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Abstract: To improve the adaptive clamping performance of traditional single-tendon-driven underac-
tuated grippers for grasping multiple categories of objects, a novel dual-tendon-driven underactuated
gripper is proposed in this paper. First, two independent tendons with different winding paths are
designed in the gripper to realize the changeable resultant moment of the end knuckle rotating joint
and the movement sequences of gripper knuckles driven by different tendons are analysed too. Then,
some kinematic analysis and dynamical simulations are carried out to verify the validation of the
knuckle structure and dual-tendon winding path design. At last, a prototype of the novel gripper
is manufactured and some grasping experiments are carried out on multiple categories of objects,
with different sizes and shapes. The experimental results show that all the objects can be clamped
tightly. Compared with the traditional single-tendon-driven gripper, the novel one can achieve a
more flexible grasping operation and a larger end clamping force, which are more suitable for the
adaptive grasping requirements of robotic automatic sorting.

Keywords: tendon-driven gripper; underactuated gripper; adaptive grasp; robotic automatic sorting;
industrial automation

1. Introduction

In the past few decades, to meet the diverse needs of different customers, the tradi-
tional single production mode has been transformed into the intelligent manufacturing
mode, which puts forward high requirements for the flexible production capacity of a
production line [1]. For flexible manufacturing, it is necessary to improve the universal
clamping capability for multi-category targets of industrial robot grippers [2]. With
simple structure, convenient control and strong adaptive grasping ability, tendon-driven
underactuated grippers have been studied for a long time and many research results
have been obtained [3–5]. In addition, more application scenarios for tendon-driven grip-
pers have been developed, such as industrial field defect detection [6] and agricultural
fruit picking [7].

According to the literature, the underactuated grippers have been researched since
the 1970s. In 1977, Hirose proposed and designed an underactuated gripper for a multi-
finger tendon driver. By studying the relationship between the number of gripper
knuckles and the gripping torque, the relationship between the end clamping force
and the length of the driving tendon was verified at the theoretical level [8]. In 2008,
Gosselin et al. [9] designed a gripper using a tandem rotatable pulley as an intermediate
transmission unit. By adjusting the position of the rotatable pulley in stages, the input
torque can be evenly distributed to the end of each finger, thereby minimizing the
variation in the clamping force. In 2011, Odhner [10,11] designed a two-finger gripper
with flexible joints and multiple drive sources, in which each knuckle is controlled by a
separate drive source. Further, an algorithm is used to control the cooperative action
of each driving source to realize the multi-finger cooperative grasping action, which is
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difficult to achieve using general grippers. Aukes et al. [12,13] increased the grasping
stiffness in a gripper by adding electronic brakes at the joints of each finger, preventing
the gripper from loosening or dislodging the target. In 2013, Ciocarlie et al. [14,15]
added a restraining tendon and a stretching tendon to each finger and used a gradient
optimization algorithm to optimize the parameters as tendon stiffness, tendon path and
gripper size to enable the gripper to perform a variety of clamping actions in a larger
clamping range. However, due to the single transmission path at the end clamping force,
this kind of gripper cannot achieve a wide range of end clamping force adjustments.
In addition, the shape memory alloy material can also be used to change the clamping
stiffness of the gripper. In 2015, Firouzeh et al. [16,17] used shape memory alloy material
to make the rotary joint of the gripper and adjusted the rotating joint stiffness of the
gripper by changing the temperature in the shape memory alloy to achieve variable
stiffness gripping. To improve the clamping accuracy of a tendon-driven gripper, Palli
et al. [18] proposed a friction compensation mechanism, which can be used to eliminate
the influence of position errors at the joints of the gripper on the end positioning accuracy.
In addition, a variety of optimization research on the structural parameters has also
been carried out to improve the clamping performance of tendon-driven grippers. In
2018, a genetic algorithm [19,20] was used to optimize the finger joint length, tendon
winding path, guide wheel diameter and also the shape of the gripper fingertip, to meet
the universal grasping requirements of more types of targets and improve the grasping
stability. In 2020, Ma Tao et al. [21] designed and optimized a three-finger tendon-
driven underactuated gripper, which can achieve both fingertip clamping and envelope
clamping actions. In the same year, Bao Jialei et al. [22] designed an underactuated
gripper based on metamorphic theory, which improved the gripping stability by making
the end knuckle of the gripper completely passively enveloped. The metamorphic theory
was also used by Li et al. [23] to design a three-knuckle gripper, which has two working
modes. When grasping some tiny objects, the gripper works in linear parallel pinching
mode and can be regarded as a two-joint finger with better stability; when grasping some
larger objects, the gripper works in an adaptive grasping mode and can be regarded as a
three-joint finger with larger clamping range. On the other hand, in order to expand the
clamping range of a tendon-driven gripper, a length-adjustable linkage mechanism [24]
is integrated between two rotatory joints of the gripper knuckle, which is controlled by
an antagonistic tendon pair.

