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Abstract: In cloud manufacturing systems, the multi-granularity of service resource and design task
models leads to the complexity of cloud service matching. In order to satisfy the preference of resource
requesters for large-granularity service resources, we propose a multistage cloud-service matching
strategy to solve the problem of matching tasks and resources with different granularity sizes. First,
a multistage cloud-service matching framework is proposed, and the basic strategy of matching
tasks with cloud services is planned. Then, the context-aware task-ontology modeling method is
studied, and a context-related task-ontology model is established. Thirdly, a process-decomposition
method of design tasks is studied, and the product development process with small granularity tasks
is established. Fourthly, a matching strategy of ontology tasks and cloud services is studied, and
the preliminary matching is accomplished. Finally, intelligent optimization is carried out, and the
optimal cloud service composition is found with the optimal design period as the objective function.
With the help of the preceding method, the service matching of maximizing the task granularity is
realized on the premise of ensuring the matching success rate, which meets the preference of resource
requesters for large-granularity service resources.

Keywords: cloud manufacturing; multistage cloud-service matching; design-task ontology modeling;
semantic similarity matching; cloud service optimization; improved differential evolution algorithm

1. Introduction

By searching the cloud services provided by cloud providers in cloud manufacturing
systems [1], the matching of design tasks posted by cloud requesters can be accomplished,
which promotes the sharing of design resources and the networked implementation of
design tasks. Design resources in cloud manufacturing systems [2] refer to all the elements
involved in every design stage of the product life cycle, which are resource aggregations
aggregated according to the size of function granularity. They are divided into dynamic
capacity resource (DCR) and cross-functional design unit (CDU), which are used to com-
plete feature-level design tasks and product-/system-level tasks, respectively [3]. At the
same time, the design tasks posted by cloud requesters also exist in the form of different
granularities of system tasks, subtasks or task units.

The multi-granularity of service resource and design task models leads to the com-
plexity of cloud service matching. From the perspective of resource requesters, in order
to facilitate the smooth design process and reduce the interaction with service providers
in terms of parameters or design state, large-granularity service resources are preferred
when the design capability, design cost and evaluation indexes are equal. Based on the
multi-granularity of tasks and resources, as well as the preference of resource requesters
for large-granularity service resources, we propose a multistage cloud service-matching
strategy based on hierarchical decomposition of design tasks, which is used to solve the
problem of matching between tasks and resources with different granularity.
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The existing research similar to our study is mainly aimed at the design in non-cloud
manufacturing environments, whose application environment is relatively simple. In the
future cloud manufacturing environment, the design tasks proposed by resource users
will be more complex and the composition of resources will be richer. Against such a
background, this paper proposes to address the problems of decomposition of coarse
granularity tasks and its multistage matching with cloud services. A multistage cloud
service matching framework based on task hierarchical decomposition is presented. Under
this framework, the context-aware task-ontology modeling method, information flow-based
task decomposition, and semantic similarity-based matching strategy between ontology
tasks and cloud services are studied. At last, based on an improved differential evolution
algorithm, intelligent optimization is carried out for cloud services that meet the threshold
requirements. The application of this research can realize the resource sharing in a cloud
manufacturing environment and will provide convenient conditions for the integration and
sharing of industrial design resources, which will build a bridge between highly specialized
resources and interdisciplinary design tasks for resource owners and requesters.

The remainder of the paper is organized as follows. Section 2 reviews the literature
relating to matching between tasks and cloud services, design process decomposition,
and differential evolution algorithm-based intelligent optimization. In Section 3, a task
hierarchical decomposition-based multistage cloud service matching framework is pro-
posed. In Section 4, information flow-based task decomposition is created. The semantic
similarity-based matching strategy between ontology task and cloud service is defined
in Section 5. In Section 6, the intelligent optimization of cloud service is accomplished.
The proposed methods are validated through a case study in Section 7, followed by the
conclusion in Section 8.

2. Literature Review

In order to achieve the optimization matching between tasks and cloud services,
research has been carried out in the fields of design task modeling and decomposition,
matching tasks and cloud services, and optimizing cloud services.

2.1. Modeling and Decomposition of Design Task

In the aspect of design task modeling, most of the current literature only describes
the task without specific modeling or does not make a standardized description of the
user task. Due to the arbitrary description for the task, it is difficult to describe the user
design intention completely and accurately. In the aspect of task decomposition, the
commonly used method in the current literature is to transform tasks into standard service
resource request descriptions, classify and extract all kinds of information, decompose
I/O parameters and other basic information, and then directly match the corresponding
information in the service resources to complete the service search and matching [4–6], or
directly use the service resource words to search the cloud database [7].

The design tasks proposed by resource requesters [8] are often function-oriented. How-
ever, the functions of products or systems vary greatly according to their characteristics.
They may be complex systems containing multi-disciplinary tasks, or the design of some
parts or product parameters. In the matching process of task and cloud service, when the
current cloud service or its combination cannot match the task directly, it is necessary to
decompose the task to reduce the task granularity and improve the matching success rate.
Aiming at the problems of matching between services and manufacturing tasks, Li et al. [9]
proposed a novel service composition-optimization approach called improved genetic algo-
rithm based on entropy. In this method, complex manufacturing tasks are decomposed into
subtasks, which are accomplished by appropriate cloud services combined. Guo et al. [10]
proposed an optimization mode of complex part machining services based on feature
decomposition. In this method, the features of complex parts constitute basic task granular-
ity. Guo [11] divided machining tasks into process level and part level and established a
multi-granularity manufacturing-task model oriented to the machining field. Process-level
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tasks have basic information, processing information, limited information and constraint
information. Part-level tasks consist of basic information, parts processing information,
service parameter information and constraint information. This method decomposes the
processing tasks to a certain extent, but it does not specify the aggregation relationship
between the two-level granularity tasks, so it is difficult to support the multi-granularity
matching of later tasks and resources. The relative task-decomposition methods are shown
as Figure 1.
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In order to response to the task orders arriving in the cloud platform at any time,
Zhang et al. [12] proposed a task-driven proactive service-discovery method, as well as a
detailed description of task order, which contains the basic information and the functional
requirement information. This task description can express the basic and functional related
specifications but fails to express the task dynamic information. Aiming at the complexity of
task decomposition, Yang et al. [13] introduced the graph theory to analyze the dependency
relationship among tasks, proposed a task decomposition and allocation model based on
hierarchical function—structure—task matching and collaborative partner fuzzy search,
and established a design resource allocation model considering the resource utilization
threshold. Deng [14] established a task-decomposition model based on cloud service
primary selection in CMfg platform. Through the analysis of task cohesion and coupling, it
ensured that the decomposition process met the principle of task competition. By analyzing
whether the cloud service corresponding to the subtask was competitive, the phenomenon
of inconsistency between task decomposition and service primary selection was solved.
Liu et al. [15] designed a method of task decomposition and reorganization with adjustable
granularity. Product was decomposed in detail according to the function, and the structure
tree and corresponding fine granularity task set were established. Interval number was
used to describe the information exchange degree between tasks to construct interval
number DSM. Then, according to the required granularity, the parameter of possibility
level λ was selected to establish the cut-off matrix. Finally, the tasks are clustered and
reorganized to establish the final decomposition set of tasks. Yang et al. [16] decompose
tasks into three categories: product requirements, expansion requirements and atomic
requirements, and gave the multi-group formula of design requirements. This method of
task definition failed to express the functional requirements and quality requirements of
tasks, and the task description was incomplete.

Ontology is a powerful formal representation method, and the model built by ontology
modeling technology has better advantages in semantic matching [17,18]. Han et al. [19]
used task ontology based on hierarchical taxonomy so as to achieve productivity enhance-
ment, cost reduction and outcome improvement through recommendations based on
intelligence and personalization depending on the worker’s present situation or context of
task in charge when assembly of automotive parts is conducted. Lu et al. [20] proposed
a kind of ontology product data model called ManuService, which includes information
of product design and manufacturing, such as product specifications, quality constraints,
and manufacturing processes. ManuService provides an approach to product design and
manufacturing. Talhi et al. [21] presented an ontology-based model of the CMfg domain,
where users can request services ranging from product design, manufacturing and all other
stages of PLM. Whereas this ontology-based CM model is mainly for service resources, it is
difficult to express tasks. Wang et al. [22] proposed a modeling framework of CMfg task
to solve the General CMfg Task Ontology (GCMT_Ontology) construction and the task
sub-ontology matching from GCMT_Ontology. Original CMfg task ontology is built from
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CMfg task description model, and an ontology learning approach is put forward to com-
plete GCMT_Ontology with graph-based semantic similarity algorithm. This method can
improve enterprise collaboration and interoperation effectively. Dong [23] and Li [24] estab-
lished a common domain ontology. In the process of service matching, service requesters
and providers use this common domain ontology to accurately express the information
that services need or can provide, such as input, output, premise and result information.

2.2. Matching between Design Task and Cloud Service

The matching of design tasks and service resources is crucial in cloud manufacturing
systems, and relevant scholars have carried much research on it.

In [11], a framework of machining service discovery based on a multi-agent system
is built, and a multi-granularity manufacturing service discovery process is formulated
according to the framework composition pattern. According to the different character-
istics of process-level and part-level tasks, the matching strategies of different levels of
manufacturing services are constructed. Li et al. [25] presented a kind of decision-making
model of the two-sided matching considering a bidirectional projection with preference
information for hesitant fuzzy, which is applied to solve the configuration problem for
cloud manufacturing tasks and resources. This model can help decisionmakers handle
the configuration problems and has an advantage over the other approaches. Li et al. [24]
constructed a resource matching model and transformed the resource discovery and match-
ing problem into the mapping between resource ontology and task ontology to solve the
matching problem. An intelligent matching algorithm is designed. The matching process is
divided into five steps: state, domain, function, service and comprehensive matching to
calculate the similarity. The candidate resources are sorted according to the similarity and
the manufacturing is optimized resources.

