application of mobile robots to monitor radioactive areas has increased signifi-
cantly since the Fukushima Daiichi nuclear power plant leak in 2011. Currently, most of the
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mobile robots that have been designed for radiological features of the Fukushima Daiichi
nuclear power plant are applied for γ-rays detection. For instance, the JAEA-3 [25] and
Quince [26] robots have been deployed for γ-rays monitoring at the Fukushima nuclear fa-
cility. The RICA robot was developed by the French Alternative Energy and Atomic Energy
Commission and Cyberia France, which has also been deployed to operate nuclear facilities
for γ-ray detection [27]. In addition, the Georgia Institute of Technology developed a suite
of robots for detecting and locating embedded γ-rays and neutron sources [28]. However,
research on mobile robots for α/β radiation detection is not yet sufficient. Though the
CARMA robot developed by the University of Manchester in collaboration with Sellafield
Site is capable of α/β radiation detection [29], the CARMA platform is only applicable to a
small range of scenarios and cannot meet the needs of a large range of environments such
as nuclear plants.

As α/β radiation dies out when it is even a few centimeters away from the radiation
source, we can take the position where the radiation is detected as the location of the
radiation source. So, different from the aforementioned work, this paper presents a mobile
robot solution that can be used for autonomous detection of α/β radiation. In this study,
the surface-contamination detector was equipped with a Turtlebot2 robot for α/β radiation
monitoring. In particular, the surface-contamination detector is a self-developed radiation
detector that can be used for surface-contamination monitoring [30]. In addition, the
methodological framework proposed in this paper is also applicable to the X-rays/γ-rays
environment if the appropriate sensor is utilized, meaning that, once the robot pose is
obtained, we can always locate the source of radiation since we know the relative coordinate
between the robot and the radiation detector when the hardware is designed.

This paper is organized as follows. Section 2 describes the hardware materials and
method proposed in this paper. Section 3 presents the simulation and experiment re-
sults. The analysis of the results is also conducted in this section. Section 4 discusses the
experimental details of this paper and its contributions. Section 5 concludes the paper.

The abbreviations used in this paper are listed in Table 1.

Table 1. The abbreviations used in this paper.

Abbreviations Full Name

LiDAR Light detection and ranging
SLAM Simultaneous localization and mapping
IMU Inertial measurement unit

LAMP Scene-data fusion
SPA Sparse pose adjustment
BBS Branch-and-bound scan matching

TCP/IP Transmission control protocol/internet protocol
RMSE Root mean square error

TF Transform frame
ROS Robot operating system
STD Standard deviation
SSE Sum of squares error
APE Absolute trajectory error

2. Materials and Methods
2.1. Hardware Materials
2.1.1. Robotics Platform

This study used Turtlebot2 as a vehicle for radiation detection and map building.
Turtlebot2 is a robotic platform manufactured by Willow Garage, California, USA. Turtle-
bot2 is shown in Figure 1. It includes NVIDIA JETSON TX2, KOBUKI chassis.RPLiDAR A2
LiDAR, etc.
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Figure 1. Robotics platform.

The Turtlebot2 is driven by KOBUKI and is equipped with a three-axis digital gyro-
scope, collision sensor, cliff sensor, and wheel encoder. KOBUKI is a robotic chassis from
Yujin Robot that is widely used as a robot research platform. The odometry information
is provided by the wheel encoder. The Turtlebot2 is equipped with the NVIDIA JETSON
TX2, which is an embedded system developer module. The mobile robot platform is also
equipped with LiDAR and a surface-contamination monitor. The LiDAR enables real-time
distance and angle information to be measured between the mobile robot and its surround-
ing obstacles. This information is mainly used by the mobile robot for the creation of a
two-dimensional grid map of the searching area and positioning and obstacle avoidance
when it comes to autonomous navigation. The LiDAR used in this study is RPLiDAR A2,
which has a maximum effective measuring distance of 40 m and an effective scanning angle
of 360 degrees. The surface-contamination monitor used in this system was developed by
the China Institute for Radiation Protection [30]. More detail is given in the next subsection.

2.1.2. Surface Contamination Monitor

The surface-contamination monitor used for radiation mapping is shown in Figure 2,
and the main parameters are given in Table 2.
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Table 2. Main parameters of the surface-contamination monitor.

