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Abstract: In order to improve the performance of a V-type diesel engine at low and medium speeds,
the compound VGT-STC turbocharger system was proposed. First, the compound VGT-STC tur-
bocharger system bench was established, which allowed to switch between the VGT and STC boosting
systems. Then, the load characteristic tests with a variable VGT vane opening were conducted at
different speeds in the 1TC and the 2TC, respectively. The results showed that the VGT-1TC could
provide much more air into the cylinder than the VGT-2TC at 1000 r/min, and the maximum torque
was increased by 4000 Nm (80%), and the BSFC decreased by 20.1 g/kWh on average. The matching
characteristics are analyzed for three boosting control strategy systems, including the VGT, STC,
and the compound VGT-STC. The results show that the VGT system has a steady increase of the
maximum torque in both low and medium speeds, while the STC system has a large increase in
torque at 1000 r/min and begins to decline when speed is greater than 1200 r/min, and the compound
VGT-STC system combines the advantages of the VGT and STC, which can maintain 9000 Nm (83%
rated torque at 1800 rpm) and a lower BSFC at both low and medium speeds. As a result, with
the compound VGT-STC boosting control strategy system, the operating range has expanded by
10%, and its smoke opacity, BSFC, and exhaust temperature are reduced by 0.057, 8.2 g/kWh, and
64 ◦C, respectively.

Keywords: diesel engine; variable geometry turbocharger; sequential turbo charging; engine performance;
matching characteristic

1. Introduction

Boosting technology is widely used in internal combustion engines (ICE) [1,2], which
can increase the power density greatly when compared with naturally aspirated engines [3,4].
The boosting methods are mainly divided into mechanical supercharging, electric-assisted
supercharging [5], and waste turbocharging [6]. The waste turbocharging system has been
adopted for the longest amount of time because it utilizes energy from the waste exhaust
in order to compress air without consuming more energy [7,8]. The waste turbocharger
combined with the EGR [9] and Miller cycle [10] were investigated in order to reduce
emissions [11] and to improve performance. Optimizing combustion [12] and improving
thermal efficiency [13] are the directions going forward for the development of internal
combustion engines.

A fixed geometry turbocharger (FGT) with a wastegate (WG) is the most widely
applied turbocharger in the field of ICE [14,15]. Compared with the FGT, the FGT-WG
has a better performance in low load conditions because of its smaller size and lower
inertia [16,17]. A diesel engine with the FGT-WG can work in a greater intake pressure in
low load conditions, while exceeding the maximum combustion pressure or turbospeed in
the rated power condition, so the WG must be opened in order to reduce the combustion
pressure or turbospeed, which can lead to part of the exhaust energy to be wasted.

A variable geometry turbocharger (VGT) can regulate the boost pressure by adjusting
the vane opening [18,19]. In the small vane opening, the flow area of the turbo is reduced
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and is equivalent to a small-sized turbo, which can obtain a higher turbo speed and boosting
pressure, thus it is suitable for low load conditions. In contrast with the FGT-WG, the VGT
has a better performance in low load conditions and has the same performance as the FGT
in high load conditions, which takes full advantage of the exhaust energy in rated power
conditions without opening the WG. Yang [20] compared four different supercharging
systems in their altitude adaptability (a fixed geometry, two wastegates, and a variable
geometry), and the results showed that the variable geometry turbocharger (VGT) had the
best altitude adaptability on its power recovery and BSFC within the maximum altitude.
José Ramón Serrano [21] discussed the impact of the VGT on the highly downsized Spark-
Ignition engines and showed that the VGT had fewer limitations in extreme working
conditions, compared with the FGT-WG. The VGT could always be combined with the EGR
to control NOx, soot, and pumping loss, and the results showed a reduction in NOx and soot
emissions, as well as improved torque tracking and fuel economy [22]. Xu [23] analyzed
the effect of the VGT on combustion characteristics and the emission characteristics of a
gasoline/diesel dual-fuel engine. It was suggested that in the conditions of 1800 r/min
145 Nm and a gasoline/diesel ratio of 65%, the brake-specific fuel consumption decreased
first and then increased, and there was a minimum value at VGT60. Evangelos G [24]
built a thermodynamic model of a truck diesel engine with a VGT and then analyzed the
transient process. It showed the advantages of the VGT in terms of a higher boost pressure,
resulting in a higher injected fuel, faster acceleration, and lower soot emissions compared
with the baseline engine.