Yu et al. [26] proposed a multi-level aggregate service-planning (MASP) methodology,
and the MASP service hierarchy is presented, which deals with the services of multi-
granularity and meets the requirements of all relater service providers. However, this
method cannot deal with the matching of tasks and services. From the perspective of man-
ufacturing resource retrieval accuracy, Yuan [27] studied the retrieval conditions proposed
by resource users and semantic matching of manufacturing resources on the basis of an
ontology-based weighted concept network and proposed an independent-element simi-
larity algorithm and concept network-structure similarity algorithm. The language-based
method is used to extract, process and calculate the concept of retrieval conditions.

2.3. Matching Calculation and Semantic Similarity Comparation

The calculation of matching degree between task and service resources is the key to re-
source discovery and the premise of service resource optimization [28]. Paolucci [29]
proposed the concept of semantic matching of Web services earlier, and Sycara [30],
Ganesan [31] and Kiefer [32] established detailed ontology-concept similarity algorithms.
Tao [33] classified resource description information into four categories: text, sentence,
value and entity, and designed their similarity algorithms respectively. On this basis, the
manufacturing grid resource service matching is divided into four steps: basic matching,
IO matching, QoS matching and comprehensive matching, which realizes the search and
matching operation of service resources.

Sheng et al. [34] established an intelligent searching engine of CMfg service based on
Ontology Web Language for Service (OWL-S) and analyzed its matching degree quantiza-
tion problems of the matching process between ontology concept parameters and constraint
parameters. With the help of this method, rapid intelligent matching of cloud searching was
realized. Aiming at the matching degree of manufacturing resources and tasks, Li et al. [35]
proposed a multi factor comprehensive matching evaluation model of resources and tasks.
Through the analysis of manufacturing time-matching degree, manufacturing-fineness
matching, comprehensive matching and other processes, manufacturing resources are opti-
mized, so as to effectively utilize and reasonably allocate cloud manufacturing resources.
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In order to realize the on-demand mutual selection between service providers and service
demanders, Zhao et al. [36] proposed a two-way service matching model based on QoS.
Qualitative language evaluation is mapped to quantitative evaluation by using a cloud
model, and satisfaction is calculated by using variable fuzzy theory. With satisfaction
maximization as the optimization solution goal, an optimization mathematical model is
established and optimized, and finally a matching service was established. Nie et al. [37]
proposed an improved ant colony algorithm based on a task resource matching function
and cost function, which improved service quality by matching degree function of task and
resource, reduced load imbalance in the cloud computing system by cost function and made
great improvement in reducing task execution cost and improving system load balance.

Zhao [38] proposed a strategy of task and resource matching in collaborative develop-
ment, established a matching optimization model based on multi-objective optimization,
and proposed an improved particle-swarm optimization algorithm based on simulated
annealing to solve the model, which realized the efficient optimization of product develop-
ment. Wei [39] established a semantic-retrieval model of manufacturing resources based
on rules and similarity and used the similarity algorithm based on semantic-weighted
distance to calculate the semantic similarity between resource ontologies. Jiao et al. [40]
proposed a method of service discovery about CMfg based on OWL-S, with which the
algorithm for semantic similarity measurement in ontology is improved. This method
can effectively distinguish the extent of similarity between CMfg services resources and
service requirements.

2.4. Differential Evolution Algorithm-Based Intelligent Optimization

Differential evolution algorithm is a swarm-intelligence optimization algorithm pro-
posed by Storn et al. [41], which uses floating-point vector coding for random search in
continuous space [42]. Many scholars have improved it and applied it in resource matching
and scheduling. Zhang [43] proposed a cloud-computing resource-scheduling strategy
based on an improved differential evolution algorithm with adaptive mutation probability.
The crossover operation was used to select individuals of the population to perform a multi-
point crossover operation. The mutation operation could automatically set the threshold
according to the fitness value, which increased the diversity of the population and the
global search ability. Chen et al. [44] proposed an adaptive differential evolution algorithm
based on Newton cubic interpolation. The Newton cubic interpolation is used to search the
local near the optimal individual, and the adaptive demonstration strategy is designed to
evaluate whether the Newton cubic interpolation is used in the next generation to avoid
a premature algorithm and improve the performance of DE algorithm. Fan et al. [45]
proposed an adaptive differential evolution algorithm with partition evolution of control
parameters and adaptive mutation strategy. The mutation strategy can be automatically
adjusted with the evolution of population, and the control parameters evolve in its own
partition, which can automatically adapt and find the optimal value. Meng et al. [46]
proposed a combined mutation strategy. Taking full advantage of each mutation strategy
for population diversity index, a new parameter-control method for mutation operator,
crossover operator and population size is proposed, which can solve a lot of optimization
problems. Zhu et al. [47] proposed a method of gene location based on the subtask module
level, and proposed three operators: block mutation, block crossover and block selection.
On this basis, the transportation-scheme selection strategy and fitness-function calculation
method were designed to make it more suitable for the actual working conditions of an
optimal combination of cloud manufacturing resources.

2.5. Discussion

Through the above literature review on task- and resource-matching research, it can
be concluded that the current research on task- and resource-matching methods has less
consideration of resource and task granularity and has not considered the preference of re-
source requesters for large-granularity resources. Although some scholars have considered
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the granularity of tasks [11], they do not match them according to the order of granularity,
so they cannot match multistage resources according to the order of task granularity from
coarse to fine.

Design task modeling is the prerequisite for task decomposition and resource matching.
Most existing works only describe and normalize a single granular task, but do not elaborate
the aggregation relationship between tasks. Guo [11] divides machining tasks into operation
level and part level and establishes a multi-granularity manufacturing task model facing
the machining field. Operation-level tasks are composed of basic information, machining
information, restriction information and constraint information, and part-level tasks are
composed of basic information, part processing information, service parameter information
and machining constraint information. Wei [39] proposed a five-tuple formal definition
of manufacturing resource ontology. Tao [33] proposed a manufacturing-grid resource-
modeling method. The preceding method can standardize the modeling of design tasks,
but it does not distinguish the granularity of tasks and the aggregation relationship between
tasks of different levels of granularity, and it is difficult to support the multi-granularity
matching of tasks and resources in the later stage.

In terms of task decomposition, the existing method is to convert the task into a
service resource request description, analyze its basic parameters, and then match them
with the corresponding information in the service resource [4–6], or search the cloud
database directly using the service resource entry [7]. Yang et al. [13] proposed a task-
decomposition and -allocation model based on the combination of hierarchical function
structure task matching and collaborative partner fuzzy search. Deng [14] established a
task-decomposition model based on the primary selection of cloud services in the cloud
manufacturing platform. Through whether the cloud services corresponding to the sub-
tasks after decomposition are competitive, the phenomenon that the task decomposition
is inconsistent with the primary selection of services is solved. Liu et al. [15] decomposes
products according to functions and established a design task decomposition set. The pre-
ceding design task-decomposition method does not involve the information flow between
tasks of different granularity levels, and it is difficult to manage the key parameters between
design tasks of different granularity. In this work, a process-decomposition method of
design tasks based on information flow will be proposed, and the information flow will be
used as a bridge between design resources, which solves the problem of parameter transfer
between tasks of different granularities.

In terms of the matching and optimization of tasks and resources, most of the current
literature focuses on resource discovery, without considering the preference of resource
users for large-scale service resources. For example, Guo [11] develops a multi-granularity
manufacturing service discovery process, which can build matching strategies for different
levels of manufacturing services according to different characteristics of process-level and
part-level design tasks. Li et al. [24] sorts the candidate resources according to the degree of
similarity and optimizes the manufacturing resources by calculating the similarity between
tasks and resources. From the perspective of manufacturing resource retrieval accuracy,
Yuan [27] studies the retrieval conditions proposed by resource users and the semantic
matching of manufacturing resources on the basis of an ontology-based weighted concept
network. In the preceding studies, the task’s granularity is not considered. We will propose
a multi-level cloud-service matching strategy based on layer-by-layer decomposition of
design tasks to meet the preference of resource users for large-granularity service resources
on the basis of ensuring the quality of resource matching.

After servitization, the aggregated resources form cloud services, which are included
in the cloud service pool. Due to the different sizes of resource aggregation, the service
resources in the cloud service pool also show the characteristics of multi-granularity. Sim-
ilarly, the tasks proposed by resource requesters can be divided into undecomposable
feature tasks, parts tasks, component tasks, subsystem tasks, and system overall tasks
according to the size of their functions. It can be seen that the granularity of the service
model and task model is quite different.
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In order to meet the requirements of resource requesters, and based on the considera-
tion of resource providers and the cloud service platform, the following issues should be
considered when matching services and task models with different granularity sizes:

(1) From the perspective of resource requesters, customers expect the resource providers
to provide resource services with the largest granularity. The task of the same-size
granularity involves less designers, and each designer needs to complete more tasks.
The increase of resource granularity reduces the number of interfaces between cus-
tomers and resource providers and reduces the number of communication links and
confirmation times with designers, which can improve design efficiency and reduce
design delay and error caused by poor communication.

The extreme case of a coarse-granularity resource service is that the task of the resource
requester is completed by the service provided by one resource provider. In this case, the
customer only needs to provide design parameters and design requirements information
once, and only needs to check the design result once when the transaction is completed.
On the contrary, the extreme case of a fine-granularity resource service is that the task
has been decomposed many times, and all the task units in the final task sequence are
indecomposable meta tasks. In this case, resource requesters need to exchange design
parameters and design results with each resource provider. Compared with the first case,
the number of communications with designers is greatly increased, and the uncertainty
also increases, which is not conducive to the smooth design process.

(2) From the perspective of a cloud service platform, the cloud services in the cloud
service pool are the result of the servitization of resource aggregations. There are two
kinds of service resources of capability-level service and unit-level service, which can
directly complete the feature-level meta task and the part-level or component-level
task. For larger granularity tasks, it is necessary to retrieve and match the historical
service composition or establish a new service composition according to the task
requirements, which will increase the system cost.

(3) From the matching process of tasks and resource services, reducing the granularity
of tasks will reduce the design parameters and the complexity of service resources,
which could lower the difficulty of matching process. Additionally, more service
resources that meet the requirements will be found, and more alternative resources
are provided.