In summary, optimizing the structural parameters and the control algorithm can im-
prove the clamping performance of existing single-tendon-driven underactuated grippers,
but the simple and rigid clamping postures cannot meet the universal grasping requirement
of multi-category targets in the automatic robotic sorting scenarios. Although installing
additional drive motors at the gripper joints or integrating deformable mechanism into
the gripper knuckles can increase the degrees of freedom in the gripper and, thus, realize
complex grasping operation, this will increase the control complexity and production cost
of the gripper, which is not conducive to the popular application of the gripper.

Therefore, a novel dual-tendon-driven underactuated gripper is proposed in this paper,
which can achieve more types of clamping postures and larger range of end clamping force.
Different from the traditional single-tendon-driven gripper, the novel gripper is driven by
two independent tendons, which can be switched by forward or reverse rotation of the
driving motor. Due to the different winding paths, for each driving tendon, the resultant
moment of the end knuckle rotating joint is different, which will result in a different
rotating direction for the end knuckle and, thereby, a different movement sequence of
gripper knuckles.

The main accomplishments of this paper are listed as follows:

1. We designed a novel dual-tendon-driven underactuated gripper, which is driven by
two independent tendons with different winding paths and can achieve four kinds of
clamping postures.
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2. We calculated and compared the resultant moments of end knuckle rotary joints
driven by different tendons and analysed the conditions of knuckles moving when
driven by different tendons.

3. We simulated the end clamping force and movement of gripper knuckles with differ-
ent clamping postures and verified the validation of the structure and tendon winding
path design.

4. We manufactured a prototype of the novel gripper and conducted some grasping
experiments. The experimental result shows that four kinds of objects can be clamped
tightly by the gripper proposed in this paper.

2. Gripper Structure Design
2.1. Calculate the Degrees of Freedom

Since the structure of the two-finger gripper is completely symmetrical from left to
right, it is convenient to analyse and calculate the degrees of freedom for only the right-half
part of the gripper.

As shown in Figure 1, the right-half part of the gripper consists of a frame, two
mechanical knuckles and two plane rotary joints, which means that each finger of the
gripper consists of one frame, two linkages and two rotating pairs, so its degrees of freedom
can be calculated by the following equation:

Do f = 3 × n − 2 × PL = 2 (1)

where n represents the number of gripper linkages (frame is also considered as one linkage)
and PL represents the number of rotating pairs.
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Figure 1. The structure of the right-half part of dual-tendon-driven gripper. The red line is the
recovery tendon, the blue and green lines indicate the two driving tendons.
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Since the gripper is driven by only one motor, the gripper designed in this paper is a
typical underactuated mechanism.

2.2. Calculation of the Moment Acted on the Joint

Each knuckle is driven by the resultant moments of the rotary joint, which is generated
by the driving tendon. Therefore, to study the clamping postures of the tendon-driven
gripper, it is necessary to investigate the mechanism of moment generation at the knuckle
rotary joints.