When the supercharger system is composed of multiple turbochargers, it is classified
into series and parallels according to the layout, in which they have different working char-
acteristics. For the parallel layout, it can be understood as dividing a large turbocharger into
multiple small turbochargers and the boost pressure in the rated power is unchanged [25].
Sequential turbo charging (STC) takes multiple small turbochargers in the parallel layout,
and in low load conditions only one turbocharger works to obtain a high boost pressure,
thereby resulting in lower BSFC and soot emissions [26,27].

For the series layout, the supercharger can obtain a higher intake pressure through the
multi-stage turbo charging. When the boost pressure is high, it is difficult to design and
produce single-stage blades. In the multi-stage turbocharger, the boost ratio of each stage is
relatively small and the efficiency is increased by cooling between stages. In Liu’s study [28],
the regulated two-stage turbocharged (RTST) system was developed for variable altitudes,
and the optimal VGT vane openings under the engine speed of 2100 r/min at 0 m, 3500 m,
and 5500 m should be 80%, 60%, and 50%, respectively. Zhang [29] established a RTST
model with a twin-VGT using GT-power, and the results showed that the boost pressure
ratio could be controlled to 4.9 at 5500 m by regulating the HP and LP turbine vanes.

The waste heat recovery uses the exhaust gas energy behind the turbo in order to drive
the power turbine and transfer the energy to the crankshaft or the battery [30,31]. In the
low load conditions, the exhaust gas energy is low, so it is used to drive the turbocharger
only, while in the high load conditions, the exhaust gas temperature is still high behind
the turbo and has the ability to drive the power turbine, which can have a better BSFC.
Therefore, the waste heat recovery can improve the performance in high load conditions,
rather than in low load conditions. Zhao [32] discussed the characteristics of the parallel
turbo compound engine with a steam injection and showed that the BSFC is decreased by
2.08–3.28%. Aman M.I. Mamat [33] designed a low pressure turbine (LPT) to recover latent
energy, which was applied in a 2.0 L gasoline engine. The results showed that the BSFC
and BMEP improved by 2.41% and 2.21%, respectively

The mechanical supercharger is directly driven by the crankshaft and transfers the
energy to the compressor through the gearbox. When the mechanical supercharger is
worked in low load conditions, it results in a higher intake pressure that improves the
combustion process, reduces soot emissions, and has no acceleration lag. Due to its
consuming of the brake power of the crankshaft, the BSFC can be increased. When in
high load conditions, the mechanical supercharger is disconnected and the turbocharger
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begins to work. In Rose’s study [34], The peak torque was improved by 15% at 1000 r/min
with a centrifugal-type supercharger driven from the engine crankshaft via a continuously
variable transmission (CVT). Hu [35] proposed a novel compressor configuration, which
can provide an even better transient performance at low engine speeds while maintaining
a similar performance response at high engine speeds.

The electric assistant turbocharger is similar to the mechanical supercharger, which
is driven by a motor and consumes energy from the battery. It also has the advantage
of lower soot emissions and no acceleration lag in low load conditions. Compared with
the mechanical supercharger, the electric assistant turbocharger is more flexible to adjust
the compressor speed and boost pressure and the overall fuel consumption rate is higher
due to the energy conversion loss. Zi [36] developed a new electric turbo-compounding
layout called the electric-booster and turbo-generator (EBTG) system, which can improve
the transient performance in low speed conditions. When the engine works at 2000 rpm
and the load increases by 45% to 100%, the response time is only about half of that in the
baseline engine.

As we all know, the most important factor affecting the diesel engine performance
in low load conditions is the lack of air, therefore the key point is to increase the intake
pressure. Mechanical superchargers and electric assistant turbochargers can increase the
boost pressure and eliminate acceleration lag, while they both consume other energy (brake
power and battery) and the cost of any modification is expensive. The STC has a better
performance in low load conditions, although too many turbochargers in the STC system
occupy a large amount of space and are difficult to control. The VGT is a good choice
because it has a better performance in the continuous regulation under both low and
medium load conditions. According to the above analysis, a single booster system has
some shortcomings and cannot maintain good performance in the full speed range, while a
combination of multiple techniques can achieve a better performance. To the best of our
knowledge, there is currently no existing compound VGT-STC turbocharging system that
is matched with a V-type diesel engine. In this paper, in order to improve the diesel engine
performance at low and medium speeds, a compound VGT-STC turbocharger system was
proposed, which can switch between VGT and STC systems. Then, the load characteristic
tests with the variable VGT vane opening were conducted at different speeds in the 1TC
and the 2TC, respectively. Finally, the matching characteristics were discussed within the
VGT, STC, and the compound VGT-STC, respectively.