The matching strategy is shown as Figure 2.
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In order to meet the preceding matching principles of tasks and cloud services, this
paper will study the overall matching strategy of tasks and resources, the modeling and
decomposition of tasks, the matching of task ontology and cloud services, the intelligent
optimization of cloud services, and the overall matching strategy of tasks and cloud services.
This research will solve the optimization matching problem of the multi-granularity design
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task model and service resources in cloud manufacturing systems under the premise of
satisfying the preference of resource users for large-granularity service resources. Our
method presented in this paper will facilitate resource users to find and match design
resources in cloud manufacturing systems to meet their product design requirements.

3. Cloud Service Matching Strategy Based on Task Hierarchical Decomposition

According to the above strategy of matching tasks and services, the following matching
rules are formulated:

Rule 1: task granularity maximization.
The coarse granularity service resources provided by a single resource provider can

complete as many tasks as possible at one time. As it is completed by the same set of
design resources, the interface and information interaction between multiple tasks occur
within the design team, which is convenient for communication and can effectively reduce
the information interaction between service providers and requesters, improve design
efficiency and ensure design quality.

Rule 2: task hierarchical decomposition.
If the task proposed by the resource requester is an overall task, and cannot match

any resource service successfully, the task will be decomposed into a design process layer
by layer according to the sequence of subsystem task, component task, part task and
feature-level meta task. Then, the design sequence is extracted, and each design sequence
is matched with resources.

Rule 3: resource matching from fine to coarse, from simple to difficult.
When matching with a design task, firstly the cloud services in the cloud service pool

are searched, and then the historical cloud service composition for the unsuccessful tasks.
Finally, the service composition is conducted in the cloud service pool to establish the cloud
service composition matching the task.

Based on the above matching rules, we propose a multistage cloud-service matching
strategy based on task hierarchical decomposition. According to the matching requirements
of tasks and semantic web services, a context-related task-ontology model is established.

3.1. Cloud-Service Matching Framework Based on Task Hierarchical Decomposition

Based on the preceding matching rules, and from the perspective of resource re-
questers, a multistage cloud-service matching method based on task hierarchical decompo-
sition is established under the fundamental idea of “ensuring matching success rate and
striving for maximum task granularity”, as shown in Figure 3.

The construction process of cloud service matching is as follows.

(1) Tasks published by resource requesters.

According to the requirements of the task-ontology model, resource requesters publish
task instances. According to the task-ontology parsing algorithm, the cloud service platform
extracts the service expectation information and task context information contained in
the task ontology, such as function expectation, input and output parameters, service
performance expectation, and the restrictions on service time, cost, etc.

(2) First-level service matching.

The first level of service matching is to match the task with cloud services. The task
information extracted in (1) is used to directly match the semantic similarity of a single
cloud service in the cloud service pool. If successful, the matching is completed; otherwise,
it enters the second-level matching.

(3) Second-level service matching.

The second level is the matching of task and historical cloud service compositions.
Historical cloud service compositions are cloud service compositions that have been success-
fully matched and successfully called in the early stage. As they have already performed
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some tasks and have a certain maturity, reliable QoS information can be extracted, which
will be used for the quick searching of a qualified mature resource team.
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(4) Third-level service matching.

The third level of service matching is to find cloud services in the cloud service pool
and build new cloud service compositions, and then match with the task. If the first two
levels of matching fail, the service search and composition program will be invoked to
search appropriate single cloud services from the cloud service pool and combine them
into coarse granularity service compositions to complete the task.

(5) Judgement of matching and meta task.

After the preceding three-level matching, if the task and resource match successfully,
the service is invoked, and the task is accomplished. If the matching fails, judge whether
the task is a meta task. If yes, it indicates that there is no relevant resource in the current
cloud service pool that can meet the task requirements, and the matching fails and the
program ends. If no, continue.

(6) Task decomposition.

According to the sequence of system task, subsystem task, component task, part task
and meta task, a task decomposition program is called to decompose the current-level task
into the next-level design process, which is used to form a task unit sequence.
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(7) For each task in the sequence of task units generated in (6), three-level service matching
from (2) to (4) is performed. If it fails, the judgment procedure in (5) is executed, and then
the further decomposition operation of (6) is executed and the next round of three-level
matching operation is turned back, until all tasks match successfully or fail.

The service-matching method we proposed ensures the maximum task granularity on the
premise of matching the task and cloud services as far as possible. This matching method starts
with the original task with the maximum granularity as the starting point, aims at minimizing
the running cost of CMfg system, and takes cloud service pool matching, historical cloud service
composition matching and constructing cloud service composition matching as the order, and
first carries out resource matching of maximum granularity tasks. If the matching fails, the task is
decomposed to reduce the task granularity and improve the matching success rate of each subtask.

The pseudo code for matching of task and cloud service is shown as Algorithm 1.

Algorithm 1. The Algorithm of Matching between Task and Cloud Service

1. Input: design task T
historical cloud service composition
cloud services in cloud service pool

2. Output: the matching between task and cloud service
3. define task queue TQ
4. define task queue SC
5. define variable i, j, k, h, m, n
6. design task T issued by service requester
7. TQ← T
8. while (1)
9. m← the number of task in TQ
10. for (i = 0; i < m; i ++) do
11. matching between TQi and cloud service accessed from cloud service pool
12. end for
13. if (task in TQ matched) then
14. matching succeed and break
15. end if
16. for (j = 0; j < m; j ++) do
17. matching between TQj and historical cloud service composition
18. end for
19. if (task in TQ matched) then
20. matching succeed and break
21. end if
22. for (k = 0; k < m; k ++) do //third stage matching
23. SC← service composition from cloud service pool //construct service composition
24. n← the number of service composition in SC
25. for (h = 0; h < n; h ++) do //traverse SC to search matched service composition with TQk
26. matching between TQk and service composition SCh
27. end for
28. end for
29. if (task in TQ matched) then
30. matching succeed and break
31. else
32. if (each task in TQ is atomic) then //judge task decomposable
33. match failed and break
34. else //decompose task and input to task sequence TQ
35. subtask sequence← process decomposition
36. TQ←subtask sequence
37. end if
38. end if
39. end while
40. return
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3.2. General Matching Process between Task and Semantic Web Service

The matching process of task and cloud services is a typical application of a web
service. Its basic idea is to search and match the web service description file to find the
optimal web service that can accomplish the task and establish the service cooperation
relationship with the design resource aggregation by calling the service. Using semantic
web services, OWL-S ontology is used to formally define and describe web services when
establishing their service description files, which improves the precision in the process of
service searching.

The general matching process between tasks and semantic web services is shown in
Figure 4, which is described as follows.
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Figure 4. The universal matching process of ontology task and semantic web service.

(1) Construction and publishment of semantic web service.

It includes two parts: the compilation of web service application and the generation
and publication of semantic web service description file.

The web service application is written with programming language and tools such as
Visual Studio.NET Programming environment using C# language, JDK programming tools
using Java language, etc. Depending on the forms of web services, the functions in product
design, such as calculation, query, etc., can be realized by programming, or the information
such as design resources can be packaged to establish components and preset API so that
the client can call web services through programming.

The semantic web-service description file is an OWL file generated by a semantic
description of design resource information, with the help of semantic-description ontology
framework established in [48]. The description files are stored in a web server, and the
semantic web services are published by publishing its directory to Universal Description
Discovery and Integration (UDDI) registration center.

(2) The description and request of tasks.

The tasks are described as task ontology, from which the relevant information is
extracted. The semantic description of a service request is transferred to UDDI to find
related services.

(3) Matching of service resources and tasks.

The matcher obtains the semantic description information of web services and tasks
from the UDDI registration information, judges their matching degree, and returns the
optimal result to the service requester.

In the matching strategy of this paper, the matching of tasks and service resources
in each level of granularity goes through three stages: service pool matching, historical
service composition matching and new service composition matching.
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3.3. Context Aware Task Ontology Modeling

In the current research on the matching between tasks and resource services, most of
the literature only describes the tasks without detailed modeling. There is no standardized
description of tasks, which cannot fully and accurately express the user’s design intention.

In the process of service matching, Dong et al. [23] used the same ontology model to
construct tasks and resources models. However, from the perspective of service providers
and consumers, service description is asymmetric, which shows that it has different contents
and forms. For service providers, in addition to describing the name, classification, quality
and other basic information of service providers, it is also necessary to describe the function
information such as service input, service output, service preconditions and execution
effect, basic service process information, service handover agreement, message format
and other specific access details, so as to facilitate the search, optimization and access
of services. For service consumers, it only needs to provide the basic information, the
expected function information and the performance information of the task, as well as
the consumers’ contextual information, such as basic context information, static context
information and dynamic context information. As mentioned above, when the service
provider and the requester adopt the same ontology, they cannot accurately express the
information of the service. Therefore, it is necessary to model the service ontology and the
requirement ontology separately [21].

Based on the above research on the existing task-modeling methods, we have not
found a service-matching method that can support the task decomposition proposed in
this paper. Based on the preceding, a task-ontology modeling method based on service
user context awareness is proposed to accomplish the accurate description of tasks and
complete the optimal matching between tasks and resource services.

Context refers to the user’s surrounding environment information, their own person-
alized information and the hardware environment information when they perform the
task [49,50]. For the description of tasks proposed by resource users, the existing semantic-
description methods basically do not consider the user context information [51], which
plays an important role in the matching of resources and services and the optimization
of matching results. In this paper, based on the requirements of an ontology model for
user context and service expectations, the task-ontology modeling method establishes the
formal definition of tasks by describing the service expectation of tasks and the ontology
description of the user’s own context information.

The content of task ontology includes service expectation and task context. The former
is the expectation of task on the function, performance and fundamental service information
of service resources, including the following aspects.

(1) Expectation of service fundamental information.

It mainly refers to the expectation of the expected resource service in the aspects of the
basic information of the provider and the type of service provided.

(2) Expectation of service function.

It mainly includes the function expectation and post setting of service resources, the
various resources that can be provided, the input parameters before the service starts, the
output parameters after the completion of the service, and the result expectation after the
completion of the task.

(3) Expectation of service performance.

It mainly includes three aspects: member evaluation index for each resource in the
process of resource establishment, operation evaluation index in the operation process after
resource establishment, and comprehensive evaluation index of resource. The performance
of service resources is evaluated by setting the threshold of each evaluation index in the
task ontology.

