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Abstract: Numerous path-planning studies have been conducted in past decades due to the challenges
of obtaining optimal solutions. This paper reviews multi-robot path-planning approaches and
decision-making strategies and presents the path-planning algorithms for various types of robots,
including aerial, ground, and underwater robots. The multi-robot path-planning approaches have
been classified as classical approaches, heuristic algorithms, bio-inspired techniques, and artificial
intelligence approaches. Bio-inspired techniques are the most employed approaches, and artificial
intelligence approaches have gained more attention recently. The decision-making strategies mainly
consist of centralized and decentralized approaches. The trend of the decision-making system is to
move towards a decentralized planner. Finally, the new challenge in multi-robot path planning is
proposed as fault tolerance, which is important for real-time operations.

Keywords: multi-robot path planning; bio-inspired algorithms; robots

1. Introduction

Robot applications have been widely implemented in various areas, including indus-
try [1], agriculture [2], surveillance [3], search and rescue [4], environmental monitoring [5],
and traffic control [6]. A robot is referred to as an artificial intelligence system that integrates
microelectronics, communication, computer science, and optics [7]. Due to the development
of robotics technology, mobile robots have been utilized in different environments, such
as Unmanned Aerial Vehicles (UAVs) for aerospace, Automated Guided Vehicles (AGVs)
for production, Unmanned Surface Vessels (USVs) for water space, and Autonomous
Underwater Vehicles (AUVs) for underwater.

To perform tasks, employing a set of vehicles cooperatively and simultaneously has
gained interest due to the increased demand. Multiple robots can execute tasks in parallel
and cover larger areas. The system continues working even with the failure of one robot [8],
and it has the advantages of robustness, flexibility, scalability, and spatial distribution [9].
Each robot has its coordinates and independent behavior for a multi-robot system, and it
can model the cooperative behavior of real-life situations [10]. For reliable operation of the
robot, the robotics system must address the path/motion planning problem. Path planning
aims to find a collision-free path from the source to the target destination.

Path planning is an NP-hard problem in optimization, and it involves multiple ob-
jectives, resulting in its solution being polynomial verified [11]. The robots are aimed
to accomplish the tasks in the post-design stage with higher reliability, higher speed,
and lower energy consumption [12]. Task allocation, obstacle avoidance, collision-free
execution, and time windows are considered [13]. Multi-robot path planning has high
computational complexity, which results in a lack of complete algorithms that offer solution
optimality and computational efficiency [14].
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Substantial optimality criteria have been considered in path planning, such as the
rendezvous and operation time, path length, velocity smoothness, safety margin, and head-
ing profiles for generating optimal paths [15]. During missions, the robot systems have
limitations, such as limited communication with the center or other robots, stringent non-
holonomic mission constraints, and limited mission length because of weight, size, and fuel
constraints [16]. The planned path must be a smooth curve due to nonholonomic motion
constraints and support kinematic constraints with geometric continuity. Furthermore,
the path’s continuity is significant for collaborative transport [17].

Path-planning approaches can be divided into offline and real-time implementation.
Offline generation of a multi-robot path cannot exploit the cooperative abilities, as there is
little or no interaction between robots, leading to the multi-robot system not ensuring that
the robots are moving along a predefined path or formation [18]. Real-time systems have
been proposed to overcome the problems created by offline path generation, and these
can maximize the efficiency of algorithms. The chart of offline/real-time implementation
included in the literature review is exhibited in the discussion section.

Decision-making strategies can be classified as centralized and decentralized approaches.
The centralized system has the central decision-maker, and thus the degree of cooperation is
higher than in the decentralized approach. All robots are treated as one entity in the high-
dimensional configuration space [19]. A central planner assigns tasks and plans schedules
for each robot, and the robots start operation after completion of the planning [20]. The al-
gorithms used in the centralized structure are without limitation because the centralized
system has better global support for robots.

However, the decentralized approach is more widely employed in real-time implemen-
tation. Decentralized methods are typical for vehicle autonomy and distributed computa-
tion [21]. These have the robots communicate and interact with each other and have higher
degrees of flexibility, robustness, and scalability, thereby, supporting dynamic changes.
The robots execute computations and produce suboptimal solutions [20]. The decentral-
ized approach includes task planning and motion planning, and it reduces computational
complexity with limited shared information [22].

Many surveys have been conducted for the mobile robot path planning strategies [23–25];
however, these papers only focus on single robot navigation without cooperative planning.
This review’s motivation is to introduce the state-of-art path-planning algorithms of multi-
robot systems and provide an analysis of multi-robot decision-making strategies, consider-
ing real-time performance. This paper not only investigates 2D or ground path planning
but also the 3D environment.

We review the recent literature and classify the path-planning approaches based on
the main principles. The paper is organized as follows. Section 2 presents the multi-robot
path-planning approaches with classification. Section 3 provides the decision-making
strategies for the multi-robot system. Section 4 discusses the mentioned path-planning
algorithms and concludes the paper.

2. Multi-Robot Path Planning Approaches

Figure 1 presents the classification of multi-robot path-planning algorithms, and it
is divided into three categories: classical approaches, heuristic algorithms, and artificial
intelligence (AI)-based approaches. The subcategories are linked to the primary cate-
gories and only display the significant subcategories. The classical approaches include
the Artificial potential field, sampling-based, and graph-based approaches. The heuristic
algorithms mainly consist of A* and D* search algorithms. The AI-based approaches are
the most common algorithms for multi-robot systems, and the bio-inspired approaches
take most of the attention. Metaheuristic has been applied to most of the research, and the
famous algorithms are PSO and GA. From [26], GA and PSO are the most commonly
used approaches.
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Figure 1. Classification of multi-robot path planning approaches.

2.1. Classical Approaches
2.1.1. Artificial Potential Field (APF)

The APF uses its control force for path planning, and the control force sums up the
attractive and the repulsive potential field. The illustration of APF is shown in Figure 2; the
blue force indicates the attractive field, and the yellow force represents the repulsive field.
The APF establishes path-planning optimization and dynamic particle models, and the
additional control force updates the APF for multi-robot formation in a realistic and known
environment [27]. Another APF-based approach is presented for a multi-robot system in a
warehouse.

It uses the priority strategy and solves the drawbacks of traffic jams, local minima,
collisions, and non-reachable targets [28]. An innovative APF algorithm is proposed to
find all possible paths under a discrete girded environment. It implements a time-efficient
deterministic scheme to obtain the initial path and then uses enhanced GA to improve
it [29]. A potential field-based controller in [30] supports robots to follow the designed
path, avoid collision with nearby robots, and distribute the robots stochastically across
different paths in topologically distinct classes.

Figure 2. Illustration of the APF algorithm.