2. Experimental Specifications

The main parameters of the diesel engine are shown in Table 1. It is a 16-cylinder, 72-L
direct injection diesel engine with the compression of 13.5, which was applied in the ship.
The original turbocharger is a fixed geometry turbocharger (FGT) produced by ABB, with a
peak pressure ratio of 5.0 and a choked flow of 2.6 kg/s.

Table 1. Engine specifications.

Parameter Value

Rated Power 2032 kW
Engine speed at rated power 1800 r/min

Number of cylinders/engine type 16/V-type
Bore 170 mm

Stroke 195 mm
Displacement 72 L
Boost system Turbocharger with intercooler
Fuel delivery Direct injection

There are three types of turbochargers by adjusting the state of the valves and vane
openings, namely the VGT (Figure 1a), the STC (Figure 1b,c) and the compound VGT-
STC (Figure 1d), and the specific control strategy is shown in Table 2. The VGT type
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turbocharging system has both air and exhaust valves opened all the time and the vane
opening can be increased with the increasing of speed and load. The STC system has a
vane opening that is fixed in 100% and the boost system uses the 1TC mode, it increases the
intake pressure and improves the performance at low speeds and in low load conditions,
while the STC system’s use in the 2TC mode achieves the rated power in high-speed
conditions. The compound VGT-STC system has all of the valves opened or closed and the
vane opening can also be regulated. It is more flexible to match the turbocharger with a
diesel engine. The upgrade to the original boost system consists of two parts: (1) Connects
the intake and exhaust pipes of row A and row B, respectively, and installs the valves at
the appropriate positions in row B. (2) The VGT turbocharger replaces the FGT. The VGT
turbocharger is modified from the original FGT, which has added the motion mechanism
to rotate the nozzle vane. The most important point is that the maximum opening (100%
opening) of the VGT vane is consistent with the position of the original turbocharger and
the compressor is not changed. The choked flow of the turbo corresponding to the 0%, 33%,
67%, and 100% vane opening is 1.6, 1.8, 2.0 and 2.2 kg/s, respectively.

In order to ensure safe and reliable operating engines, some parameters of the diesel
engine are restricted as follows: (1) the maximum combustion pressure is less than 16 Mpa,
(2) the exhaust temperature of the turbine is less than 600 ◦C, and (3) the compressor does
not surge.

An engine performance experiment under different load conditions and at different
speeds was carried out. The speed, the engine brake torque, the BSFC, the in-cylinder
pressure, the pressure, the temperature, and the smoke opacity at proper locations of the
pipe were recorded. The uncertainties of the measuring instruments are given in Table 3.
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Figure 1. Schematic of the VGT, STC-1TC, STC-2TC, and the compound VGT-STC systems. (a) VGT;
(b) STC-1TC; (c) STC-2TC; (d) Compound VGT-STC.

Table 2. The control strategy of the VGT-STC system.

Turbocharging System Type Air and Exhaust Valve Mode VGT Condition

VGT Opened (2TC) Regulated
STC Opened (2TC)/Closed (1TC) Fixed

VGT-STC Opened (2TC)/Closed (1TC) Regulated

Table 3. The uncertainties of the measuring instruments.