Performance Parameters

Measured energy range a > 2.5 MeV, β > 100 keV
Detection efficiency a: ≥ 25%(Am-241); β: ≥ 30%(Sr-90/Y-90)

Effective area 10 × 17cm2 × 8
Operating efficiency ≥3 m2/min

Figure 2 shows the construction of the surface-contamination monitor, which consists
of a shell, photomultiplier tube, plastic, scintillator, and light-proof aluminum foil. The
surface-contamination monitor operates at a distance of 0.5–1 cm from the ground, and
the measurement mode is a two-channel counter, which measures α/β radiation dose
values separately.
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The detection principle is that, when α/β particles enter the sensitive zone of the
composite scintillator, the particles interact with the respective sensitive detection media in
the composite scintillator to produce light pulses of different amplitudes. The light-pulse
signal is transformed into an electrical-pulse signal through the photomultiplier tube. After
preprocessing by the signal-processing unit, the count rates of the α and β signals are
recorded by the microcontroller system, and the detection results are then output.

In the radiation-detection process, when the α/β radiation-contamination area is
smaller than the detector window area, the surface-contamination monitor is used to detect
the contamination plane directly. The surface emissivity of the contaminated area and the
surface activity of the contaminated area are calculated according to Equations (1) and (2):

q =
Ni − Nb

Ri
(1)

A = Q×Ni − Nb
Ri×S

(2)

where q is the surface emissivity, with unit (s× 2πsr)−1; Ni is the average of the in-
strument’s dose rate, with unit s−1; Nb is the average of the instrument’s background
measurements, with unit s−1; Ri is the surface emissivity response of the corresponding
magnitude of the nuclide, with unit Bq; A is the surface activity, with unit Bq/cm2; Q is the
ratio of the standard surface activity to surface emissivity; and S is the area of the detection
window of the surface contamination monitor, with unit cm2.

When the α/β radiation-contamination area is larger than the detector-window area,
the effect of uneven contamination areas on the measurement results must be taken into
account. The presence of inhomogeneous contaminated areas is determined by moving the
detector to measure different contaminated areas. If the contaminated area is homogeneous,
radiation detection is carried out directly by using a surface-contamination monitor. The
surface emissivity of the contaminated area and the surface activity of the contaminated
area are calculated according to Equations (3) and (4), respectively:

q =
(Ni−Nb)× S1

Ri×S
(3)

A = Q× (Ni−Nb)×S1

Ri×S2 (4)

where S1 is the area of the contaminated area.
When the contaminated area is not homogeneous, the multi-point measurement

method can be applied. After selecting different locations in the contaminated area for
measurement and calculating the surface emissivity and surface activity at each point in
the contaminated area according to Equations (3) and (4), the average of the results at each
point is considered as the measurement of the contaminated area.

2.2. LiDAR SLAM

In this section, some common LiDAR SLAM algorithms are introduced. The basic
process of LiDAR SLAM involves a mobile robot starting from any area in an unknown
environment and building a map of the environment, while obtaining environmental infor-
mation based on the LiDAR it carries. The SLAM problem can be formulated as follows:

p(x 1:k , m|z 1:k, uk−1) (5)

where z1:k, uk−1 represents the measurement from LiDAR and the control input, x1:k repre-
sents the pose of the robot from time 1 to time k, and m is the map built till time k.

The SLAM problem is an estimation problem. Based on the estimation theory em-
ployed, there are two categories of SLAM approaches: filter-based approaches and non-
linear optimized approaches. The key technique of filter-based localization approaches
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is Bayesian filtering or its derivatives. Non-linear optimized approaches, mainly graph-
optimization SLAM approaches, estimate the poses of the robot and landmarks of the
environment to get the trajectory of the robot and the map of the environment. The
cumulative error caused by various noises is eliminated by means of optimization.

On the other hand, the existing SLAM approaches can also be classified according
to the sensor a robot carries. In fact, all of these approaches can be used to map the
environment with specific premises considered. For instance, if a LiDAR sensor is only
mounted on the robot, we can choose Cartographer, Gmapping, Karto_SLAM [31], and
Hector_SLAM [32]. Furthermore, even for the same type of sensors, for example, if it
is a single-line LiDAR, we can choose among Cartographer, Gmapping, Karto_SLAM,
and Hector_SLAM. If it is a multi-line LiDAR, LOAM and its derivatives are a good
choice. Considering the sensor that we currently mount on our robot, which is a single-line
LiDAR, we aim to build a two-dimensional grid map. Thus, only Cartographer, Gmapping,
Karto_SLAM, and Hector_SLAM were considered in the experiments.