The second part of task ontology is task context information, which mainly refers to
some special requirements of resource users for resource services due to their habitual
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preferences or constraints of their own conditions during task execution. It mainly includes
the following two aspects.

(1) Fundamental information.

The fundamental information of task context information mainly refers to the limita-
tion of service time and service cost intervals of resource users.

(2) Dynamic information.

It refers to other constraints on tasks proposed by resource users due to their own con-
ditions, such as their own site resources, geographical location, surrounding environment,
local policies, personnel, etc. For example, due to the limitation of local environmental
protection, only clean energy such as electric energy can be used to complete the casting in
the designed production system.

Based on the preceding analysis of tasks, the task-ontology model is shown as follows.{
OTask =

(
CTask, PC

Task
)

CTask =
{

SetSerExpe, SetUserCntxt
} (1)

where, OTask represents the task-ontology model, represented by two tuples; CTask repre-
sents the set of task classes and describes the main information elements contained in tasks;
SetSerExpe represents the set of classes that the task expects from the service, represented by
the set shown in (2); SetUserCntxt represents the set of classes that the task describes to the
user’s own context, represented by the set shown in (3).

SetSerExpe =
{

BscIn f , Fcn, LRole, LAuxRes, LInput, LOutput, LRes, [Per f ]
}

(2)

SetUserCntxt =
{

TimRag, Cost, LDynCntxt
}

(3)

In Formula (2), BscIn f represents the basic information of the expected service re-
source, mainly including the name, address, contact information and other information
of the resource provider, as well as the type of service provided. Fcn represents the expec-
tation of service resource function. According to the size of task granularity, the function
represented by Fcn is quite different. LRole represents the list of design roles provided by
the task for service resources, and it is the initiative resource needed to complete the task.
LInput represents the list of task input parameters and is the initial parameter for the start
of task. LOutput represents the task output parameter list, which is the output list after the
task is completed and represents the change of product task data information in the design
process. LRes represents the output result list, which is the change of design status caused
by design activities in the process of task execution. [Per f ] represents the evaluation index
threshold array, which defines the threshold values of various resource evaluation indexes.

In Formula (3), TimRag indicates the limit of service time required by the user. Cost
represents the limit on service price. LDynCntxt refers to the policy restrictions on dynamic
environmental protection and energy in context information, as well as the user environ-
ment restrictions caused by personnel, technology and other factors.

4. Information Flow Based Design Task Decomposition

In the matching process of design task and cloud services, when the current cloud
service or its composition cannot match the task directly, it is necessary to decompose the
task to reduce the granularity of the task and improve the success rate of task matching.
Therefore, the tasks published by resource requesters need to be decomposed so as to reduce
the granularity of tasks and facilitate the search and matching of cloud services in the cloud
manufacturing environment. Based on the study of information flow, a task-decomposition
method based on information flow is proposed, which decomposes large-scale tasks and
establishes the product development process with the fine granularity task.
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4.1. Information Flow

Information flow is the reflection of the enterprise business process, which describes
the information transmission and the characteristics of information during the task [52].
It is the integration of data flow and describes the input and output between tasks. The
production and utilization of information in the process of product development often
determines the quality and success of product development [53]. As information flow is
easy to express the complex input and output information interactions, such as iteration
and pre-release, the encapsulation and integration of task flow can be enhanced by using
information flow in the design process.

In the process of product design, when a task is completed, the output information
representing the change of data and the design result representing the change of state
will be transferred to the node directed by the information flow. Information flow is an
important tool for information exchange among resource providers in the product design
process.

Five tuples are used to define the information flow in the task flow as follows

I f mFlw = (ID, Cont, Catgry, StrNod, EndNod) (4)

where, I f mFlw represents the information flow from StrNod to EndNod; Cont is the content
of information flow, which reflects its purpose and intention of information flow; Catgry
indicates the type of information flow, which reflects its role in the task flow; StrNod is the
start node of information flow and EndNod is the end node.

According to the different roles of information flow in the process of task execution, the
information flow is divided into three categories, which are represented by sets as follows.

Catgry = {Reg, Pre, Ite} (5)

where, Reg represents regular information flow, which is used to represent the top-down
information release between task nodes in the process of product development; Pre stands
for the pre-release information flow, and represents the advance release of information
from the upstream task node to the downstream node; Ite is the feedback information flow,
and represents the feedback from downstream task node to upstream node, which will
form the iteration of the node task.

With the introduction of the pre-release and feedback information flow, the product de-
velopment process has the function of design iteration, which makes it possible to consider
downstream design and manufacturing, analysis, manufacturability, assemblability and
other quality issues in the process of upstream design. Increasing the number of iterations
in a small range can reduce the large-scale design iterations, which can shorten the product
development cycle and meet the needs of concurrent product development.

4.2. Node in Task Process

The design process is composed of a number of nodes. Among them, the node is
either an indecomposable meta task or a subprocess composed of a group of meta tasks.
Based on the preceding concepts, the task is encapsulated into a combination of several
ordered nodes.

According to their different functions, the nodes are divided into three types: flag
node, logical node and task node, which are represented as follows

Nodeset = {Flg, Log, Tsk} (6)

where, Flg is flag node and represents the start or end of the process; Log indicates logical
node, which expresses the composition relationship of tasks in the process; Tsk is task node
and indicates the meta task or the subprocess composed of meta tasks in the model.
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According to different node types, the formal definition of each node is represented
as follows

FlgNod = (ID, Catgry, I f wFlw, Cont) (7)

LogNod = (ID, Catgry, SetI f w, Cont) (8)

TskNod = (ID, SetInI f w, SetOutI f w, SetTask, SetRole, SetAuxRes, TimeLim) (9)

Formula (7) represents flag node, where Catgry stands for the node type, which is di-
vided into start node and end node, and its collection is defined as FlgNodSet = {Sta, End}.
I f wFlw represents information flow and stands for the information flow sent or received
by this node. Formula (8) represents logical node, where Catgry represents node type,
and its value range is defined as shown in Formula (10). SetI f w is the information flow
set of a node and represents the information flow received and sent by this node. Its
formal definition is shown in Formula (11), where I f wi represents the No.i information
flow received or sent by this node.

Catgry = {AndMrg, AndBi f , OrMrg, OrBi f } (10)

SetI f w = {I f w1, I f w2, . . . , I f wn} (11)

Formula (9) represents task node, where SetInI f w and SetOutI f w represent the input
and output information flow of the node respectively, which stands for the information
input when the node starts and the information output when the node ends. SetTask
represents the task set of this node, and stands for the corresponding meta task of the node,
which is defined according to the needs of product design process. SetRole represents the
role set required by this node and stands for the human resources required during the
operation of the node. SetAuxRes represents the list of auxiliary resources required during
the task execution of this node and TimeLim indicates the time limit of this node task.

4.3. Node Granularity and Task Process

Node granularity is the number of indecomposable meta tasks contained in node tasks
in the product design process. The larger the granularity of a node task, the more abstract
the node is, and the more tasks it contains. Conversely, the more specific the node is, the
less tasks it contains.

With the development of task and service resource matching, the granularity of a task
is gradually reduced. From market research to conceptual design, to structural design
and process design, the product development process model will become more and more
detailed. Figure 5 shows the decomposition process of a product task. The granularity of
the upper nodes in the diagram is large. With the decomposition of tasks, the model will
be refined gradually, and the node granularity will be smaller.

(1) Sequence process.

It is composed of a group of nodes without bifurcation, which is used to complete a
series of serial product development processes, shown in Figure 6.
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(2) Concurrent process.

Concurrent process is composed of multiple nodes without information coupling, and
all the nodes proceed simultaneously. Only after all the tasks in the concurrent process are
accomplished can the subsequent task start. The concurrent process starts with and-split
node and ends with and-merge node, which is shown in Figure 7.
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(3) Selection process.

Selection process is composed of multiple nodes, one of which is performed when the
task instance is executed. The path selection is determined by the attributes of tasks. The
selection process starts with or-split node and ends with or-merge node, and its diagram is
shown in Figure 8.
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(4) Iteration process.

Iteration process is a loop composed of one or multiple nodes, in which the activities
are executed repeatedly until the given conditions are met. It is shown in Figure 9.
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4.4. Information Flow-Based Task Decomposition

For complex product design tasks involving multiple disciplines, there are few es-
tablished CDUs that can directly match with them. Usually, it is necessary to decompose
the interdisciplinary complex design tasks into meta-capability tasks in a single-discipline
domain and then search for the design resources to match them. Therefore, with the devel-
opment of the product design process, the nodes of the product development process will
gradually split, and the tasks within the nodes will also be refined.

Node splitting means that with the advancement of the resource matching process,
the coarse task nodes that fail to match are decomposed under the premise of retaining the
original functions. Through node splitting, multiple fine granularity nodes and information
flow among nodes are used to replace coarse granularity nodes to complete the matching
of resources and tasks. The split nodes inherit the attributes of the upper node and realize
its functions. Information flow is added between tasks of each split node to realize the
input and output data interaction between nodes. The formal representation of task node
splitting is as follows

TskNod =
m

∑
i=1

TskNodi +
n

∑
j=1

LogNodi +
l

∑
k=1

FlgNodk (12)

where, TskNod represents the task node before splitting; ∑m
i=1 TskNodi is the m subtask

node derived from splitting; ∑n
j=1 LogNodi stands for the n logical nodes derived from the

process after splitting; ∑l
k=1 FlgNodk represents the split l flag nodes.