An improved APF is proposed to overcome the traditional APF’s shortcomings, in-
cluding target unreachable and local minimum in [31] for real-time performance with
dynamic obstacles for realizing local path planning. A collision avoidance strategy and risk
assessment are proposed based on the improved APF and the fuzzy inference system for
multi-robot path planning under a completely unknown environment [32].
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APF is applied in the approximate cost function in [33], and integral reinforcement
learning is developed for the minimum time-energy strategy in an unknown environment,
converting the finite horizon problem with constraints to an infinite horizon optimal control
problem. APF is introduced for the reward functions and integrates Deep Deterministic
Policy Gradient and Model Predictive Control to address uncertain scenes [34].

2.1.2. Sampling-Based

The rapidly exploring random tree (RRT) searches high-dimensional and nonconvex
space by using a space-filling tree randomly, and the tree is built incrementally from samples
to grow towards unreached areas. The sampling-based approach’s outline is demonstrated
in Figure 3, and the generated path is highlighted in green. For a multi-robot centralized
approach, multi-robot path-planning RRT performs better in optimizing the solution and
exploring search space in an urban environment than push and rotate, push and swap,
and the Bibox algorithm [35]. The discrete-RRT extends the celebrated RRT algorithm in
the discrete graph with a speedy exploration of the high-dimensional space of implicit
roadmaps [36].

Figure 3. Demonstration of the RRT algorithm.

2.1.3. Other Classical Approaches

Tabu search keeps searching the solutions in the neighborhood and records the solu-
tions in the Tabu list. The classic Tabu search is integrated with particle swarm optimization
(PSO) to enhance optimization ability in [37], and it is aimed at the decision-making of
routing and scheduling. It is based on the PSO and Tabu search algorithm with a “minimum
ring” for obtaining the dynamic path planning for adapting the online requirements for a
dynamic environment.

A polygon area decomposition strategy is applied to explore a target area with located
waypoints. It analyzes the effect of the partition of the area, and the number of robots [38].
Planar graphs are used to solve optimal multi-robot path planning problems with compu-
tational complexity and establish the intractability of the problems on the graphs to reduce
the sharing of paths in opposite directions [39]. The grid pattern map decomposition is
developed for coverage path planning and employing multiple UAVs for collecting the
images and creating a response map to obtain helpful information [40].

For remote sensing and area coverage with multi-robot, graph-based task modeling
is proposed with mixed-integer linear programming to route the multiple robots [41].
A mixed-integer linear programming model is presented based on the hexagonal grid-
based decomposition method [42]. It can be applied for multi-UAV coverage path planning
in rescue and emergency operations. The biconnected graph, user input, and small critical
benchmark are controlled by a path planner as presented in [43] to solve the multi-AGV path
planning problems of AGV planetary exploration, automatic packages, and robotics mining.

A multi-robot informative path-planning approach transforms the continuous region
into Voronoi components, and the robots are allocated free regions [44]. The multi-robot
navigation strategy with path priority is presented in [45]; a generalized Voronoi diagram
divides the map according to the robot’s path-priority order and finds the path-priority
order for each robot.

For the cited papers, the classical approaches consist of APF and sampling-based
algorithms. The classical algorithms usually involve the predefined graph, requiring high
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computational space. The trend of implementing the classical algorithms is combined with
other state-of-art algorithms. The heuristic algorithms are proposed for complete and fast
path planning.

2.2. Heuristic Algorithms
2.2.1. A* Search

The A* search algorithm is one of the most common heuristic algorithms in path
planning. Figure 4 shows the simple example of the gird-based A* algorithm, and the
path is highlighted in green. It uses the heuristic cost to determine the optimal path on
the map. The relaxed-A* is used to provide an optimal initial path and fast computation,
and Bezier-splines are used for continuous path planning to optimize and control the
curvature of the path and restrict the acceleration and velocity [17].

A two-level adaptive variable neighborhood search algorithm is designed to be in-
tegrated with the A* search algorithm for the coupled mission planning framework. It
models the path planning problem and the integrated sensor allocation to minimize travel
costs and maximize the task profit [46]. For the multi-AGV routing problem, the improved
A* algorithm plans the global path and uses a dynamic RRT algorithm to obtain a passable
local path with kinematic constraints, avoiding collisions in the grid map [47].

Additionally, Ref. [48] utilized the A* algorithm for the predicted path and generated
a flyable path by cubic B-spline in real-time for guidance with triple-stage prediction.
With the computational efficiency of cluster algorithms and A*, the proposed planning
strategy supports online implementation. An optimal multi-robot path-planning approach
is proposed with EA* algorithm with assignment techniques and fault-detection algorithm
for the unknown environment based on the circle partitioning concept in [49]. A proposed
navigation system integrates a modified A* algorithm, auction algorithm, and insertion
heuristics to calculate the paths for multiple responders. It supports connection with a
geo-database, information collection, path generation in dynamic environments, and spatio-
temporal data analysis [50].

Figure 4. Simple example of the A* algorithm.

The D* algorithm is employed for multi-robot symbiotic navigation in a knowledge-
sharing mechanism with sensors [8]. It allows robots to inform other robots about environ-
mental changes, such as new static obstacles and path blockage, and it can be extended for
real-time mobile applications. Additionally, D* Lite is applied with artificial untraversable
vertex to avoid deadlocks and collisions for real-time robot applications, and D* Lite has
fast re-planning abilities [9].

A cloud approach is developed with D* Lite and multi-criteria decision marking to
offer powerful processing capabilities and shift computation load to the cloud from robots
in the multi-robot system with a high level of autonomy [51]. An integrated framework
is proposed based on D* Lite, A*, and uniform cost search, and it is used for multi-robot
dynamic path-planning algorithms with concurrent and real-time movement [52].
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2.2.2. Other Heuristic Algorithms

A constructive heuristic approach is presented to perceive multiple regions of interest.
It aims to find the robot’s path with minimal cost and cover target regions with hetero-
geneous multi-robot settings [6]. Conflict-Based Search is proposed for multi-agent path
planning problems in the train routing problem for scheduling multiple vehicles and setting
paths in [53]. For multi-robot transportation, a primal-dual-based heuristic is designed to
solve the path planning problem as the multiple heterogeneous asymmetric Hamiltonian
path problem, solving in a short time [54]. The linear temporal logic formula is applied to
solve the multi-robot path planning by satisfying a high-level mission specification with
Dijkstra’s algorithm in [55].

A modified Dijkstra’s algorithm is introduced for robot global path planning without
intersections, using a quasi-Newton interior point solver to smooth local paths in tight
spaces [56]. Moreover, cognitive adaptive optimization is developed with transformed
optimization criteria for adaptively offering the accurate approximation of paths in the
proposed real-time reactive system; it takes into account the unknown operation area and
nonlinear characteristics of sensors [18].