Since Cartographer is well-known for its high mapping accuracy, we take Cartographer
as a demonstration example for the proposed radiation-mapping method. The mapping
process of the Cartographer can be divided into two parts: front end and back end, as
shown in Figure 3. The sensor data are divided into LiDAR data, odometry data, and IMU
data. The LiDAR data are preprocessed by a voxel filter to reduce the amount of LiDAR
data, the IMU data are fused with the Odom data after the IMU tracker, and the fused data
are transmitted to scan matching in the front end for positional interpolation. The front-end
part accepts the processed sensor data and then performs the scan-matching process, which
interpolates the current LiDAR data into the best position of the submap by matching
the LiDAR data. The submap is continuously built with new LiDAR data being inserted.
The front end treats the scan matching of local maps as a quadratic optimization problem,
with the Ceres-solver solving the optimization problem. The back-end part contains the
loop closure, which is implemented by using sparse pose adjustment (SPA) to eliminate
matching errors between submaps. An important part of this process is the scan matching
with the submap; this is performed by using the branch-and-bound scan matching (BBS)
method, improving accuracy and speed considerably.
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The main difference between Cartographer and other two-dimensional SLAM map-
ping algorithms is the use of submap in the scan-matching session. Whenever the scan
data are obtained, they are matched with the most recently created submap, so that the
LiDAR data of this scan can be inserted into the best position on the submap. The mapping
process is run iteratively.

The poses of an autonomous mobile robot can be represented by ξ = (ξ x, ξy, ξθ
)
,

with ξx and ξy representing translations in the x and y directions, respectively, and ξθ

representing rotations in the two-dimensional plane. The scan data are added to the
submap coordinate system through Equation (6):

Tξ p =

(
cosξθ −sinξθ

sinξθ cosξθ

)
p+

(
ξx
ξy

)
(6)

where Tξ represents the position pose transformation from the point cloud coordinate
system to the corresponding submap coordinate system, which transforms the point p in
the point cloud from the point cloud coordinate system to the submap coordinate system.

Cartographer represents the submap by using a probability grid; each pixel stores
the probability value of the occupied grid point. The occupancy probability values are
updated according to the pose of each map point in the submap coordinate system. The
Ceres-based scan matcher calculates the pose of the LiDAR-scanned point cloud in the
submap, which converts the pose solution to a nonlinear least-squares problem, which is
expressed as Equation (7):

argmin
ξ

K

∑
k=1

(1−M smooth(T ξ p))2 (7)

where Msmooth represents a bicubic interpolation function.
Cartographer achieves accurate mapping of large scenes by creating a large number of

submaps. The pose estimates obtained by scan matching between the current laser scan and
multiple neighboring laser scans are reliable in a short period but accumulate incorrectly
over time. Consequently, loop closure is implemented to reduce the cumulative error.
Cartographer applies the branch and bound optimization method to reduce computational
cost and improve real-time performance. The optimization problem can be described
as follows:

argmax
ξ∈ω

K

∑
k=1

Mnearest(T ξ hk) (8)

where ω is a search window size, K is the last scan point, Mnearest is the extension of the
nearest grid point in Msmooth, and hk represents the LiDAR measurement data.

2.3. Methods

Map fusion is the main contribution of this work, which focuses on a grid map and
radiation map fusion. Figure 4 illustrates the map fusion process framework. After building
the scene map using the Cartographer algorithm, the robot can locate itself in the scene.
The mobile robot carries a surface contamination monitor to detect radiation source data
on the scene. The position of the radiation source in the scene is determined by means of a
transform frame (TF)coordinate transformation relationship, which enables the radiation
source to be located. When the radiation data are transmitted to the robot operating
system (ROS) via the data interface, the radiation data and grid map are fused by means of
data-fusion methods to obtain detailed information on the radiation scenes, as well as the
map information.

In order to realize the map fusion of the environment map and the radiation data, the
data communication interface that can receive the radiation data collected by the radiation
sensor needs to be designed. In this communication setup, the sensor communication
protocol is transmission control protocol/internet protocol (TCP/IP). Message interoper-
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ability is driven via a custom interface. Finally, when radiation information is detected, it
is transmitted to ROS for algorithmic processing to complete the radiation-map building.
Since different two-dimensional SLAM algorithms perform differently in their particular
operating environment, we propose a framework for radiation mapping that is appropriate
for the common two-dimensional SLAM. This framework allows the flexibility to switch
algorithms depending on the environment in which two-dimensional SLAM is applicable.
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The proposed map fusion approach takes reference from the Costmap approach [33],
where the robot can obtain an all-around perception of the surrounding terrain’s state
through this map. Costmap is a type of map that is attached to the robot. It uses the robot
as the coordinate origin at all times and represents the navigation environment around the
robot through the probability values of the grid map.