The definitions of the flag node and logical node generated in the above formula are
shown as Formulas (7) and (8), and the derived task node is defined as follows

TskNodi = (IDi, SetInI f wi, SetOutI f wi, SetTaski, SetRolei, Set AuxResi, TimeLimi) (13)

where, TskNodi stands for the No.i subtask node, and the elements in the formula represent
its ID, input information flow set, output information flow set, task set, role set, auxiliary
resource set and time limit respectively. Among them, the superposition of task set, role
set, or auxiliary resource set is the corresponding element of its superior node, shown as
follows 

SetTask =
m
∑

i=1
SetTaski

SetRole =
m
∑

i=1
SetRolei

SetAuxRes =
m
∑

i=1
SetAuxResi

(14)
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After task splitting, there are multiple relationships among subtask nodes, such as
sequence, concurrent, iteration, etc. The relationship between the completion time limit of
subtask nodes and the completion time limit of their superior nodes is shown as follows

TimeLim =
s
∑

i=1
TimeLimi +

t
∑

j=1

(
TimeLimj1 ∩ TimeLimj2 ∩ . . . ∩ TimeLimjp

)
+

r
∑

k=1

(
TimeLimk1 ∪ TimeLimk2 ∪ . . . ∪ TimeLimkq

) (15)

where, TimeLim represents the total time limit of the task; TimeLimi represents the time
limit of the No. i sequence node and s stands for the number of sequence node in the
design process; TimeLimjp represents the time limit of the No. p simultaneous branch of
the No. j concurrent process and t stands for the number of concurrent process; TimeLimkq
represents the time limit of the No. q iteration of the No. k iteration process and r stands
for the number of iteration process.

The set of information flow in Formula (13) includes not only the elements inherited
from the superior node but also the information flow transmitted within each node after
splitting. Its formal definition is as follows

SetInI f wi = SetInI f wk +
n
∑

j=1
SetOutI f wj

SetInI f w =
n
∑

k=1
SetInI f wk

(16)

where, SetInI f wi represents the set of all the input information flow; SetInI f wk represents
the input information flow from its parent node after node splitting; SetOutI f wj represents
the set of output information flows of each node after splitting. The flow direction is
determined according to the attributes of the output information flow. If it flows to other
nodes after splitting, it will be recorded. If it flows to other nodes than the node generated
by splitting, it will be discarded. When i = j, the output information flow is the feedback
information flowing to itself.

Similarly, the formal definitions of SetOutI f w and SetOutI f wi are as follows
SetOutI f wi = SetOutI f wk +

n
∑

j=1
SetOutI f wj

SetOutI f w =
n
∑

k=1
SetOutI f wk

(17)

where, SetOutI f wi represents all the input information flow after node splitting; SetOutI f wk
represents the output information flow from the child node to the parent node after node
splitting; SetOutI f wj represents the information flow passed to its parent node after splitting.
When i = j, the output information flow is the feedback information flowing to itself.

According to the preceding discussion on the information flow, the transmission of
information flow in the process of node splitting is shown in Figure 10.
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5. Ontology Task and Cloud Service Matching Strategy Based on Semantic Similarity

Based on the basic algorithm of semantic similarity, a multistage matching algorithm
between ontology tasks and cloud service is proposed, which is used to complete the
matching between tasks and cloud services.

5.1. Semantic Similarity Basic Algorithm

The main content of semantic similarity calculation includes text and numerical values,
and their basic algorithm is as follows.

(1) Text-phrase similarity matching algorithm.

With the help of a natural language-processing method, the semantic matching of
service resources is carried out by comparing the similarity of text description information
in ontology concept elements in terms of word form or word meaning, which is the most
direct method of ontology matching. Zhang [54] proposes a text-similarity algorithm.
Firstly, remove the stop words in the ontology concept, count the frequency of each word in
the text and extract the keywords, and then calculate the similarity of the keyword groups.

Suppose there are two key phrases, Res1 and Res2, which are composed of m and n
keywords, respectively. The similarity calculation process is as follows.

Step 1: With Res1 as the outer loop and Res2 as the inner loop, a double nested loop
structure is established.

Step 2: For each keyword in Res1, the maximum word similarity with Res2 is calculated
in the inner loop, which is word1Simi (i = 1, 2, . . . , m).

Step 3: Add the maximum word similarity calculated in step 2, and the result is
word1sum = ∑m

i=1 word1sumi.
Step 4: Get the variable: word1Sim = word1Sim/m.
Step 5: Similarly, Res2 is used as the outer loop and Res1 as the inner loop. For

each keyword in Res2, the maximum word similarity with Res1 is calculated as follows:
word2Simj (j = 1, 2, . . . , n)

Step 6: Add the maximum word similarity calculated in step 5 to achieve the result
word2sum = ∑n

j=1 word2sumj.
Step 7: Get the variable: word2Sim = word2Sim/n.
Step 8: Taking the mean value of word1Sim and word2Sim, the similarity of Res1 and

Res2 is as follows: wordSim = (word1Sim + word2sim)/2.
The pseudo code for phrase similarity calculation is shown as Algorithm 2.
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Algorithm 2. The Algorithm of Phrase Similarity Calculation Process

1. Input: key phrases Res1 and Res2
Res1 = ∑m

i=1 word1i
Res2 = ∑n

j=1 word2j
2. Output: wordsim(Res1, Res2), the similarity of phrases Res1 and Res2
3. for (i = 0; i < m; i ++) do
4. for (j = 0; j < n; j ++) do
5. word1simi ← the maximum similarity between word1i and word2j
6. end for
7. word1sim = word1sim + word1simi
8. end for
9. word1sim = word1sim/m
10. for (i = 0; i < m; i ++) do
11. for (j = 0; j < n; j ++) do
12. word2simi ← the maximum similarity between word1i and word2j
13. end for
14. word2sim = word2sim + word2simi
15. end for
16. word2sim = word2sim/m
17. wordsim(Res1, Res2) = (word1sim + word2sim)/2
18. return

The fundamental idea of the preceding algorithm is to average the maximum similarity
of the two keyword phrases, which traverses all the keywords in the keyword group and
is not sensitive to the order of keywords. In this algorithm, the traversal times of a single
nested loop is m× n, and the total time complexity is 2(m× n).

(2) Sentence-similarity matching algorithm.

The preceding text-phrase similarity matching algorithm can only calculate the similar-
ity of keywords, which is completed by extracting keywords from the text and comparing
them. It cannot judge the length of the text and the order of keywords in the text. For
the ontology expressed in the form of sentences, the algorithm in [33] is utilized to judge
the similarity of two sentences in terms of word shape, sentence length and order, and
then it is synthesized into sentence similarity according to a certain weight. When the
similarity value reaches or exceeds the preset threshold, the two sentences are considered
to be similar.

Suppose that sent1 and sent2 are sentences describing the concepts of ontology. SETi
and SETj are used to represent the ordered set of all the words, and the union of the above
two sets is SETor = {U1, U2, . . . , Um}. The morphological similarity, order similarity and
length similarity are calculated as follows.

Step 1: Sentence morphological similarity calculation.
Uk(0 < k ≤ m) is any word in SETor. Suppose that the maximum similarity between

Uk and all words in SETi is SIMik, and the maximum similarity with all words in SETj is
SIMjk. The morphological similarity between sent1 and sent2 is shown as follows

SIM1(sent1, sent2) = 1−

∣∣∣∑m
k=1 SIMik −∑m

k=1 SIMjk

∣∣∣
∑m

k=1 SIMik + ∑m
k=1 SIMjk

(18)

Step 2: Sentence order similarity calculation.
Suppose that Seri represents the position sequence number of the word in SETi, and

Serj represents the position sequence number of the word in SETj. Then the order similarity
between sent1 and sent2 is shown as follows

SIM2(sent1, sent2) = 1−
∣∣|Seri| −

∣∣Serj
∣∣∣∣

|Seri|+
∣∣Serj

∣∣ (19)
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Step 3: Sentence length similarity calculation.
If the lengths of sentences sentence1 and sentence2 are leni and lenj respectively, the

length similarity between the two sentences can be shown as follows

SIM3(sent1, sent2) = 1−
∣∣leni − lenj

∣∣
leni + lenj

(20)

Step 4: Sentence similarity calculation
Set the weight of word shape similarity, order similarity and sentence length similarity

in sentence similarity judgment as ω1, ω2 and ω3, respectively, then the calculation formula
of similarity between sent1 and sent2 is as follows

SenSim(sent1, sent2)

= ω1 ×
(

1− |∑
m
k=1 SIMik−∑m

k=1 SIMjk|
∑m

k=1 SIMik+∑m
k=1 SIMjk

)
+ ω2 ×

(
1− ||Seri |−|Serj||

|Seri |+|Serj|

)
+ ω3 × (1− |leni−lenj|

leni+lenj
)

(21)

(3) Numerical-interval similarity matching algorithm.

Li [24] proposed a method for calculating the similarity of numerical interval. Suppose
that Parai is a numerical parameter of the task, Paraj is the corresponding numerical
parameter of the service resource to be selected, and Lghi and Lghj are the numerical
intervals of the two numerical parameters, then the similarity between the two parameters
is expressed as follows

ValSim
(

Parai, Paraj
)
=


0 (Lghi ∩ Lghj = Φ)∣∣∣Lghi∩Lghj

∣∣∣
|Lghi |

(Lghi ∩ Lghj 6= Φ and Lghi ∩ Lghj 6= Lghi)

1 (Lghi ∩ Lghj = Lghi or Lghi ∩ Lghj = Lghj)

(22)

5.2. Semantic Similarity Based Multistage Matching Strategy between Ontology Task and
Cloud Service

The multistage resource-modeling method proposed in [3] is used to accomplish the
design resource modeling, and then the resource ontology is transformed into cloud service
by using the semantic-based resource-servitization method. Through the mapping between
resource ontology and OWL-S extended ontology, resource servitization is accomplished
and cloud services based on semantics are created [48]. For ontology-based task and
cloud service matching research, its essence is to calculate the semantic similarity between
published services and tasks. The higher the similarity between tasks and services, the
higher the matching degree between them.

Task ontology and resource service ontology are expressed by concepts, so service
matching becomes the similarity comparison of elements in an ontology concept set. Al-
though the composition of concepts is complex, it can be divided into two categories: text
and numerical value. The former mainly refers to phrases and sentence descriptions in the
form of text, and the latter refers to the measurement expressed by quantitative value or
numerical interval, or fuzzy number that can be converted into quantitative value.

Based on the matching of basic elements such as text, sentence and value, which
constitute the ontology concept, and taking the importance of ontology elements in the
process of service resource matching as the sequence, the multistage matching strategy of
task ontology and service ontology is constructed, shown in Figure 11.
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According to the importance of ontology elements, five levels of matching, including
task and service resource function matching, task context matching, input, output and
result (IOR) matching, evaluation index matching and precondition matching, are carried
out in turn, which is shown in Figure 12. The steps of multistage service resource matching
based on semantic similarity are as follows.
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Figure 12. Multistage matching flow chart between task and service.