The Grid Blocking Degree (GBD) is integrated with priority rules for multi-AGV path
planning, and it can generate a conflict-free path for AGV to handle tasks and update
the path based on real-time traffic congestion to overcome the problems caused by most
multi-AGV path planning is offline scheduling [57]. Heuristic algorithms, minimization
techniques, and linear sum assignment are used in [58] for multi-UAV coverage path and
task planning with RGB and thermal cameras. [59] designed the extended Angular-Rate-
Constrained-Theta* for a multi-agent path-planning approach to maintaining the formation
in a leader–follower formation.

Figure 5 displays the overview of the mentioned heuristic algorithms. The heuristic
algorithms are widely used in path planning, and the heuristic cost functions are devel-
oped to evaluate the paths. The algorithms can provide the complete path in a grid-like
map. However, for the requirement of flexibility and robustness, bio-inspired algorithms
are proposed.

Figure 5. Search algorithms.

2.3. Bio-Inspired Techniques
2.3.1. Particle Swarm Optimization (PSO)

PSO is one of the most common metaheuristic algorithms in multi-robot path planning
problems and formation. The flowchart of PSO is shown in Figure 6. It is a stochastic
optimization algorithm based on the social behavior of animals, and it obtains global and
local search abilities by maintaining a balance between exploitation and exploration [60].
Ref. [61] presents an interval multi-objective PSO using an ingenious interval update law
for updating the global best position and the crowding distance of risk degree interval for
the particle’s local best position. PSO is employed for multiple vehicle path planning to min-
imize the mission time, and the path planning problem is formulated as a multi-constrained
optimization problem [62], while the approach has low scalability and execution ability.
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An improved PSO is developed with differentially perturbed velocity, focusing on
minimizing the maximum path length and arrival time with a multi-objective optimiza-
tion problem [63]. The time stamp segmentation model handles the coordination cost.
Improved PSO is combined with modified symbiotic organisms searching for multi-UAV
path planning, using a B-spline curve to smooth the path in [64]. For a non-stationary
environment, improved PSO and invasive weed optimization are hybrids for planning a
path for each robot in the multi-robot system, balancing diversification and intensification,
and avoiding local minima [65].

Figure 6. Flowchart of the PSO algorithm.

PSO is adapted for a leader–follower strategy in multi-UAV path planning with
obstacle avoidance [60]. A distributed cooperative PSO is proposed for obtaining a safe and
flyable path for a multi-UAV system, and it is combined with an elite keeping strategy and
the Pythagorean hodograph curve to satisfy the kinematic constraints in [66]. The enhanced
PSO is improved by greedy strategy and democratic rule in human society inspired by sine
and cosine algorithms. The projected algorithm can generate a deadlock-free path with
preserving a balance between intensification and diversification [67].

For the multi-robot path planning issue, a coevolution-based PSO is proposed to
adjust the local and goal search abilities and solve the stagnation problem of PSO with
evolutionary game theory in [68]. An improved gravitational search algorithm is integrated
with the improved PSO for a new methodology for multi-robot path planning in the clutter
environment, and it updates the particle positions and gravitational search algorithm
acceleration with PSO velocity simultaneously [69].

A hybrid algorithm of democratic robotics PSO and improved Q-learning is proposed
to balance exploitation and exploration, and it is fast and available for a real-time envi-
ronment. However, it cannot guarantee the completeness of the path, and it is hard to
achieve robot cooperation [70]. PSO-based and a B-Spline data frame solver engine is
developed for uninterrupted collision-free path planning. It is robust to deal with current
disturbances and irregular operations and provides quick obstacle avoidance for real-time
implementation [15].

A wireless sensor network is presented for locating obstacles and robots in a dynamic
environment. It combines a jumping mechanism PSO algorithm and a safety gap obstacle
avoidance algorithm for multi-robot path planning [7]. The jumping mechanism PSO
estimates the inertia weight based on fitness value and updates the particles. The safety gap
obstacle avoidance algorithm focuses on robots struck when avoiding obstacles. Ref. [71]
designed the hybrid GA and PSO with fuzzy logic controller for multi-AGV conflict-free
path planning with rail-mounted gantry and quay cranes; however, it is inapplicable to
real-time scheduling.
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2.3.2. Genetic Algorithm (GA)

GA is widely utilized for solving optimization problems as an adaptive search tech-
nique, and it is based on a genetic reproduction mechanism and natural selection [72].
The flowchart of GA is indicated in Figure 7. Ref. [73] uses GA and reinforcement learning
techniques for multi-UAV path planning, considers the number of vehicles and a response
time, and a heuristic allocation algorithm for ground vehicles. GA solves the Multiple
Traveling Sales Person problem with the stop criterion and the cost function of Euclidean
distance, and Dubins curves achieve geometric continuity while the proposed algorithm
cannot avoid the inter-robot collision or support online implementation [16].

A 3D sensing model and a cube-based environment model are involved in describing
a complex environment, and non-dominated sorting GA is modified to improve the con-
vergence speed for the Pareto solution by building a voyage cost map by the R-Dijkstra
algorithm in [74] as an omnidirectional perception model for multi-robot path planning.
Ref. [75] applies the sensors in the area to obtain a minimal cost and solves the traveling
salesman, and GA is adapted for persistent cooperative coverage.

Efficient genetic operators are developed to generate valid solutions on a closed
metric graph in a reasonable time and are designed for multi-objective GA for multi-agent
systems [76]. GA assigns the regions to each robot, sets the visiting orders, and uses
simultaneous localization and mapping to create the global map in [77] for coverage path
planning. Ref. [78] presents GA to optimize the integration of motion patterns that represent
the priority of the neighbor cell and divides the target environment into cell areas, and then
uses a double-layer strategy to guarantee complete coverage.

A domain knowledge-based operator is proposed to improve GA by obtaining the elite
set of chromosomes, and the proposed algorithm can support robots that have multiple
targets [79]. For intelligent production systems, the improved GA is aimed at complicated
multi-AGV path planning and maneuvering scheduling decision with time-dependent and
time-independent variables. It first addresses AGV resource allocation and transportation
tasks, and then solves the transportation scheduling problem [80].

An improved GA was presented with three-exchange crossover heuristic operators
than the traditional two-exchange operators, which consider double-path constraints for
multi-AGV path planning [81]. Ref. [72] proposed a boundary node method with a GA
for finding the shortest collision-free path for 2D multi-robot system and using a path
enhancement method to reduce the initial path length. Due to the short computational
time, it can be used for real-time navigation, while it can only be implemented in a known
environment without dynamic obstacles.

A high degree of GA is employed for optimal path planning under a static environment
at offline scheduling, and online scheduling is aimed to solve conflicts between AGVs
for the two-stage multi-AGV system [82]. The evolution algorithm is used for planning
a real-time path for multi-robot cooperative path planning with a unique chromosome
coding method, redefining mutation and crossover operator in [83].