As shown in Figure 5, where the static layer is the static map of the scene, the obstacles
layer is the obstacles detected by the LiDAR during the detection process, the radiation
layer is the radiation map layer detected by the surface contamination monitor, and the
global map is a layer superimposed from the three mentioned layers. The radiation layer is
initially a blank Costmap, which has the same dimensions as the grid map generated by
Cartographer. Afterward, the radiation values are tagged into the radiation layer based on
the radiation data returned by the interface callback during the robot’s radiation detection.
The radiation layers are superimposed on the global map for map fusion. During the
detection process of the mobile robot, not only is radiation information added to the global
map but also part of the obstacles is detected and updated to the obstacle layer. At the
same time, the global map is updated with the obstacle layer.
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2.4. System Modeling in ROS

This part is about modeling the robot system in ROS. The first step is the model
construction of the Turtlebot2 robot. The modeling results are shown in Figure 6. The
Turtlebot2 was equipped with LiDAR for grid-map building. Furthermore, the model of the
surface-contamination monitor was completed based on the characteristics of the sensor,
and the feasibility of the model was verified in ROS.
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The model building process is shown in Figure 7. First of all, the physical parameters
of the sensor are set and the sensor is modeled in Gazebo according to these parameters.
Since the radiation sensor consists of eight detection windows, eight separate windows
are added to the modeled robotics system. The communication interface described in
Section 2.3 is set up for radiation data transmission.
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3. Experiments

We conducted a group of experiments to verify the proposed method. Firstly, we
tested four algorithms for two-dimensional SLAM on a public dataset and analyzed the
performance of the four algorithms by using the EVO tool. Secondly, we completed the
radiation mapping in a simulation environment, and the accuracy of the data detected by
the radiation sensors was evaluated. Finally, we experimented with the abovementioned
four two-dimensional SLAM algorithms in real-world scenarios and used Cartographer to
build the radiation map in both indoor and outdoor environments.
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3.1. Comparison of Different SLAM Methods on a Public Dataset

We evaluated the performance of the Cartographer by using the publicly available
dataset MIT STATA [34], and its performance was compared with Gmapping, Karto_SLAM,
and Hector_SLAM since they are all designed for two-dimensional mapping with single-
line LiDAR.

This paper uses the EVO tool to analyze the accuracy of the map [35]. The EVO tool is
often applied in SLAM to evaluate the performance and trajectory accuracy of systems. The
absolute trajectory error is used to calculate the difference between the true value of the
sensor pose and the estimated value of the SLAM system. The relative pose error is used to
calculate the difference between the pose change within two time stamps. The mapping
results of the four SLAM methods are shown in Figure 8. The comparison indicates that
Cartographer builds the map with higher accuracy than Karto_SLAM and Hector_SLAM.
Figure 9 demonstrates the absolute pose errors of the four SLAM methods in terms of
RMSE, MEAN, MEDIAN, STD, MIN, MAX, and SSE, respectively. Table 3 shows the results
of the absolute positional errors of the four SLAM methods.
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Table 3. Statistical summary of absolute pose error.

RMSE
(m)

MEAN
(m)

MEDIAN
(m)

STD
(m)

MIN
(m)

MAX
(m)

SSE
(m)

Cartographer 0.318046 0.244296 0.141310 0.20365 0 0.85211 2739.224
Gmapping 0.478861 0.444957 0.396801 0.176978 0 1.01641 6209.652

Karto_SLAM 0.816053 0.636724 0.427567 0.510436 0 1.65461 18188.1
Hector_SLAM 1.33959 1.14667 1.20988 0.692579 0 2.80609 49009.8
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absolute pose errors of four SLAM methods, (b) statistic errors of four SLAM methods, and (c) box
plots of four SLAM methods.

3.2. Radiation-Map-Fusion Results in the Simulation Environment

The results of the robot’s map fusion during radiation detection are shown in Figure 10.
The nuclear plant simulation environment used in Reference [36] was adopted, as shown in
the Figure 10a,b. In this simulation environment, a single radiation source and multiple radi-
ation sources are added to the simulation environment, respectively. The radiation-mapping
results are shown in Figure 10c,d. Different radiation levels are set during the radiation-
detection process, where green represents low-risk radiation, purple represents medium-
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risk radiation, and red represents high-risk radiation. From the map-fusion results, we can
see that the proposed radiation-mapping method shows promising results for α/β radiation.
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Figure 10. Map fusion results: (a) simulation environment, (b) grid map of the simulated environment,
(c) single-radiation-source map-fusion results, and (d) multi-radiation-source map-fusion results.