(1) Function matching.

This is the matching of function description in the request task ontology and resource
service ontology. The function description is usually represented by unordered phrases.
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If the phrase set describing the function of task ontology is Task.Mission and the function
of resource service ontology is described as Serv.Function, then the matching similarity is
shown as follows

MatchFcn(Task.Mission, Serv.Function) = WordSim(Task.Mission, Serv.Function) (23)

(2) Task context matching

Task context consists of time and cost. Through operation, the matching of these
two parts can be transformed into the matching of numerical intervals. Assuming that
the required time and acceptable cost regions of the task are Task.Time and Task.Cost,
respectively, and the time and cost regions that resource services can provide are Serv.Time
and Serv.Pric, the task context matching degree is as follows

MatchCnt(Task.Context, Serv.SerIn f ) = α×ValSim(Task.Time, Serv.Time) + β×ValSim(Task.Cost, Serv.Pric) (24)

(3) IOR matching

The parameter of IOR, consisting of input parameter sequence, output parameter
sequence and result sequence, are reordered according to their composition form, which are
combined into m text phrase set WSetIor, n sentence set SSetIor and l numerical interval
set VSetIor. The IOR matching degree is as follows

MatchIOR(Task.IOR, Serv.IOR)

=
m
∑

i=1
(ωi ×WordSim(Task.WSetIori, Serv.WSetIori))

+
n
∑

j=1

(
ωj × SenSim

(
Task.SSetIorj, Serv.SSetIorj

))
+

l
∑

k=1
(ωk ×ValSim(Task.VSerIork, Serv.VSetIork))

(25)

where, ωi is the weight coefficient of the No. i matching phrase; ωj is the weight coefficient
of the No. j matching sentence; ωk is the weight coefficient of the No. l numerical interval.

(4) Evaluation index matching.

Evaluation index refers to the index generated by the evaluation variables of resources
during the establishment or operation of service resources, which is directly read from the
evaluation matrix [3]. By comparing the resource evaluation index with the threshold set
in the task ontology, it can be judged whether the service resources meet the requirements.
The weighted average of design capability index, customer evaluation index and cost index
of service resources is taken as the similarity of evaluation index, as shown below

MatchEva(Task.Eva, Serv.Eva) = α×MCph.Abi + β×MCPH .Eva + γ×MCph.Cost (26)

where, MCph.Abi, MCPH .Eva and MCph.Cost is the design capability index, customer evalu-
ation index and cost index of service resources; α, β and γ are their weights.

(5) Precondition matching.

Similar to IOR matching in (3), preconditions can be divided into several sets of
phrases, sentences and numerical intervals, which are respectively expressed as m phrase
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set WSetPre, n sentence set SSetPre and l numerical interval set VSerPre. The matching
degree of preconditions is shown as follows

MatchPre(Task.Pre, Serv.Pre)

=
m
∑

i=1
(ωi ×WordSim(Task.WSetPrei, Serv.WSetPrei))

+
n
∑

j=1

(
ωj × SenSim

(
Task.SSetPrej, Serv.SSetPrej

))
+

l
∑

k=1
(ωk ×ValSim(Task.VSerPrek, Serv.VSetPrek))

(27)

where, ωi, ωj and ωk are the weight coefficient of matching phrase, sentence and numerical
interval respectively.

The pseudo code of preceding multistage matching between ontology tasks and service
resources based on semantic similarity is shown as Algorithm 3.

Algorithm 3. The Algorithm of Multistage Matching between Ontology Task and Cloud Service

1. Input: design task ontology TO
cloud service ontology SO

2. Output: the matching result between TO and SO
3. TO.Mission← task requirement abstraction from TO
4. SO.Function← service function abstraction from SO
5. Matching between TO.Mission and SO.Function
6. if (function similarity threshold reached) then
7. TO.Context← task context abstraction from TO
8. SO.SerInf ← service time & cost information abstraction from SO
9. Matching between TO.Context and SO.SerInf
10. if (context similarity threshold reached) then
11. TO.IOR← task I&O abstraction from TO
12. SO.IOR← service I&O abstraction from SO
13. Matching between TO.IOR and SO.IOR
14. if (IOR similarity threshold reached) then
15. TO.ThreRequ← task evaluation index requirement abstraction from TO
16. SO.EvalIndex← service evaluation index abstraction from SO
17. Matching between TO.ThreRequ and SO.EvalIndex
18. if (evaluation index similarity threshold reached) then
19. TO.DynaContext← task dynamic context abstraction from TO
20. SO.Promise← service precondition abstraction from SO
21. Matching between TO.DynaContext and SO.Promise
22. if (promise similarity threshold reached) then
23. matching succeed between TO and SO
24. end if
25. else
26. matching failed
27. end if
28. else
29. matching failed
30. end if
31. else
32. matching failed
33. end if
34. else
35. matching failed
36. end if
37. return
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6. Intelligent Optimization of Cloud Services

When there are enough candidate cloud services, there will be multi-cloud services
matching with ontology tasks, which meet the expected threshold requirements. In or-
der to accomplish the design of complex products efficiently, the improved differential
evolution algorithm is used to further optimize the cloud services that meet the threshold
requirements, so as to obtain the optimal service composition.

The basic differential evolution algorithm mainly includes the steps of initialization,
mutation, crossover and selection [55]. In this algorithm, a random initial assignment is
made to the population, which is usually Np d-dimensional vectors. The initialization value
of population is generally selected randomly from the values within the given boundary
constraint. In terms of calculation process, differential evolution algorithm is similar
to the real coded genetic algorithm, including the operation of crossover, mutation and
selection. However, in the way of generation, the two algorithms are different. Differential
evolution algorithm generates mutation individuals based on the difference vector between
parents, and then cross operates the parent and mutation individuals according to a certain
probability, and finally uses greedy selection strategy to generate offspring individuals [56].

An improved differential evolution algorithm [45] is used to optimize the composition
of cloud services, which is based on the basic differential evolution algorithm [57], and its
evolution performance has been improved and meets the actual production requirements.

6.1. Parameter and Fitness Function of the Optimization

In the process of optimizing the composition of tasks and cloud services, the parame-
ters are set as follows.

(1) Task parameters.

Task parameters include total task Tol, subtask module set and total subtask. Design
subtask model set ST is shown as follows

ST = {st1, st2, . . . , sti, . . . , stN} (28)

where, sti is subtask module, i = 1, 2, . . . , N. N is the total number of subtask modules
after decomposition.

Assuming that all tasks include each subtask module, the task amount Toli of the
subtask module is shown as follows

∑N
i=1 Toli = Tol (29)

where, Toli is the number of the No.i subtask module, i = 1, 2, . . . , N.

(2) Candidate cloud service set of subtask module.

The candidate cloud service set of subtask module sti is shown as follows

CSi =
{

csi
1, csi

2, . . . , csi
j, . . . , csi

Mi

}
(30)

where, csi
j is the No.j candidate cloud service of subtask module sti; j = 1, 2, . . . , Mi; Mi is

the total number of candidate cloud services.

(3) Candidate cloud service time consumption.

It includes two parts, and the first is the time consumption for cloud service csi
j to

complete subtask module sti, shown as follows

Ti
j = ti

j × xi
j (31)
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where, ti
j is the time consumption that candidate cloud service csi

j accomplishes unit task

module sti; xi
j is the number of tasks assigned by subtask module sti to candidate cloud

service csi
j, and ∑

j=Mi
j=1 xi

j = Toli.
The second part of the candidate cloud service time consumption is the handover

time consumption ti
j→j′ between two adjacent cloud services, csi

j of subtask module sti and

csi+1
j′ (j = 1,2, . . . , Mi, j′ = 1,2, . . . , Mi+1) of subtask module sti+1.

Taking the shortest product design time consumption as the goal of cloud service
optimization, the fitness function of optimization is as follows

min
F = Tmax (32)

where, Tmax is the longest time consumption required for tasks to be delivered to the
service requester.

6.2. Algorithm Design
6.2.1. Improved Differential Evolution Algorithm

In order to adapt to the actual working condition of optimal service composition in
a cloud manufacturing system, we utilize the method of gene position division based on
a subtask module in coding mode [47], which decomposes the whole task into different
modules, and all the operation, such as mutation, crossover and selection, are accomplished
within the module.

(1) Coding method.

The bijective relationship between each gene coding and the corresponding candidate
cloud services is established by using the real number coding in the range of [0, Toli]. The
candidate cloud service resources are coded according to the subtask module, and the
number of gene bits of each subtask module is the number of candidate cloud service.
Therefore, the gene bits of candidate cloud service csn

m is as follows

csn
m =

m +
n−1
∑

i=1
Mi n > 1

m n = 1
(33)

where, csn
m represents the No. m candidate cloud service of subtask module stn, n stands

for the No. n subtask module, and m represents the No. m candidate cloud service of this
subtask module.

(2) Block mutation operation.

In this improved differential evolution method, the mutation operation is partitioned
according to the subtask module. Suppose that the No.h generation population of the No.n
subtask module is Xh,n =

{
xh,n

d | d = 1, 2, . . . , Np

}
, the gene sequence of the No. d chromo-

some of this population is xh,n
d =

{
xh,n

d,1 , xh,n
d, 2, . . . , xh,n

d,Mn

}
. Where, Np is the population size.

Block mutation is performed on the No.d chromosome. Three natural numbers d1, d2
and d3, which are not equal to d and are in the range of

[
1, Np

]
, are generated randomly.

The new mutants are uh,n
d =

{
uh,n

d,1 , uh,n
d, 2, . . . , uh,n

d,Mn

}
. The calculation formula of mutation

individual is as follows
uh,n

d, i = xh,n
d1, i + F·

(
xh,n

d2, i − xh,n
d3, i

)
(34)

where, F is a real constant and represents the scaling factor of the No.n module. Its value
is 0.5.
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(3) Block crossover operation.