Instrument Measured Quantity Uncertainty

Inductive pick-up Engine speed ±5 r/min
Eddy current dynamometer Engine torque 1%

Fuel mass flow meter Fuel consumption 0.5%
K-type thermocouple Temperature 1%

Kistler Pressure 0.5%
AVL Smoke opacity 0.1%

3. Results and Discussion

The performance of the original engine with the FGT (equivalent to the 100% vane
opening with the 2TC) was set as the baseline.
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3.1. The Adjustment Characteristics of the VGT-2TC

The VGT vane opening has a vital impact on the performance of the engine. To
understand it clearly, the impact on the performance with different VGT vane openings at
1000 rpm (representing low speed), 1429 rpm (representing medium speed), and 1800 rpm
(representing high speed) are shown in Figures 2–4.
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Figure 2. Variations of the main engine parameters at 1000 r/min with the 2TC. (a) intake pressure.
(b) the maximum combustion pressure. (c) difference between the intake and exhaust pressures. (d) ex-
haust temperature. (e) smoke opacity. (f) the brake specific fuel consumption. (g) compressor map.
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Figure 3. Variations of the main engine parameters at 1429 r/min with the 2TC. (a) intake pressure.
(b) the maximum combustion pressure. (c) difference between the intake and exhaust pressures.
(d) exhaust temperature. (e) smoke opacity. (f) brake specific fuel consumption. (g) compressor.
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Figure 4. Variations of the main engine parameters at 1800 r/min with the 2TC. (a) intake pressure.
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It can be seen that the trends of some of the parameters, such as the intake pressure
(pin) (Figure 2a, Figure 3a, and Figure 4a), the maximum combustion pressure (Pmax)
(Figure 2b, Figure 3b, and Figure 4b), the exhaust temperature (Texh) (Figure 2d, Figure 3d,
and Figure 4d) and the smoke opacity (Figure 2e, Figure 3e, and Figure 4e), were consistent
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at the different speeds. For the smoke opacity, it has a complex trend with the increasing
speed. The generation of soot is mainly due to the small local air-fuel ratio caused by uneven
fuel mixing. At 1000 r/min, the smoke opacity has a linear trend with the increase of the
load, because the incomplete combustion leads to soot increasing in lower speeds and the
intake pressure. At 1429 r/min and 1800, the soot first increases and then decreases, which
is different at 1000 r/min. The air is increased significantly with increase of speed, when
the load reaches 5000–6000 Nm, a sufficient intake of air mixes with the fuel completely,
which improves the combustion process, so the soot starts to drop. It is noted that the
soot increases again when load exceeds 8000 Nm in the 100% vane opening at 1800 r/min,
because it has a high load and needs to inject a lot of fuel, leading to the uneven mixing of
air and fuel.

As the VGT vane opening decreases at the same speed and torque, the intake pressure
and the maximum pressure increase, and the maximum exhaust temperature decreases.
The reason is because the smaller vane opening leads to a higher turbocharger speed and a
higher intake pressure, more fresh air enters the cylinder and the maximum combustion
pressure increases, as reported in Ref. [19]. The exhaust temperature is closely related to
the combustion duration. More fresh air can shorten the duration of the combustion and
reduce the proportion of afterburning, so the exhaust temperature decreases in the small
vane opening. Soot can be produced because there is less oxygen and as a result, the higher
intake pressure can reduce the soot emissions by decreasing the VGT vane opening, as
reported in Ref. [22].

The ∆p represents the difference between the intake and exhaust pressures. When the
∆p is greater than 0, it has a positive effect on the diesel engine (pumping work), which
is conducive to scavenging the air with a pressure difference. While the ∆p is less than 0,
it has a negative influence (pumping loss), which leads to more residual exhaust in the
cylinder, as reported in Ref. [23]. This can be observed in Figure 2c, Figure 3c, and Figure 4c.
the ∆p increases as the VGT vane opening increases. At a low speed (1000 r/min), the range
of the ∆p is between −3 and 10 kpa and the impact of the pumping work or pumping loss
on the diesel engines is limited. While at medium and high speeds, the ∆p is from −10 to
60 kpa, which is much larger than at the low speeds and has a greater impact on the BSFC.

Figure 2g, Figure 3g, and Figure 4g show the variations on the compressor map with
the different VGT vane openings. In the same operating conditions, when the VGT vane
opening is small, the position of the operating point is relatively located in the upper right
side, indicating a higher intake pressure and much more airflow, as reported in Ref. [19].
At 1000 r/min, all of the operating points are located below the compressor map. While
at 1429 r/min and 1800 r/min, the variations are located in large flow and high-efficiency
areas. It is worth noting that some positions of a 0% vane opening at 1429 r/min (Figure 3g)
are close to the surge boundary, which is harmful to the compressor.