2.3.3. Ant Colony Optimization (ACO)

Ants will move along the paths and avoid the obstacle, marking available paths with
pheromone, and the ACO treats the path with higher pheromone as the optimal path.
The principle of ACO is demonstrated in Figure 8, and the path with a higher pheromone
is defined as the optimal path marked by green. For collision-free routing and job-shop
scheduling problems, an improved ant colony algorithm is enhanced by multi-objective
programming for a multi-AGV system [84].
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Figure 7. Flowchart of the GA algorithm.

For multi-UGVs, a continuous ACO-based path planner focuses on coordination and
path planning. It is integrated with an adaptive waypoint-repair method and a probability-
based random-walk strategy to balance exploration and exploitation and improve the
algorithm’s performance, resolving the coordination with a velocity-shifting optimization
algorithm [85].

K-degree smoothing and the improved ACO are integrated as a coordinated path
planning strategy for the multi-UAV control and precise coordination strategy in [86].
Voronoi models the environment by considering various threats, and the improved ACO’s
pheromone update method and heuristic information are redefined for path planning,
then using a k-degree smoothing method for the path smoothing problem. For precision
agriculture and agricultural processes, ACO, Bellman–Held–Karp, Christofides, and Near-
est Neighbor based on K-means clustering are used for the optimization path of multi-
UAV [87].

Figure 8. Changes of the ACO algorithm with different timeslots.

2.3.4. Pigeon-Inspired Optimization (PIO)

Pigeon navigation tools inspired PIO, and it uses two operators for evaluating the
solutions. Social-class PIO is proposed to improve the performances and convergence capa-
bilities of standard PIO with inspiring by the inherent social-class character of pigeons [88],
and it is combined with time stamp segmentation for multi-UAV path planning. Ref. [89]
analyzing and comparing the changing trend of fitness value of local and global optimum



Machines 2022, 10, 773 10 of 27

positions to improve the PIO algorithm as Cauchy mutant PIO method, and the plateau to-
pography and wind field, control constraints of UAVs are modeled for cooperative strategy
and better robustness.

2.3.5. Grey Wolf Optimizer (GWO)

GWO is inspired by the hunting behavior and leadership of grey wolves, and it
obtain the solutions by searching, encircling, and attacking prey. An improved grey wolf
optimizer is employed for the multi-constraint objective optimization model for multi-
UAV collaboration under the confrontation environment. It considers fuel consumption,
space, and time [90]. The improvements of the grey wolf optimizer are individual position
updating, population initialization, and decay factor updating. An improved hybrid grey
wolf optimizer is proposed with a whale optimizer algorithm in a leader–follower formation
and fuses a dynamic window approach to avoid dynamic obstacles [91].

The leader–follower formation controls the followers to track their virtual robots
based on the leader’s position and considers the maximum angular and linear speed of
robots. Ref. [92] proposed a hybrid discrete GWO to overcome the weakness of traditional
GWO, and it updates the grey wolf position vector to gain solution diversity with faster
convergence in discrete domains for multi-UAV path planning, using greedy algorithms
and the integer coding to convert between discrete problem space and the grey wolf space.

2.3.6. Other Bio-Inspired Techniques

The fruit fly optimization approach usually solves the nonlinear optimization problem.
The multiple swarm fruit optimization algorithm is presented for the coordinated path
planning for multi-UAVs, and it improves the global convergence speed and reduces the
possibilities of local optimum [93].

An improved gravitational search algorithm is proposed for multi-robot path planning
under the dynamic environment based on a cognitive factor, social, memory information of
PSO, and deciding the population for the next generation based on greedy strategy [94].
The simulated annealing is integrated with the Dijkstra algorithm for calculating the optimal
path based on the Boolean formula and the global map for a high-level specification for
multi-robot path planning [13].

The hybrid algorithm of sine-cosine and kidney-inspired is developed for multi-robot
in a complex environment. It selects the optimal positions for each robot to avoid conflicts
with teammates and dynamic obstacles [95]. The hybridization of invasive weed opti-
mization and firefly algorithm is employed to adjust the movement property of the firefly
algorithm and spatial dispersion property of invasive weed optimization for exploration
and exploitation [96]. The Differential Evolution algorithm tunes the differential weight,
population size, generation number, and crossover for multi-UAV path planning in [97]. It
defines the minimum generation’s weighting required between the computational and the
path cost.

Physarum is a bio-inspired method for path planning, and it can take a quick response
to external change. Ref. [12] proposed a Physarum-based algorithm for multi-AGV for
model-based mission planning in dynamic environments, with an adaptive surrogate mod-
eling method. A novel swarm intelligence algorithm is developed as an Anas platyrhynchos
optimizer for multi-UAV cooperative path planning.

The Anas platyrhynchos optimizer simulates the swarm’s moving process and warn-
ing behavior [98]. It proposes low-communication cooperation and heterogeneous strate-
gies for online path planning based on differential evolution-based path planners [99]. It
summarizes local measurements with the sparse variation Gaussian process, sharing infor-
mation even in a weak communication environment. Ref. [100] developed a multi-task
multi-robot framework for challenging industrial problems. It proposes Large Neighbor
Search as a new coupled method to make task assignment choices by actual delivery costs.

The artificial immune network algorithm is improved with the position tracking con-
trol method for providing the abilities of diversity and self-recognition for multi-robot
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formation path planning with leader robots, and it overcomes the shortcomings of imma-
ture convergence and local minima [101]. Differential evolution algorithm is improved
in [102] for calculating collision-free optimal path with multiple dynamic obstacle con-
straints in a 2D map. An efficient artificial bee colony algorithm is proposed for online
path planning, selecting the appropriate objective function for collision avoidance, target,
and obstacles [103].

Bio-inspired techniques mainly include PSO, GA, ACO, PIO, and GWO. They are
inspired by animals’ natural behaviors and employ particles for path generation. As of
computational efficiency and powerful implementation, they are popular in multi-robot
path planning. AI-based approaches are proposed due to the development of intelligent
systems and the requirements of adapting to changing environments.

2.4. Artificial Intelligence
2.4.1. Fuzzy Logic

Fuzzy logic uses the principle of “degree of truth” for computing the solutions. It can
be applied for controlling the robot without the mathematical model but cannot predict
the stochastic uncertainty in advance. As a result, a probabilistic neuro-fuzzy model is
proposed with two fuzzy level controllers and an adaptive neuro-fuzzy inference system for
multi-robot path planning and eliminating the stochastic uncertainties with leader–follower
coordination [104]. The fuzzy C-means or the K-means methods filter and sort the camera
location points, then use A* as a path optimization process for the multi-UAV traveling
salesman problem in [5].

For collision avoidance and autonomous mobile robot navigation, Fuzzy-wind-driven
optimization and a singleton type-1 fuzzy logic system controller are hybrids in the un-
known environment in [105]. The wind-driven optimization algorithm optimizes the
function parameters for the fuzzy controller, and the controller controls the motion velocity
of the robot by sensory data interpretation. Ref. [106] proposed a reverse auction-based
method and a fuzzy-based optimum path planning for multi-robot task allocation with the
lowest path cost.