Within the subtask module, the cross operation between the parent individual xh,n
d

and the mutant individual uh,n
d is carried out, which results in experimental individual

vh,n
d = {vh,n

d,1 , vh,n
d, 2, . . . , vh,n

d,Mn
}. The crossover operation is as follows

vh,n
d,i =

{
uh,n

d,i ri ≤ CR ∩ i = rf
xh,n

d,i others
(35)

where, ri is the No.i random real number between [0, 1], and rf is a natural number between
[1, Mn], which ensure that vh,n

d achieves at least one gene value from uh,n
d . CR is the

crossover operator, and its value is 0.5.
It is necessary to check and correct vh,n

d,i to ensure that it can meet the requirement:

∑Mn
i=1 vh,n

d,i = Toln. If ∑Mn
i=1 vh,n

d,i > Toln, reduce the task number of candidate cloud service,

which can reduce the time consumption of the subtask. If ∑Mn
i=1 xi

j < Toln, increase the task
number of candidate cloud service, which can increase the time consumption. The process
is as follows.

Step 1: Round the experimental individual vh,n
d,i and calculate the time consumption

for each cloud service node based on formula Th,n
d,i = th,n

d,i × vh,n
d,i . If ∑Mn

i=1 vh,n
d,i > Toln, turn to

Step 2; if ∑Mn
i=1 vh,n

d,i < Toln, turn to Step 4; if ∑Mn
i=1 vh,n

d,i = Toln, end the operation.

Step 2: According to Th,n
d,i , the most time-consuming cloud service node, Imax, is

obtained. The task amount of Imax is reduced by 1, that is, vh,n
d,Imax

= vh,n
d,Imax

− 1.

Step 3: Calculate the value of ∑Mn
i=1 vh,n

d,i exceeding Toln, which is named F. If F 6= 0,
turn to Step 2; if F = 0, end the operation.

Step 4: According to Th,n
d,i , the least time-consuming cloud service node, Imin, is ob-

tained. The task amount of Imin is increased by 1, that is, vh,n
d,Imax

= vh,n
d,Imax

+ 1.

Step 5: Calculate the value of Toln exceeding ∑Mn
i=1 vh,n

d,i , which is named F. If F 6= 0,
turn to Step 4; if F = 0, end the operation.

The pseudo code for block crossover operation is shown as Algorithm 4.

(4) Block selection operation.

A selection operation, using greedy algorithm, is performed between the parent
individual xh

d and the experimental individual vh
d, by which the offspring individual is

generated. The selection formula of offspring individual xh+1
d is as follows

xh+1
d =

{
vh

d Tv
max < Tx

max
xh

d others
(36)

where, vh
d is the experimental individual, xh

d is the parent individual, and xh+1
d is offspring

individual. Tv
max and Tx

max are the maximum time consumption required for each batch of
subtasks to be delivered to the service requesters.



Machines 2022, 10, 775 28 of 38

Algorithm 4. The Algorithm of Block Crossover Operation

1. Input: experimental individual vh,n
d =

{
vh,n

d,1 , vh,n
d, 2, . . . , vh,n

d,Mn

}
2. Output: changed experimental individual vh,n

d,i i = 1, 2, . . . , Mn

3. if (∑Mn
i=1 round

(
vh,n

d,i

)
> Toln) then

4. continue
5. else if (∑Mn

i=1 round
(

vh,n
d,i

)
< Toln) then go to 21

6. else return
7. end if
8. TMax← 0, x← 0
9. for (i = 0; i < Mn; i ++) do
10. Ti ← th,n

d,i × vh,n
d,i

11. if (TMax < Ti) then
12. TMax← Ti
13. x← i
14. end if
15. end for
16. vh,n

d,x = vh,n
d,x − 1

17. F ← ∑Mn
i=1 vh,n

d,i − Toln
18. if (F == 0) then
19. return
20. end if
21. TMin← 0, y← 0
22. for (i = 0; i < Mn; i ++) do
23. Ti ← th,n

d,i × vh,n
d,i

24. if (TMin > Ti) then
25. TMin← Ti
26. y← i
27. end if
28. end for
29. vh,n

d,y = vh,n
d,y + 1

30. F ← ∑Mn
i=1 vh,n

d,i − Toln
31. if (F <> 0) then
32. go to 21
33. end if
34. return

6.2.2. Handover Strategy Design

According to the preceding improved differential evolution algorithm, there are a
variety of cloud service composition schemes, and each of them has multiple handover
schemes. In other words, the same resource can be handed over to multiple candidate
cloud services of the next subtask module in various ways. Therefore, it is necessary to
find the least time-consuming handover scheme in the same cloud service composition
scheme, so that the product design time consumption of cloud service composition scheme
is the shortest. Suppose that the handover scheme from the No. n subtask module to the
No. n + 1 subtask module is TRANSMn×Mn+1 . The handover process is as follows.

Step 1: The task allocation scheme of candidate cloud services, which is used to
accomplish subtask module stn and stn+1, are obtained from the genome, and we obtain
two arrays Xn = {xn

1 ,xn
2 , . . . , xn

Mn
} and Xn+1 = {xn+1

1 ,xn+1
2 , . . . ,xn+1

Mn+1
}. The tasks number of

both arrays are Tol, that is, Toln = Toln+1 = Tol. All the time consumption, which are used
to hand over the task from candidate cloud service csn

j to csn+1
k , are obtained from cloud

manufacturing platform to establish the handover time consumption matrix Tn→n+1
Mn×Mn+1

.
Step 2: Initialize the handover matrix TRANSMn×Mn+1 , and assign each element to 0,

that is transi→j = 0, where i = 1, 2, . . . , Mn and j = 1, 2, . . . , Mn−1. In this initial state, the
handover number of each path from subtask module stn to next module stn+1 is 0.
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Step 3: The elements in Tn→n+1
Mn×Mn+1

are arranged in ascending order, and the starting and
ending cloud services after arrangement are recorded with set H. H = {hk = (sk, ek) | sk = 1,
2, . . . , Mn; ek = 1, 2, . . . , Mn+1; k = 1, 2, . . . , Mn ×Mn+1}, |H| = Mn ×Mn+1. Let k = 1.

Step 4: If Mn ×Mn+1 > k, continue to perform the following operations, otherwise
end the process. If xn

sk
6= 0 and xn+1

ek
6= 0, select the smaller of xn

sk
and xn+1

ek
. If xn

sk
<xn+1

ek
,

then xn+1
ek

= xn+1
ek
− xn

sk
, Toln = Toln − xn

sk
, Toln+1 = Toln+1 − xn

sk
. If xn

sk
≥xn+1

ek
, then

xn
sk
= xn

sk
− xn+1

ek
, Toln = Toln − xn+1

ek
, Toln+1 = Toln+1 − xn+1

ek
.

Step 5: If Toln = 0 or Toln+1 = 0, then end the process; otherwise k = k + 1, and turn
to Step 4.

The pseudo code for handover process is shown as Algorithm 5.

Algorithm 5. The Algorithm of Handover Process

1. Input: handover scheme from No.n subtask module to No. n + 1 subtask module
TRANSMn×Mn+1

2. Output: least time-consuming handover scheme
3. Xn ← {xn

1 ,xn
2 , . . . , xn

Mn
}

4. Xn+1 ← {xn+1
1 ,xn+1

2 , . . . ,xn+1
Mn+1

}

5. Tn→n+1
Mn×Mn+1

← hand over time consumption from csn
j to csn+1

k
6. for (i = 0; i < Mn; i ++) do
7. for (j = 0; j < Mn−1; j ++) do
8. transi→j ← 0
9. end for
10. end for
11. arrange Tn→n+1

Mn×Mn+1
in ascending order

12. while (Toln <> 0 or Toln+1 <> 0)
13. k← k+1
14. if (Mn ×Mn+1 > k) then
15. if (xn

sk
<> 0 and xn+1

ek
<>0) then

16. transsk ,ek ← min
(

xn
sk

, xn+1
ek

)
17. end if
18. if (xn

sk
<xn+1

ek
) then

19. xn+1
ek
← xn+1

ek
-xn

sk

20. Toln ← Toln - xn
sk

21. Toln+1 ← Toln+1 -xn
sk

22. xn
sk
←0

23. else
24. xn

sk
← xn

sk
-xn+1

ek
,

25. Toln ← Toln -xn+1
ek

26. Toln+1 ← Toln+1 -xn+1
ek

27. xn+1
ek
←0

28. end if
29. end while
30. return

6.2.3. Calculation of Fitness Function

When the cloud service composition is executed, its running rules are as follows.

(1) Each cloud service composition scheme can be regarded as being composed of several
concurrent and intersecting design paths, and the time consumption of the most
time-consuming design path represents the design time consumption of the scheme.

(2) In order to reduce the complexity of handover, each candidate cloud service of the sub-
task is handed over to the next candidate cloud service after completing its own task.
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Based on the above rules, the fitness function is calculated as follows.
Step 1: The time consumption matrix Tend of each candidate cloud service is estab-

lished and initialized to 0.
Step 2: If n = 1, calculate the time consumption T1

j = t1
j × x1

j , which is used by
candidate cloud service to complete the task, and store it in the first column of Tend. Turn
to Step 7. If 1 < n ≤ N, continue, otherwise turn to Step 8.

Step 3: Generate handover matrix TRANSMn−1×Mn , each element of which records
the task quantity handed from candidate cloud service of the No. (n− 1) subtask module
to that of the No. n subtask module. Suppose m = 1.

Step 4: If m ≤ Mn, continue, otherwise turn to Step 7.
Step 5: By traversing the No. m column element of TRANSMn−1×Mn , all the preorder

candidate cloud services of candidate cloud service csn
m and the number of tasks handed

over to csn
m are obtained. Then, the start time and task quantity of each task in csn

m are
obtained, which forms the start state set of csn

m, STARTn
m = {(t1, w1),(t2, w2), . . . , (tl , wl)}.

Where, tl is calculated as follows

tl =

{
Tn−1

l + tn−1
l→m Tn−1

l 6= 0
0 Tn−1

l = 0
(37)

where, Tn−1
l is the end time of the preorder cloud service csn−1

l of candidate cloud service
csn

m, tn−1
l→m represents the handover time from the preorder cloud service csn−1

l to the current
candidate cloud service csn

m, and its quantity of handover is wl = TRANSl→m. If tl = 0, it
indicates that there is no task, or no task is handed over to the current cloud service, so
wl = 0.