The brake specific fuel consumption (BSFC) is one of the most important parameters
for diesel engines, and its variation is complicated compared with other parameters. It
could be seen that the best vane opening of the lowest BSFC corresponding to 1000 r/min
(Figure 2f) and 1800 r/min (Figure 3f) is at 0% and 100%, respectively, while it moved
from a 33% to 67% vane opening at 6500 Nm at 1429 r/min (Figure 4f). The cause of
this phenomenon can be found by analyzing the combustion process and pumping work,
which is closely correlative with the pin and ∆p, respectively, as reported in Ref. [21].
First, at 1000 r/min, the 0% vane opening had the largest intake pressure, resulting in a
good combustion process. The ∆p was -3 and 10 kpa at the 0% and 100% vane openings,
respectively, they all had little and limited effect on the BSFC because of the small values. So
the combustion process (equal to the Pin) had a more important influence on the BSFC than
the pump work (equal to the ∆p) at low speeds. Second, at 1800 r/min, it had the lowest
Pin and the highest ∆p at the 100% vane opening due to the high engine speed. The pump
work (equal to the ∆p) had a more important influence on the BSFC than the combustion
process (equal to the Pin), leading to the lowest BSFC at the 100% vane opening. Third,
at 1429 r/min, the proper vane opening corresponding with the lowest BSFC was not a
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constant, indicating that it was a transitional state and was used to balance the combustion
process and the pump work. With the increase of speed, the pumping work gradually
plays a more dominant role on the BSFC. As a result, it can be seen from Figures 2f and 3f
that the lowest BSFC at 1000 r/min and 1429 r/min has been reduced by 11.6 g/kWh and
9.0 g/kWh on average, respectively, compared with the baseline.

It also can be found in Figures 2–4 that the maximum torque increased with a small
vane opening at 1000 r/min and 1429 r/min compared with the baseline. The exhaust
temperature is the major factor that limits the torque at low speeds, while the small vane
opening received a higher Pin and a lower Texh, therefore the maximum torque increased.
In contrast with the baseline, the maximum torque at 1000 rpm and 1429 rpm had been
increased by 1700 Nm (34%) and 1800 Nm (22.5%), respectively. At 1000 r/min, the
maximum torque is still restricted by the exhaust temperature at the 0% vane opening
(Figure 2d), indicating that the VGT turbochargers cannot provide enough fresh air. At
1429 r/min, the limiting factors are the maximum combustion pressure in the 0% and 33%
vane openings (Figure 3d), indicating that the VGT turbochargers can provide enough air.

From the above analysis, it can be concluded as follows: First, as the VGT vane opening
decreases, the intake pressure and combustion pressure increase, the exhaust temperature
and the smoke opacity decrease. Second, at 1000 r/min, the variation on the compressor
map with all vane openings is below the map and the limiting factor of the torque is still
the exhaust temperature, indicating that the compressor cannot work well and provide
enough air at low speeds. Third, the variation of the BSFC was complicated, which was
affected by the combustion process (Pin) at low speeds, while converting to the pump work
(∆p) at high speeds, and balancing the combustion process and pump work at medium
speeds. Fourth, the torque was increased at 1000 r/min and 1429 r/min, due to the higher
intake pressure and the lower exhaust temperature.

3.2. The Adjustment Characteristics of the VGT-1TC

For the VGT-1TC, the variation trend of some parameters, such as the smoke opacity
and exhaust temperature, are consistent with the VGT-2TC, so we do not repeat them
here, we will just show the different aspects. It can be intuitively observed that the pin
(Figure 5a, Figure 6a, and Figure 7a) and Pmax (Figure 5b, Figure 6b, and Figure 7b) are
much higher than the 2TC in the same operating conditions. The reason for that is because
all of the exhaust flows into only one turbocharger instead of dividing the exhaust into two
turbochargers, which increases the turbocharger speed and the intake pressure, as reported
in Ref. [25]. It is worth noting that the lowest BSFC (Figure 5d, Figure 6d, and Figure 7d)
can be obtained in the 100% vane opening in all speeds, this is because the pumping loss
(equal to the ∆p) plays a more important role on the BSFC than the combustion process
(equal to the Pin) with the VGT-1TC. It can also be found that the VGT-1TC has no ability to
regulate because of the constant (100%) best vane openings for all speeds. As a result, the
BSFC has been decreased by 20.1 g/kWh on average.
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Figure 7. Variations of the main engine parameters at 1800 r/min with the 1TC. (a) intake pressure.
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The variations of the compressor are very different in contrast with the VGT-2TC, as
shown in Figure 5e, Figure 6e, and Figure 7e. At 1000 r/min, the operating points are in the
center of the compressor map, indicating that the compressor worked in the high-efficiency
area. At 1429 r/min, the variations are close to the choke line, which means the compressor
efficiency had dropped down greatly and would choke. At 1800 r/min, the compressor
worked at the choked area of the map, which showed that the compressor had a significant
flow blockage, as reported in Ref. [26]. Therefore the feasible speed operating conditions
are 1000~1429 r/min for the VGT-1TC.