2.4.2. Machine Learning

Machine learning simulates the learning behavior to obtain the solutions. It is used for
path planning, embracing mobile computing, hyperspectral sensing, and rapid telecom-
munication for the rapid agent-based robust system [107]. Kernel smooth techniques,
reinforcement learning, and the neural network are integrated for greedy actions for multi-
agent path planning in an unknown environment [10] to overcome the shortcomings of
traditional reinforcement learning, such as high time consumption, slow learning speed,
and disabilities of learning in an unknown environment.

The self-organizing neural network has self-learning abilities and competitive charac-
teristics for the multi-robot system’s path planning and task assignment. Ref. [108] com-
bined it with Glasius Bio-inspired neural network for obstacle avoidance and speed jump
while the environment changes have not been considered in this approach. The biological-
inspired self-organizing map is combined with a velocity synthesis algorithm for multi-
robot path planning and task assignment. The self-organizing neural network supports a
set of robots to reach multiple target locations and avoid obstacles autonomously for each
robot with updating weights of the winner by the neurodynamic model [109].

Convolution Neural networks analyze image information to find the exact situation
in the environment, and Deep q learning achieves robot navigation in a noble multi-robot
path-planning algorithm [110]. This algorithm learns the mutual influence of robots to
compensate for the drawback of conventional path-planning algorithms. In an unknown
environment, a bio-inspired neural network is developed with the negotiation method,
and each neuron has a one-to-one correspondence with the position of the grid map [111].
A biologically inspired neural network map is presented for task assignment and path
planning, and it is used to calculate the activity values of robots in the maps of each target



Machines 2022, 10, 773 12 of 27

and select the winner with the highest activity value, then perform path planning [112].
The simple neural network diagram is exhibited in the following Figure 9.

Moreover, a multi-agent path-planning algorithm based on deep reinforcement learn-
ing is proposed, providing high efficiency [113]. Another multi-agent reinforcement learn-
ing is developed in [114], and it constructs a node network and establishes an integer
programming model to extract the shortest path. The improved Q-learning plans the
collision-free path for a single robot in a static environment and then uses the algorithm
to achieve collision-free motion among robots based on prior knowledge in [115]. The re-
inforcement learning framework is applied to optimize the quality of service and path
planning, describe the users’ requirements, and consider geometric distance and risk by
reinforcement learning reward matrix with a sigmoid-like function [116].

Figure 9. Diagram of a three-layer neural network.

An attention neural network is used for generating the multimachine collaborative
path planning as attention reinforcement learning, and it can meet high real-time require-
ments [117]. A deep Q-network is implemented with a Q-learning algorithm in a deep
reinforcement learning algorithm for a productive neural network to handle multi-robot
path planning with faster convergence [118]. The meta-reinforcement learning is designed
based on transfer learning in [119], and it improves proximal policy optimization by covari-
ance matrix adaptation evolutionary strategies to avoid static and dynamic obstacles.

Multi-agent reinforcement learning is improved by an iterative single-head attention
mechanism for multi-UAV path planning, and it calculates robot interactions for each
UAV’s control decision-making [120]. Fuzzy reinforcement learning is proposed for the
continuous-time path-planning algorithm, combining a modified Wolf-PH and fuzzy Q-
iteration algorithm for cooperative tasks [121].

2.5. Others

The algorithms based on mathematical principles or other unclassified systems are
listed in this session. These principles of algorithms are not typically classified into four
classifications: classical, heuristic, bio-inspired, and AI-based approaches.

A multi-robot path planning system is developed with Polynomial-Time for solutions
with optimality constant-factor in [14], and it provides efficient implementations and
adapted routing subroutines. A multi-robot path-planning algorithm for industrial robots
is presented based on the first low polynomial-time algorithm on grids [122]. An innovative
method based on Fast Marching Square is proposed in [123] for simple priority-based
speed control, the planning phase, and conflict resolution in 3D urban environments.
The fast Marching Square algorithm is also used in a triangular deformable leader–follower
formation for multi-UAV coverage path planning [124].
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Ref. [125] combined polynomial time with Push and spin algorithm for multi-robot
path-planning algorithm and enhances the performance of choosing the best path. A first
low-polynomial running time algorithm is proposed for multi-robot path planning in grid-
like environments and solves average overall problem instances by constant factors make-
span optimal solutions [126]. For optimal multi-robot coverage path planning, spanning
tree coverage is proposed, and it divides the surface into many equal areas for each
robot to guarantee minimum coverage path, complete coverage, and a non-backtracking
solution [127].

For multi-UAV coverage path planning, a metric Cartesian system is proposed, and it
transforms the coordinates into Cartesian and splits the field to assign to each robot, then
forms the path with minimizing the time [2]. Probability Hypothesis Density representation
is used to optimize the number of observed objects in multi-agent informed path planning,
and it can represent unseen objects [128]. An iterative min–max improvement algorithm
is designed to make span-minimized multi-agent path planning to solve the constrained
optimization problem using a local search approach in discrete space [129].

The new route-based optimization model is presented for multi-UAV coverage path
planning with column generation, and it can generate feasible paths and trace energy
required for mission phases [130]. A multi-agent collaborative path-planning algorithm is
provided in [131] to guarantee complete area coverage and exploration and use a staying
alive policy to consider battery charge level limitation in the indoor environment.

Integer linear programming models the path planning problem for three objectives
with task due times, including minimizing total unit penalties, tardiness, and maximum
lateness [132]. Integer linear programming solves the multi-robot association path planning
problem for optimizing the path and robots’ access points associations in industrial scenar-
ios [133]. For finding the optimal path for robots to perform tasks, the optimal problem is
transformed into integer linear programming with the Petri net model in [134]. One-way
multi-robot path planning is proposed for the warehouse-like environment, and it is based
on Integer programming to reduce the robots’ configuration costs [135].

A mixed-integer linear programming formulation is designed for multi-robot discrete
path planning, and it extends the single robot decision model to multi-robot settings with
anticipated feedback data [4]. It supports real-time action based on modeling extension.

For multi-agent navigation, the reciprocal velocity obstacles (RVO) model is used for
collision detection and prevention and uses an agent-based high-level path planner [136].
A cooperative cloud robotics architecture is developed as a cooperative data fusion system
to gather data from various sensing sources and renew the global view to extend the field
of view for each AGV in the industrial environment and uses flexible global and local path
planning to avoid unexpected obstacles and congestion zones [1].

The hybrid approach is presented in [137] based on the improved Interfered Fluid
Dynamical System and the Lyapunov Guidance Vector Field for multi-UAV cooperative
path planning. It introduces a vertical component for target tracking and uses the improved
Interfered Fluid Dynamical System to resolve local minimum problems and avoid obstacles.
Cooperative sensing and path planning for multi-vehicle is transformed as a partially
observable decision-making problem, and it uses Markov decision processes as a decision
policy and deploys a multi-vehicle communication framework [138].