Radiation levels are indicated according to different doses of incoming α/β radiation
and are thus shown in different colors on the radiation map. Real-time monitoring of the
radiation distribution can be achieved during the robotic detection of radiation, as shown in
Figure 11. Figure 11a shows the real-time scenes captured by a camera during the detection
process, and Figure 11b shows the real-time radiation-detection results. At the same
time, real-time radiation detection allows the robot to be remotely controlled for radiation
detection, thus protecting human beings from radiation or radioactive sources. As shown
Figure 10b, we implemented a color-coded radiation-map-construction method during the
robot’s real-time radiation detection. We used different radiation cost values to distinguish
radiation risk areas, where green represents low dose values, with a radiation interval of
5–2000 radiation dose values, and its radiation cost value is 102; purple represents medium
dose values, with a radiation interval of 2000–4000 radiation dose values, and its radiation
cost value is 58; and red represents high dose values, with a radiation interval of 4000–6000
radiation dose values, and its radiation cost value is 128. The differentiation of radiation
intensity by color allows the riskiness of radiation areas to be effectively determined.

Figure 12 shows the error analysis of radiation data during radiation detection. This
section shows the dose values for a single radiation source during the detection process
in Figure 11b. Figure 12a shows a comparison between the measured radiation data and
the true radiation data. The horizontal axis indicates the detection process over time, and
the vertical axis shows the radiation dose values; the blue line is the true dose value, and
the red is the actual radiation sensor detection value. Figure 12b shows the results of the
radiation-detection error. The results implicate that the mobile robot detects radiation with
high efficiency in the simulation environment, with a maximum error around ±0.7%, and
the average error is 0.3%.
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3.3. Radiation Map Fusion Results in the Real Environment

In addition to the simulation experiments, the radiation-mapping performance was
also tested in the real environment. The test was conducted in both an indoor environ-
ment and an outdoor environment. The indoor environment is a long corridor in which
Cartographer, Gmapping, Hector_SLAM, and Karto_SLAM were each tested separately.
Figure 13a shows a scene from an indoor environment. Figure 13b–e show the map-
construction results of the four SLAM methods, respectively. The fused mapping of the
scene and radiation is shown in Figure 13f, where a single radiation source was set up for
radiation mapping in an indoor environment, and the radiation-mapping result shows
that the radiation source can be effectively located and detected. It is worth noting that
the two-dimensional-grid map-building algorithm can be selected according to the size
and complexity of the indoor environment, thus achieving higher building efficiency and
accuracy in locating radiation sources.

The outdoor environment was a park located at Taiyuan University of Technology,
as shown in Figure 14a. The scene-mapping results of Cartographer, Gmapping, Hec-
tor_SLAM, and Karto_SLAM are shown in Figure 14b–e, respectively. We can see that
Hector_SLAM and Karto_SLAM build maps with a large drift in this environment. The
reason is that these two SLAM methods have no advantage in larger outdoor scenarios.
Figure 14f shows the results of the radiation mapping in the outdoor environment, where
multiple radiation sources were set up to build a radiation map. We can see that the
radiation sources can be located, and the radiation mapping result is displayed in different
colors according to the level of radiation dose. With excellent performance in outdoor
environments, Cartographer can accurately locate the radiation sources.
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Figure 13. The result of the indoor scene map building: (a) the real environment, (b) the mapping
result of Cartographer, (c) the mapping result of Gmapping, (d) the mapping result of Hector_SLAM,
(e) the mapping result of the Karto_SLAM algorithm, and (f) the radiation mapping result of the
indoor environment with one radiation source.