It can be found that the maximum torque increased because of the higher intake
pressure at 1000 r/min, and it is worth noticing that the limiting factor of the torque is
the maximum combustion pressure, which indicated that the VGT-1TC provided much
more air than the VGT-2TC. At 1429 r/min, the maximum torque decreased, because the
turbocharger operated close to the choke line and could not provide enough airflow for
only one turbocharger, as reported in Ref. [27]. Compared with the baseline, the maximum
torque at 1000 rpm and 1429 rpm in the 1TC with the 100% vane opening had been increased
by 4000 Nm (80%) and decreased by −400 Nm (−5%), respectively.

To sum up, we conclude as follows for the VGT-1TC: First, the best vane opening
corresponding to the lowest BSFC is 100%, indicating that the VGT loses the ability of
adjustment in the VGT-1TC. Second, the working conditions are between 1000~1429 r/min
and when the speed is greater than 1429 r/min, the compressor works on the choked area.
Third, compared with the baseline, the torque at 1000 rpm and 1429 rpm has been increased
by 4000 Nm (80%) and decreased by −400 Nm (−5%), respectively.

3.3. Characteristics of the VGT, STC and the Compound VGT-STC

The VGT system contains four operating states with the 2TC, namely at a 0% opening,
33% opening, 67% opening, and a 100% opening. The engine operating range expands
at low and medium speeds compared with the baseline, as shown in Figure 8a. As the
speed increases, the expanded area increases steadily due to the increase of intake pressure,
and the operating range is expanded by 25.0% between 1000–1500 r/min. The dividing
line between the different vane openings is calculated according to the lower BSFC, as
shown in Figure 8b. The optimized area almost occupies 70% of the original range and
the lower the speed, the higher the improvement of the BSFC. The exhaust temperature
(Figure 8c) and the smoke opacity (Figure 8d) also decreased greatly within the optimized
area. From a global perspective, the smoke opacity, BSFC, and the exhaust temperature are
significantly reduced with an average drop of 0.053, 7.2 g/kWh, and 60 ◦C in the optimized
areas, respectively.
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Figure 8. Matching characteristics of the VGT system. (a) extended area. (b) contour of the BSFC.
(c) contour of the exhaust temperature. (d) contour of the smoke opacity.

The STC system switches between the 2TC and 1TC by controlling the opening and
closing of the valve, so it has only two operating states. It can be seen from Figure 9a that
at 1000~1200rpm, the maximum torque is maintained at around 9000Nm. While the speed
exceeds 1200 rpm, the torque has an obvious downward trend, therefore the performance
of the STC at the medium speed has significantly decreased. This is because, in low speeds,
diesel engines require relatively little air which one turbocharger can provide, however
with the increase of speed, the air needed gradually increases, which one turbocharger
cannot afford, therefore the performance begins to deteriorate. Finally, the torque operating
range is increased by 44.2% at 1000~1400 r/min, the smoke opacity (Figure 9d), BSFC
(Figure 9b), and the exhaust temperature (Figure 9c) are significantly reduced with an
average drop of 0.071,10.5 g/kWh, and 90 ◦C in the optimized area, respectively.
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Figure 9. Matching characteristics of the STC system. (a) extended area. (b) contour of the BSFC.
(c) contour of the exhaust temperature. (d) contour of the smoke opacity.