Figure 2 shows a schematic diagram of the two contact types between the tight driving
tendon and the rotary joint of the knuckles, where the red line represents the driving
tendon, the black circle with radius R represents the guide wheel mounted at the rotary
joint, P1 and P2 are the driving tendon winding points and Darm is the moment arm of the
driving tendon tension.
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Figure 2. Two contact types between the tight driving tendon and guide wheel at rotary joint. The red
line represents the driving tendon, the black circle with radius R represents the guide wheel mounted
at the rotary joint. Darm is the moment arm of driving tendon tension at rotatory joint, which is also
explained in Appendix A. (a) The driving tendon is in close contact with the guide wheel; (b) the
driving tendon is out of contact with the guide wheel.

It can be seen from Figure 2 that the moment arm of a tendon tension varies with the
contact situation of the driving tendon and guide wheel. When the driving tendon is in
contact with the guide wheel, the moment arm of a tendon tension is R. When the driving
tendon is out of contact with the guide wheel, the moment arm of the driving tendon can
be calculated by the following steps:

The formula for the line between P1 and P2 is

x − x1

x2 − x1
=

y − y1

y2 − y1
(2)

It can be transformed as

(y2 − y1)x − (x2 − x1)y + x2y1 − x1y2 = 0 (3)



Machines 2022, 10, 761 5 of 15

According to the distance formula from point to line, the moment arm of the driving
tendon tension can be calculated as follows:

Darm =
x2y1 − x1y2√

(y2 − y1)
2 + (x2 − x1)

2
(4)

Above all, the value of the moment arm can be summarized as follows:

Darm =

 R
x2y1−x1y2√

(y2−y1)
2+(x2−x1)

2
(5)

Therefore, the moment generated by the driving tendon tension on the joint is:

T = F · Darm (6)

where F is the value of the driving tendon tension.

2.3. Force Analysis of End Knuckle at joint_2

As shown in Figure 3, the green line represents the driving tendon and the red line
represents the recovery tendon. Fd, Dd, Fr, Dr represent the tension and moment arm of the
driving and recovery tendons at joint_i, respectively. Fe is the reaction force of root knuckle
acting on the end knuckle at joint_2.
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Appendix A.



Machines 2022, 10, 761 6 of 15

When the gripper works normally, the driving and recovery tendons exert two
opposite-direction tensions at the knuckle rotary joint. Therefore, the knuckle can rotate
around joint_i (i = 1,2) in the corresponding direction according to the resultant moment,
which can be calculated as:

Ti = Fd · Dd − Fr · Dr (i = 1, 2) (7)

When the root knuckle and the end knuckle rotate together around joint_1, the moment
of inertia of the whole finger can be calculated as:

Jt =
1
3

m1L2
1 +

1
12

m2L2
2 + m2

(
L1 cos θ1 +

1
2

L2 cos θ2

)2
+ m2

(
L1sinθ1 +

1
2

L2sinθ2

)2
(8)

where m1 and m2 represent the mass of the root and end knuckles, respectively, L1 and L2
represent the length of the root and end knuckle, respectively, and θ1 and θ2 represent the
angle between each knuckle and the horizontal line, respectively.

When the root knuckle is rotating, the angular acceleration αr can be calculated as

αr = T1/Jt (9)

where T1 is the combined torque of the root knuckle and the end knuckle at joint_1.
Without considering the end knuckle, if the root knuckle is rotating with an angular

acceleration αr, its own rotational inertia Jr and the required driving torque Treq can be
calculated as below:

Jr =
1
3

m1L2
1 (10)

Treq = Jrαr (11)

Therefore, the moment of the end knuckle acting on the root knuckle is:

Ter = T1 − Treq (12)

Since the forces of the root knuckle and the end knuckle at joint_2 are reaction forces,
the force acting on the end knuckle by the root knuckle can be calculated as:

Fe = Ter/L1 (13)

The direction of Fe is perpendicular to the centreline of the root knuckle.