In the real environment, the mapping process is susceptible to a variety of errors.
Therefore, choosing a suitable map-construction method can improve the localization
accuracy of the radiation source. From the experimental results in Figures 13 and 14, we
can see that Cartographer has a more balanced performance indoors and outdoors, and this
is the reason for its selection in this paper. However, it is worth noting that the other three
grid-mapping algorithms mentioned in this paper have advantages in some environments;
for example, Gmapping shows the best mapping performance when it comes to small
scenes. Therefore, the choice of method for two-dimensional grid-map building is flexible.
The mapping results show that Cartographer has an advantage in building maps in both
indoor and outdoor environments and that the method proposed in this paper has gained
a satisfactory performance for radiation mapping.
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4. Discussion

The α/β radiation-mapping method proposed in this paper is based on the integration
of SLAM methods with nuclear-radiation-detection sensors, providing new means to map
and visualize nuclear radiation for a friendly human–robot integration. It enhances the
accuracy, speed, and efficiency of many applications related to nuclear- and radioactive-
material detection and mapping; performs the monitoring of nuclear-legacy sites and
operational nuclear facilities; offers wider radiation protection (e.g., accelerator facilities);
provides consequence management for both intentional and unintentional releases of
radioactive material; and leads to the decommissioning of nuclear facilities.

We proposed a general framework for autonomous radiation mapping through
the integration of SLAM techniques and radiation-detection sensors, such as surface-
contamination monitors. In this work, the two-dimensional grid map was built by SLAM
methods in ROS. Four SLAM methods, namely Gmapping, Hector_SLAM, Karto_SLAM,
and Cartographer, were specifically implemented to showcase the LiDAR-based SLAM
methods for radiation mapping. From Figures 8 and 9, we can see that, in large-scale areas,
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Cartographer is more accurate than the other three methods; this is due to the fact that Car-
tographer uses loop-closure detection for position correction during the mapping process.
Among these four SLAM algorithms, both Gmapping and Cartographer have odometry.
They use the odometer data to calibrate the map and for localization. Hector_SLAM re-
quires a high level of sensor accuracy, which is the main reason for the large drift in the
experimental results. Karto_SLAM has an intermediate performance on public datasets;
however, real experiments have a higher time complexity compared to Cartographer.

For the radiation-detection sensors, we adopted the surface-contamination monitor
developed by the China Institute for Radiation Protection in the robot for α/β radiation
detection. Accordingly, we designed the data communication interface so that the radiation
data can be collected by the radiation sensor and fused with the grid map built by SLAM
methods. The radiation-mapping process can be described as follows. Firstly, the radiation
sensors acquire radiation-information data and transfer the acquired radiation data to ROS
via TCP/IP. Secondly, the data are parsed in ROS, and the processed data are passed to the
radiation-map-construction algorithm for radiation-map construction. At the same time,
the radiation map is merged into the two-dimensional grid map built by a SLAM method
to locate the radiation source.

A color-coded radiation map was presented wherein different colors indicate different
levels of radiation, allowing for a more intuitive display of the radiation map. We con-
ducted the experiments in both the simulated environment and the real environment to
demonstrate the radiation-mapping performance in both a single-radiation-source environ-
ment and a multiple-radiation-sources environment. At the same time, the error analysis of
the radiation data during the radiation-detection process shown in Figure 11 indicates a
promising detection accuracy, with a maximum dose-detection error of around ±0.7% and
an average dose-detection error of 0.3%.

In our current work, we demonstrated the feasibility of the proposed method for au-
tonomous α/β radiation with SLAM techniques. Both the experiments in a simulation en-
vironment and actual environments show promising results for potential nuclear-radiation
applications. However, more experiments need to be performed to test the performance in
real nuclear-radiation scenarios; such experiments will be performed cooperatively with
the China Institute for Radiation Protection in the near future. Moreover, we will work on
expanding the framework for other types of radiation mapping, such as γ-rays.

5. Conclusions

This paper proposed a method that combines SLAM techniques with nuclear-radiation-
detection sensors to address the drawbacks of traditional manual radiation detection. The
main contribution of this paper is four-fold: (1) SLAM was adopted to achieve autonomous
radiation detection; (2) a surface-contamination monitor developed by the China Insti-
tute for Radiation Protection was first adopted in a robot for α/β radiation detection;
(3) a general radiation mapping framework was proposed for α/β radiation mapping, in
which LiDAR-based SLAM methods were adopted to demonstrate the radiation-mapping
performance; and (4) a color-coded radiation map was projected onto the environment
map built by SLAM methods. The simulation and real-scene experiments verified the pro-
posed method and showed a promising future in the applications of autonomous nuclear
detection. In the future, more experiments need to be performed in real nuclear radiation
scenarios so that the proposed method can be promoted for actual applications in nuclear
plants or other places with potential nuclear leaks. Furthermore, our work will focus on
extending this radiation-map-building method to highly radioactive particles, such as
X/γ-rays, to obtain a flexible radiation-mapping platform for various nuclear radiations.
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