The compound VGT-STC system can provide eight operating states theoretically, but
according to the principle of minimum fuel consumption, only four states are actually
available, namely the 100%-1TC, 33%-2TC, 67%-2TC, and 100% 2TC. The VGT-STC com-
bines the advantages of the VGT and the STC. At 1000–1200 rpm, the STC system can take
much more fresh air to improve the engine performance than the 0% vane opening-2TC.
When it exceeds 1200 r/min, the STC performance begins to decline and switches to the
VGT system at this time. The overall performance maintains an upward trend. It can be
found that the maximum torque can be stabilized at about 9000 Nm (83% rated torque at
1800 rpm) at 1000–1500 r/min (Figure 10a). As a result, the operating range is expanded by
35.4%, the smoke opacity (Figure 10d), the BSFC (Figure 10b), and the exhaust temperature
(Figure 10c) are significantly reduced with an average drop of 0.057, 8.2 g/kWh, and 64 ◦C
in the optimized area, respectively.
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In a similar study, torque was expanded in a diesel engine with a two-stage tur-
bocharger system by 8.6% at 700–1100 r/min, and the BSFC was reduced by 3 g/kWh at
a high efficiency zone in Ref. [37]. Ref. [19] applied a newly designed VGT in a V-type
diesel engine, the results showed an external speed characteristic mode, the maximum
torques increased by 9%, the exhaust temperature decreased by 40 ◦C, and the BSFC was
reduced by 10g/kW h. By applying the electric-booster and turbo-generator system (EBTG)
in a 1.5L gasoline engine in Ref. [36], the maximum reduction of the BSFC was 2.6% in
80–100% load, while it increased by 4.0% under a 30% load. Based on the above analysis,
the compound VGT-STC system has the better performance on improving the fuel economy
and performance than the other booster systems.

4. Conclusions

This paper investigated the matching characteristics of a V-type diesel engine by using
a compound VGT-STC boosting system. The compound VGT-STC turbocharger system
bench was established. Based on the test, the impact of the VGT vane opening on the diesel
performance was evaluated for the VGT-1TC and VGT-2TC, in the first instance. Then, the
characteristics of the VGT and STC were studied and discussed. Finally, we obtained the
control strategy of the compound VGT-STC system by taking advantage of the VGT and
STC. The following conclusion can be drawn.

(1) For the VGT-2TC, as the VGT vane opening decreases, the intake pressure and the
maximum combustion pressure increase, the smoke opacity, the exhaust temperature,
and the ∆p decrease. In low speeds (1000 r/min), the limiting factor of the maximum
torque is still the exhaust temperature, indicating that the VGT cannot provide enough
fresh air into the cylinder. The BSFC are closely related to the pin and ∆p, the pin has a
greater influence on the BSFC than the ∆p at low speeds, and it is the opposite at high
speeds. The torque increases at low and medium speeds, due to the higher intake
pressure and lower exhaust temperature;

(2) For the VGT-1TC, the best vane opening is a constant of 100%, indicating that the
VGT loses the ability to adjust itself. The working conditions are between 1000~1429
r/min. The performance improves at low speeds and deteriorates at medium speeds;

(3) In the case of the VGT system, the maximum torque increases steadily in low and
medium speeds, the torque operating range is increased by 25.0%. The smoke opacity,
the BSFC, and the exhaust temperature are reduced with an average drop of 0.053, 7.2
g/kWh, and 60 ◦C, respectively;

(4) In the case of the STC system, the maximum torque increases significantly in l000
rpm and starts to decrease at 1200 r/min. The operating range is increased by 44.2%.
The smoke opacity, the BSFC, and the exhaust temperature are reduced by 0.071, 10.5
g/kWh, and 90 ◦C, respectively;

(5) In the case of the compound VGT-STC system, the maximum torque can be stabilized
at about 9000 Nm (90% rated torque at 1800 rpm) at 1000–1500 r/min. As a result, the
operating range is increased by 35.4%. The smoke opacity, the BSFC, and the exhaust
temperature are reduced by 0.057, 8.2 g/kWh, and 64 ◦C, respectively.

In this study, we discussed the matching characteristics of the compound VGT-STC
system with a V-type diesel engine, and it had better performance compared with the
original engine. We are now building a new single cylinder engine testbench with the same
bore and stroke, which are equipped with an adjustable intake system and high-pressure
common rail system, the couple effect of intake pressure, injection time, and injection
pressure on combustion, performance and emission will be investigated in detail.
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