According to the first-handover-first-executed basis, the elements in STARTn
m are

arranged in ascending order of tl , and wl is replaced by the end time of the task, that is,
wl = tl + tn

m·wl .
The elements in STARTn

m are compared in pairs. If tl+1 < wl , no operation is performed;
if tl+1 < wl , wl+1 = wl+1 + wl − tl+1, tl+1 = wl . Therefore, the final wMn−1 is the final end
time of the cloud service csn

m, and wMn−1 is assigned to the end time matrix Tend, that is,
Tn

m = wMn−1 .
Step 6: m = m + 1, and turn to Step 4.
Step 7: n = n + 1, and turn to Step 7.
Step 8: According to the time consumption matrix Tend obtained above, the final

time consumption of the cloud service composition scheme Tmax is the maximum time
consumption, with which candidate cloud service of the last subtask module hands over

the design results to the resource requester, that is, Tmax =
max

j ∈ MN
{TN

j + tN
j→user}. The

process ends.
The pseudo code for calculation of fitness function is shown as Algorithm 6.
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Algorithm 6. The Algorithm of Fitness Function Calculation

1. Input: experiment time consumption T1
j

handover matrix TRANSMn−1×Mn

2. Output: fitness function
3. Tend ← 0 , Tmax ← 0 , n←0
4. if (n == 1) then
5. T1

j ← t1
j × x1

j

6. first row of Tend ← T1
j

7. go to 28
8. else if (n〈1 or n〉N) then
9. go to 29
10. end if
11. Initialization of TRANSMn−1×Mn

12. m← 1
13. if (m > Mn) then
14. go to 28
15. end if
16. STARTn

m ← {(t1,w1), (t2, w2), . . . , (tl , wl)}
17. arrange STARTn

m in ascending order
18. wl ← tl +tn

m·wl
19. for (i = 0; i < m− 1; i ++) do
20. if (ti+1 < wi) then
21. wi+1 ← wi+1 +wi-ti+1
22. ti+1 ← wi
23. end if
24. end for
25. m← m + 1
26. go to 13
27. n← n + 1
28. go to 4

29. Tmax ←
max

j ∈ MN
{TN

j + tN
j→user}

30. return

7. Case Study

In order to verify the above proposed method, a case study is carried out in cooperation
with an enterprise group. This group is a large enterprise integrating product design
and production. It has a number of subsidiaries, and each subsidiary has a relatively
independent design department. Due to the imbalance of design capacity, the subsidiaries
often need to schedule and match tasks and resources. The group has built a private cloud
system, through which the tasks and resources of each subsidiary can interact and match.
Based on the above background and the theoretical research proposed in this paper, a
case study is carried out. In order to verify the effectiveness of the proposed theory, a
multi-level cloud-service matching system based on task hierarchical decomposition is
built to complete the matching and intelligent optimization of tasks and resources.

Figure 13 shows the cloud manufacturing prototype system, which mainly provides
the functions of task-ontology modeling, task flow decomposition, resource cloud service
system, ontology task matching with cloud service system, intelligent optimization of cloud
service, and so on. Its structure is shown in Figure 14.
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The meta resources provided by the resource provider are aggregated to DCRs, which
undertakes the design task issued by the resource requester. The aggregation and list of
DCRs are shown in Figures 15 and 16. The design task access interface is shown in Figure 17.
According to the task granularity, the resource requester set different levels of design tasks.
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For the design of a large mechanical system, a total of 100 special component design
tasks are obtained through task modeling and decomposition. Each special component
design task includes three sub task modules: overall design, dynamic analysis and detailed
design. After matching tasks with cloud services, a number of cloud service resources
are found. The consumed time of each task is shown in Table 1, and the handover time
consumption between subtasks is shown in Tables 2 and 3.
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Table 1. Candidate cloud service module.

Subtask 1. Subtask 2 Subtask 3

Cloud Service Time
Consumption (h) Cloud Service Time

Consumption (h) Cloud Service Time
Consumption (h)

1 50 1 32 1 42
2 49 2 31 2 41
3 52 3 30 3 40
4 51 4 28
5 48 5 29

6 33
7 27

Table 2. The handover time consumption between No.1 and No.2 subtask module (H).

No. 1 Resource Module
No. 2 Resource Module

1 2 3 4 5 6 7

1 4 5 6 5.5 4.54 5.53 4.48
2 4.3 4.77 5.3 4.4 4.27 5.1 4.1
3 4.2 5.2 4.7 5.4 5.47 5.9 4.9
4 5.6 5.8 5.23 5.86 5.81 4.38 4.6
5 4.5 5.11 4.8 5.61 5.73 4.88 4.99

During the optimization, each chromosome in the population represents a service
composition, and the optimization parameters are set as follows: crossover operator
CR = 0.5, mutation operator F = 0.5, population size Np = 30, the maximum number of iter-
ations is 100. The threshold of fitness function is not set and only the maximum evolution
algebra is taken as the termination condition of calculation.
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Table 3. The handover time consumption between No.2 and No.3 subtask module (H).

No. 2 Resource Module
No. 3 Resource Module

1 2 3

1 4 5 6
2 5.5 4.5 5.59
3 5.44 5.7 4.3
4 4.77 5.3 4.4
5 5.27 5.1 4.1
6 4.18 4.2 5.2
7 4.7 5.4 5.6

After completing 100 iterations in MATLAB, the time consumption of each service
composition in the population is shown in Table 4, and the objective function curve is
shown in Figure 18. In Table 4, the time consumption of No.23 chromosome is the shortest,
indicating that in the process of completing the specified design tasks, the time consumption
of No.23 service composition is the shortest, and the task allocation of each cloud service
resource is shown in Table 5.

Table 4. The total time consumption of each chromosome after iteration.

Chromosomes 1 2 3 4 5 6 7 8 9 10

Time consumption 2502.0 2523.0 2529.8 2505.6 2513.8 2522.0 2508.9 2550.0 2493.0 2516.0

Chromosomes 11 12 13 14 15 16 17 18 19 20

Time consumption 2534.8 2515.0 2512.8 2510.6 2545.0 2522.9 2529.8 2494.0 2503.2 2512.8

Chromosomes 21 22 23 24 25 26 27 28 29 30

Time consumption 2514.0 2514.0 2490.8 2493.0 2545.0 2508.0 2526.0 2512.8 2508.0 2507.8

Machines 2022, 10, x FOR PEER REVIEW 36 of 40 
 

 

Table 3. The handover time consumption between No.2 and No.3 subtask module (H). 

No. 2 Resource Module 
No. 3 Resource Module 

1 2 3 

1 4 5 6 

2 5.5 4.5 5.59 

3 5.44 5.7 4.3 

4 4.77 5.3 4.4 

5 5.27 5.1 4.1 

6 4.18 4.2 5.2 

7 4.7 5.4 5.6 

During the optimization, each chromosome in the population represents a service 

composition, and the optimization parameters are set as follows: crossover operator CR = 

0.5, mutation operator F = 0.5, population size N𝑝 = 30, the maximum number of iterations 

is 100. The threshold of fitness function is not set and only the maximum evolution algebra 

is taken as the termination condition of calculation. 

After completing 100 iterations in MATLAB, the time consumption of each service 

composition in the population is shown in Table 4, and the objective function curve is 

shown in Figure 18. In Table 4, the time consumption of No.23 chromosome is the shortest, 

indicating that in the process of completing the specified design tasks, the time consump-

tion of No.23 service composition is the shortest, and the task allocation of each cloud 

service resource is shown in Table 5. 

Table 4. The total time consumption of each chromosome after iteration. 

Chromosomes 1 2 3 4 5 6 7 8 9 10 

Time consump-

tion 
2502.0 2523.0 2529.8 2505.6 2513.8 2522.0 2508.9 2550.0 2493.0 2516.0 

Chromosomes 11 12 13 14 15 16 17 18 19 20 

Time consump-

tion 
2534.8 2515.0 2512.8 2510.6 2545.0 2522.9 2529.8 2494.0 2503.2 2512.8 

Chromosomes 21 22 23 24 25 26 27 28 29 30 

Time consump-

tion 
2514.0 2514.0 2490.8 2493.0 2545.0 2508.0 2526.0 2512.8 2508.0 2507.8 

 

Figure 18. Objective function fitness curve. 

  

Figure 18. Objective function fitness curve.

Table 5. The task quantity of each design subtask module.

Module Task Quantity of Design Subtask Module

No.1 subtask module
Cloud service No. 1 2 3 4 5
Quantity of tasks 18 13 16 27 26

No.2 subtask module
Cloud service No. 1 2 3 4 5 6 7
Number of tasks 14 17 9 15 15 13 17

No.3 subtask module
Cloud service No. 1 2 3
Number of tasks 33 33 34
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It can be seen from the above example that the improved differential evolution algo-
rithm can further optimize and match the candidate cloud services that meet the threshold
requirements and obtain the optimal service composition for a specific design task. After
the global search and continuous convergence of the differential evolution algorithm, the
optimal task-matching scheme of each cloud service is obtained with the shortest time
consumption as the optimization goal.

8. Conclusions

In summary, aiming at the matching of tasks and cloud services in a cloud manu-
facturing system and the optimization of candidate cloud services, a novel multi-level
cloud-service matching strategy based on task hierarchical decomposition is proposed,
which solves the problem of tasks and cloud services matching with different granularities.
A candidate cloud-service optimization algorithm based on improved differential evolution
is proposed to intelligently optimize the candidate cloud services and find the optimal
service composition with the goal of the shortest time consumption. With the help of
a multi-stage cloud-service matching method, the service matching of maximizing task
granularity is realized on the premise of ensuring the success rate of matching, which meets
the preference of resource requesters for large-granularity service resources. Compared
with previous research, our research can realize the optimal matching of design tasks and
service resources in the cloud manufacturing environment on the premise of satisfying the
preferences of resource users for large-scale service resources. The application platform
based on our research can meet the demand of resource requesters for multidisciplinary
design resources for interdisciplinary design tasks. Our research realizes the sharing of
design resources in the cloud manufacturing environment.

Our future work will focus on the implementation of cloud services to improve the
operation and evaluation of cloud services. In addition, the prototype system needs
to be improved and expanded to realize the whole process management of tasks and
candidate resources.
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