2.6. Discussion of Path Planning Classification

The classical approaches include APF and sampling-based algorithms, such as RRT.
The classical techniques usually require more computational time and space, especially
for the sampling-based methods. Furthermore, the classical techniques cannot ensure
completeness or capability, and it requires a predefined graph and is difficult for them to
re-plan the path during implementation.

A* and dynamic A* (D*) algorithms are standard applications for heuristic algorithms.
The heuristic algorithms primarily consist of the graph search algorithm, and they are easy
to apply for path planning problems and evaluate the path by the developed cost function.
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The heuristic algorithms can successfully provide the globally optimal path with lower
required runtime and space than the classical approaches in a graph.

The bio-inspired approaches have been widely researched in recent years as the
primary algorithms used in multi-robot path planning, especially metaheuristic algorithms.
This paper discusses PSO, GA, ACO, PIO, and GWO. They are inspired by nature, such
as the social behavior of animals. The bio-inspired approaches use various particles to
generate the optimal solution for the defined problem.

The AI-based approaches based on fuzzy logic or machine learning have gained more
attention recently. They have fast computation abilities, and the models are usually adapted
for online path planning. The AI-based strategies learn from the previous data to train the
models. The neural network is the primary application of machine learning for multi-robot
path planning, which consists of multiple layers for learning. The detailed analysis refers
to Section 4.1.

Path planning is part of the multi-robot system’s consideration, and the structure
of the multi-robot system can be classified as centralized or decentralized based on the
planner. The multi-robot system is centralized if the system has supervisory control or a
central planner. For robots making their decisions, the system is decentralized. The details
of the decision-making of the multi-robot system refer to Section 3.

3. Decision Making

A Multi-robot system can be a centralized or decentralized structure. A centralized
system is controlled by the central decision-maker, while a decentralized multi-robot system
has no supervisory control. Figure 10 exhibits a centralized framework. Decentralized
architecture has more vital fault-tolerant ability with poor global ability. Figure 11 indicates
a decentralized framework in which robots use the neighbors’ information.

Figure 10. Structure of a centralized framework.

Figure 11. Structure of a decentralized framework.

3.1. Centralized

A centralized framework for an industrial robot is proposed in [139], which combines
GA and A* algorithms for 2D multi-robot path planning. GA is utilized for task allocation,
and the A* algorithm is for path planning, and this approach addresses collision avoidance.
A two-stage centralized framework solves multi-agent pickup and delivery problems, and it
achieves path and action planning with orientation under non-uniform environments
by heuristic algorithms, detecting, and resolving conflicts by a synchronized block of
information [140].
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A practical centralized framework is developed based on an integer linear program-
ming model, and it operates time expansion in the discrete roadmap to obtain the space-time
model with dived and conquer heuristic and reachability analysis [19]. In grid graphs,
a centralized and decoupled algorithm is proposed for multi-robot path planning in au-
tomated and on-demand warehouse-like settings, and it explores optimal sub-problem
solutions and path diversification databases for resolving local path conflicts [141]. It
uses a decoupling-based planner with two heuristic attack phases and goal configuration
adjustments.

Ref. [142] uses a centralized controller for multi-target multi-sensor tracking for envi-
ronmental data acquisition for path planning and feedback control for sending the path to
the system. The optimal bid valuation is proposed with the Dijkstra algorithm to find the
shortest path, and the proposed centralized model supports an alternative sampling-based
method to reduce the computation time with achieving optimality [20]. A self-organizing
map is used for data collection tasks and active perception for online multi-robot path plan-
ning, and it jointly picks and allocates nodes and finds sequences of sensing positions [143].

A mixed-integer programming formulation is adapted for a discrete centralized multi-
agent path planning problem, and a two-phase fuzzy programming technique gains the
Pareto optimal solution in [144]. The centralized simultaneous inform and connect (SIC)
strategy is applied for multi-objective path planning by GA, and it uses SIC to optimize
search, communicate and find the best path, and monitor tasks with quality of service [145].

A developed synthesized A* algorithm is used for path planning through a centralized
meta-planner based on Bag of Tasks, and it runs on distributed computing platforms to
avoid dynamic obstacles [146]. A wireless network is proposed for commutation among
the robots in APF links, and it uses the Software Defined Network technique to update
the network architecture and employ the topology and APF to establish a network control
model [147].

A centralized architecture has a high degree of coordination, while dynamic and
real-time actions are weak [148]. The decentralized structure is proposed to overcome the
drawback of the centralized structure, thereby, providing a higher level of flexibility.

3.2. Decentralized

Task assignment for multi-robot is essential during path planning. The decentralized
heuristic path-planning algorithm is proposed as Space utilization optimization for multi-
robot structures, and it reduces computation time and the number of conflicts to gain the
solution for one-shot and life-long problems [149]. An offline time-independent approach
is developed with deadlock-based search and conflict-based search to assign the path to
each robot when agents cannot share information [150].

The distributed multi-UAV system utilizes an insertion-based waypoint for path
planning and its reconfiguration in [151]. The roadmap algorithm receives near-optimal
paths in a decentralized coordination strategy to maximize connectivity and redundancy,
while the global path planning utilizes shared information for the proposed two-layer
control architecture [152].

The coordinated locomotion of a multi-robot system is divided into sub-problems,
such as homogenous prioritized multi-robot path planning and task planning, and it uses
prioritized reinforcement learning for these problems [22]. For a swarm of UAVs, PSO is
adapted as a planner for distributed full coverage path planning in a dynamic and stochastic
environment, minimizing the cost function and maximizing the fitness function [3].

The enhanced A* algorithm referred to as the MAPP algorithm, is delivered in [153]
as the decentralized planner for task assignment and cooperative path planning for multi-
UAV in urban environments. Free-ranging motion scheme is implemented in autonomous
multi-AGV path planning and motion coordination. It considers nonholonomic vehicle
constraints for path planning and reliable detection and resolution of conflicts for motion
coordination based on a priority scheme [154].
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A sampling-based motion planning paradigm is developed for decentralized multi-
robot belief space planning in an unknown environment for high-dimensional state spaces
in [21], and it calculates the utility of each path based on incremental smoothing of efficient
inference and insights from the factor graph. A fully completed distributed algorithm
is developed for considering plan restructuring, individual path planning, and priority
decision-making for a distributed multi-agent system in [155].

Graph search algorithm and APF are mixed for multi-robot delivery service in different
environments, and it uses a strongly connected digraph to simplify the path planning
problem and use APF to prove flexibly [156].

A cluster-based decentralized task assignment is proposed for real-time missions [48].
It generates a path, assigns tasks for each robot in the initial planning stage, and adds the
popup tasks into the task list to be considered in the next planning stage. A novel smooth
hypocycloidal path is developed for multi-robot motion planning with local communication,
and it maintains safe clearances with obstacles [157].

A multi-agent distributed framework formulates the path planning problem as a
centralized linear program and then uses a framework for each agent while only communi-
cating with its neighbors as the distributed algorithms [158]. The proposed model in [159]
integrates decision-making policies and local communication for multi-robot navigation
in constrained workspaces, and it uses a convolutional neural network to extract features
from observations with a graph neural network to achieve robot communication.

A localized path planning and a task allocation module are combined into a decen-
tralized task and path planning framework, and it models each task as a mixed observed
Markov Decision Process or Markov Decision Process, using the max-sum algorithm for
task allocation and the localized forward dynamic programming scheme for conflict resolu-
tion [160].

A Graph Neural Network is utilized to combine with a key-query-like mechanism
to evaluate the relative importance of messages and learn communication policies in a
decentralized multi-robot system [161]. The path planning problem is formulated as a
decentralized partially observable Markov decision process in [162], and the multi-agent
reinforcement learning approach is proposed for multi-robot path planning to harvest data
from distributed end devices. It can support non-communicating, cooperative, and ho-
mogenous UAVs, and the control policy can be used for challenging urban environments
without prior knowledge.

A genetic programming approach is proposed in a decentralized framework, and the
robots conduct the learning program to determine the following action in real-time until
they reach their respective destinations [163]. A decentralized multi-robot altruistic coordi-
nation is improved for cooperative path planning and resolves deadlock situations [164].
APF is adapted in a proposed decentralized space-based potential field algorithm for a
group of robots to explore an area quickly and connect with the team by dispersion strat-
egy, using a monotonic coverage factor for a map exchange protocol, avoiding minima,
and realistic sensor bounds [165].

Another study [166] proposed APF with the notion of priority, the neighborhood
system, and the non-minimum speed algorithm to resolve the intersection of robots and
minimum local problems for the multi-robot system. The multi-agent Rapidly exploring
Pseudo-random Tree is developed for real-time multi-robot motion planning and control
based on the classical Probabilistic Road Map (PRM) algorithm. It extends PRM as a deter-
ministic planner with probabilistic completeness, simplicity, and fast convergence [167].

3.3. Discussion of Decision-Making Strategies

The centralized framework has higher control abilities for robots, and the actions are
directly sent from the center controller to the robots, making decisions for each robot. It
provides better support and task assignment scheduling, and the algorithms applied in the
centralized framework have no restrictions. The cited papers use the classical approaches,
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the heuristic algorithms, bio-inspired, and AI-based techniques for the centralized frame-
work, in particular the heuristic algorithms.

However, centralized frameworks are weak in dynamic applications. The decentral-
ized structure is proposed to overcome the drawbacks of the centralized frameworks, and it
makes robots can communicate with others and share information. The algorithms used
in the decentralized structure involve heuristic algorithms, optimization metaheuristic
algorithms, neural networks, APF, sampling-based approaches, and AI-based algorithms.
For more discussion of decision-making strategies, refer to Section 4.2.

4. Discussion and Conclusions
4.1. Multi-Robot Path Planning

From the literature, the multi-robot path-planning approaches are classified into four
primary categories: classical approaches, heuristic approaches, bio-inspired techniques,
and artificial-intelligence-based approaches. Table 1 summarizes the main algorithms used
in the categories, focusing on real-time implementation. The online/offline implementation
percentage is indicated in Figure 12. The offline executions occupy 62% of the multi-robot
path-planning approaches, and real-time operation reaches 38%.

Figure 12. Offline/real-time implementation.

The classical approach requires huge computational space to save the predefined map
and generated nodes, and thus they are mainly implemented in offline strategies. In the
mentioned papers, only 36.36% of the classical approaches can be employed for online
performance. The hybridization of the classical approach is adapted to solve the mentioned
problem and achieve real-time implementation by other algorithms with developed algo-
rithms or functions. 72.73% of papers are improved as hybrid algorithms to overcome the
drawbacks of the classical approaches.

The heuristic algorithms require less computation space than the classical approaches,
and they can produce complete solutions. It is typical for the heuristic algorithms to be
integrated with other algorithms, and the percentage of the hybrid approaches reaches
88.89%. Furthermore, 66.67% of the papers indicate they can be applied for online path
planning and are achieved by computational efficiency. The power heuristic algorithms or
the approaches involved in interactive robots can be used for online processing but with
poor convergence performance.

Table 1. Comparison of multi-robot path planning algorithms.

Category Approach Paper Real-Time How to Achieve Real-Time Implementation Experiment Results Hybrid Approach

Classical APF

[27] N N N
[28] N N Y
[29] N N Y
[30] N Y Y
[31] Y Repulsion function N N
[32] Y Priority-based algorithm N Y
[33] Y APF N Y
[34] Y Predictive capabilities N Y



Machines 2022, 10, 773 18 of 27

Table 1. Cont.

Category Approach Paper Real-Time How to Achieve Real-Time Implementation Experiment Results Hybrid Approach

Classical Sampling-based
[35] N N Y
[47] N N Y
[36] N N N

Heuristic

A*

[17] N N Y
[46] N N Y
[48] Y Computational efficiency N Y
[49] Y Robot N N
[50] Y Computational efficiency N Y

D*

[8] Y Sharing mechanism for robots Y Y
[9] Y Algorithm N Y
[51] N N Y
[52] Y Algorithm N Y

Bio-inspired

PSO

[60] N N N
[61] N N N
[62] N N N
[63] N Y Y
[64] N N Y
[65] N Y Y
[66] N N N
[67] N N Y
[68] N N N
[69] N Y Y
[70] N Y Y
[15] Y Computational efficiency N Y
[7] Y Computational efficiency N Y
[71] N N Y

GA

[72] Y Computational efficiency Y Y
[73] N N Y
[16] N N Y
[74] N N Y
[75] N N Y
[76] N N Y
[77] N N Y
[78] N N Y
[79] N N N
[80] Y Simplify the model N N
[81] N N N
[82] Y Two-stage strategies N N
[83] Y Computational efficiency N Y

ACO

[84] N N Y
[85] N N N
[86] N Y Y
[87] N N Y

PIO [88] N N Y
[89] N N N

GWO
[90] N N N
[91] N N Y
[92] Y Computational efficiency N Y

AI-based

Fuzzy logic

[104] N N Y
[5] N N Y
[105] Y Model Y Y
[106] Y Computational efficiency N N

Machine Learning

[107] Y Sensor N N
[10] Y Algorithm Y Y
[108] Y Model N Y
[109] Y Algorithm N Y
[110] N N Y
[111] N N N
[112] Y Algorithm N N
[113] N N Y
[114] N N Y
[115] N N N
[116] Y Model N N
[117] Y Model N N
[118] Y Algorithm N N
[119] Y Model N Y
[120] Y Model N Y
[121] Y Model Y Y

Where N stands for No, and Y stands for Yes.

The bio-inspired techniques are proposed for simple but powerful and robust solutions.
They can consider multiple constraints during path planning, even for a complex or
dynamic environment. From the cited literature, PSO and GA are mainly involved in
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path optimization. High computational efficiency and fast convergence ensure real-time
performance in dealing with dynamic obstacles, and 19.44% of metaheuristic algorithms
demonstrate real-time abilities. The hybrid coevolutionary algorithms are usually proposed
to overcome the drawbacks of a single evolutionary algorithm, such as trapping in local
optima and uncertainly scenes. The percentage of the hybrid approaches reaches 66.67%.

The AI-based approaches are developed to satisfy the dynamic environmental changes,
especially with machine learning. Machine learning for multi-robot path planning mainly
includes neural network and reinforcement learning. They can usually achieve dynamic
operation according to the environmental changes with the designed model or sensors,
reaching 75% cited in AI-based papers. 60% of AI-based algorithms are combined with
other approaches to improve learning abilities and reduce the consumed time.

4.2. Decision-Making

Additionally, the decision-making strategies can be divided into two categories, cen-
tralized and decentralized. Table 2 compares the decision-making approaches for algo-
rithms, real-time application, and hybrid techniques. Figure 13 indicates the partitions
of the real-time implementation; the percentage of real-time performance reaches 56%,
and the portion of the offline techniques is 44%. The real-time implementation has a higher
rate due to the cited literature on the decentralized framework.

Table 2. Comparison of decision-making approaches.

Category Approach Paper Real-Time How to Achieve Real-Time
Implementation Experiment Results Hybrid Approach

Centralized

GA and A* [139] N N Y
Dijkstra and A* [140] N N Y

Integer linear programming [19] N N N
Path diversification heuristic [141] N N Y

Feedback loop [142] Y Multi-sensor N N
Bid valuation and sampling-based

approach [20] Y Computational efficiency N Y

Self-organizing map [143] Y Computational efficiency N N
Fuzzy programming [144] N N Y

Simultaneous inform and connect [145] Y Computational efficiency N Y
A* and cloud computing [146] Y Computational efficiency N Y

Software Defined Network and APF [147] Y Wireless network N Y

Decentralized

Space Utilization Optimization [149] N N N
Conflict based search [150] N N N

Insertion [151] N N N
Roadmap [152] N N Y

Prioritized reinforcement learning [22] N N N
PSO [3] N N N

Free-ranging motion [154] N N N
A* [155] N N N

APF [156] Y Computational efficiency N Y
Hypocycloid [157] Y Local communication Y N

geometry
Linear program [158] Y Computational efficiency N N

Graph neural network [159] Y Communications among robots N Y

Graph Neural Network [161] Y A key-query-like mechanism to
communicate N Y

Multi-agent reinforcement learning [162] Y Computational efficiency N N
Genetic Programming [163] Y Computational efficiency N N
Altruistic coordination [164] Y Computational efficiency N N

Potential field [165] Y Robot communications N N
APF [166] Y Computational efficiency N N

RRT and PRM [167] Y Algorithms N Y
A* [153] N N N

Markov Decision Process [160] Y Computational efficiency N N

Where N stands for No, and Y stands for Yes.

For the centralized framework, the implemented algorithms include classical, bio-
inspired, heuristic, and AI-based approaches. It is general for an algorithm to combine
with other algorithms for improvement, and 72.73% of the cited centralized papers propose
hybrid strategies. The heuristic techniques or the classical methods are integrated with the
bio-inspired algorithms or network communications. The rate of real-time operation in the
centralized framework reaches 54.55%.
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The centralized framework achieves real-time implementation by an online net-
work/system, the algorithm with fast speed, or data generation from the sensors.

The decentralized framework has more real-time applications than the centralized
framework. The robots gain information from the neighbors’ robots to determine the
next step and operate the local communication system immediately. A total of 57.14%
of the decentralized approaches support the online operations. The algorithms with fast
convergence, simplicity, excellent robustness or little computational time and space are
widely implemented in the structure. Only 23.81% of the cited decentralized papers involve
the hybrid approaches.

Moreover, the hybrid structure has been developed recently to combine the advantages
of centralized and decentralized approaches. It uses centralized problem formation while
the robots can make their decisions during task operations. Robots can gain information
from other robots or accomplish tasks under distributed structure. The employed tech-
niques have no restrictions because the hybrid method combines the benefits of centralized
and decentralized methods as [141,158,168].

Figure 13. Offline/real-time implementation of the decision-making strategies.

4.3. Challenge

From the review of multi-robot path planning and decision-making strategies, the tra-
ditional challenges involved in multi-robot path planning can be considered local optima,
ungranted completeness, and slow convergence. Many papers aim to solve these problems
by integrating the different algorithms or by using a developed controller. Nevertheless,
this paper discovered a new challenge, as the multi-robot path-planning approaches have
not considered fault tolerance. The proposed papers mention real-time implementation;
however, most articles mainly focus on computational efficiency or model simplicity to
provide faster convergence for online computation.

However, in real-time performance, the update of the robots’ status and the backup
of robots’ failures are essential. The robots can send positions or motions to the controller
or the neighbors to update their status immediately rather than entirely relying on the
predefined path, which can be achieved by localization or vision sensors. The multi-robot
system’s fault tolerance is aimed to support the system operating as expected, even if a
robot fails.

For actual applications, a multi-robot system should detect the failure immediately
and broadcast the information to avoid collisions with other robots or path congestion.
Furthermore, the other robots should adjust their defined task plans or paths in real-time
to achieve the tasks if necessary. This has no limitations of the system framework for
fault tolerance because the centralized framework can inform all robots quickly, and the
decentralized framework can send the fault signs to the neighbor robots.

Author Contributions: Conceptualization, S.L.; methodology, S.L.; software, S.L.; validation, S.L.;
formal analysis, S.L.; investigation, S.L.; resources, S.L.; data curation, S.L.; writing—original draft
preparation, S.L.; writing—review and editing, S.L., A.L. and J.W.; visualization, S.L.; supervision,
J.W. and X.K.; project administration, S.L., J.W. and X.K.; funding acquisition, J.W. All authors have
read and agreed to the published version of the manuscript.



Machines 2022, 10, 773 21 of 27

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
AGV Automated Guided Vehicle
USV Unmanned Surface Vessel
AUV Autonomous Underwater Vehicle
AI Artificial Intelligence
APF Artificial Potential Field
RRT Rapidly exploring Random Tree
PSO Particle Swarm Optimization
GBD Grid Blocking Degree
GA Genetic Algorithm
PIO Pigeon-Inspired Optimization
GWO Grey Wolf Optimizer
RVO Reciprocal Velocity Obstacles
SIC Simultaneous Inform and Connect
PRM Probabilistic Road Map
D* Dynamic A*
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