2.4. Movement Sequence Analysis

As shown in Figure 3, the end knuckle is enacted by three forces, such as Fd, Fr and Fe,
which are enacted by the driving tendon, recovery tendon and root knuckle, respectively.
Therefore, the rotating direction of the end knuckle is determined by comparing the
magnitude of the torque Td, Tr and Te at joint_2, which are generated by Fd, Fr and
Fe, respectively; the direction of Td is anticlockwise and the directions of Tr and Te are
clockwise. The movement sequence of the end knuckle enacted by different resultant
moment at joint_2 is analysed as follows:

1. If Td > Tr + Te, the resultant moment acting on the end knuckle at joint_2 is counter
clockwise. Under this condition, the movement sequence of two knuckles is: the end
knuckle first rotates counterclockwise around joint_2, while the root knuckle remains
stationary. When the end knuckle moves to the limit position, the relative position of
the root knuckle and the end knuckle no longer changes. Then, the root knuckle and
the end knuckle rotate counterclockwise around joint_1 synchronously to achieve the
grasping of the object.

2. If Td < Tr + Te, the resultant moment acting on the end knuckle at joint_2 is clockwise.
Under this condition, the movement sequence of two knuckles is: the root knuckle
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rotates counterclockwise around joint_1, while the end knuckle rotating clockwise
around joint_2 simultaneously, so that the relative posture of the end knuckle to the
frame remains constant. When the root knuckle is in contact with the object, the root
knuckle stops rotating and the end knuckle rotates counterclockwise around joint_2
until the object is clamped.

Based on the above analysis, under the premise of constant tendon tension, if two
driving tendons are designed to realize two difference moment arms at joint_2, the magni-
tude and direction of the resultant moment at joint_2 can both be adjusted and, thereby, the
movement sequence of each knuckle can also be changed.

2.5. Tendon Winding Path Design

To achieve two different driving torques at joint_2, two different tendon winding paths
are designed in this paper.

As shown in Figure 4, three tendons are arranged in the gripper, of which the blue line
in driving tendon_1, the green line is driving tendon_2, and the red line is recovery tendon.
Different from the fact that driving tendon_2 is tightly attached to the guide wheel, driving
tendon_1 is farther away from the centre of joint_2, which means that under the premise of
constant tendon tension, the moment of driving tendon_1 acting on joint_2 is larger than
that of driving tendon_2. The other ends of tendon_1 and tendon_2 are wound in opposite
directions on the driving motor shaft, so when motor turns in one direction, one tendon
tightens and the other loosens and, thereby, the driving tendons can be switched by the
forward and reverse rotation of the drive motor.
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Under the respective action of the two driving tendons, the gripper can perform four
clamping postures, such as parallel clamping, fingertip clamping, envelope clamping and
general clamping. As shown in Figure 5, the fingertip clamping and general clamping pos-



Machines 2022, 10, 761 8 of 15

tures are achieved by driving tendon_1 and the parallel clamping and envelope clamping
postures are achieved by driving tendon_2.
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Figure 5. The clamping postures of gripper when grasping different objects. (a) parallel clamping;
(b) fingertip clamping; (c) envelope clamping; (d) general clamping.

3. Dynamic Simulation of Gripper
3.1. Movement Sequence Simulation

To verify the rationality of the designed driving tendon winding paths, some dynamic
simulations of the knuckles’ movement sequence driven by different tendons have been
carried out in this paper. As an example, the dynamic simulation of parallel clamping
driven by tendon_2 is shown in Figure 6. The simulation results of four clamping postures
are shown in Figure 7, where α represents the angle between the centrelines of the end
knuckle and root knuckle and β represents the obtuse angle between the root knuckle and
the horizontal line. According to Figure 3, α and β can be calculated as follows:

α = π − θ2 + θ1 (14)

β = π − θ1 (15)
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Figure 6. The dynamic simulation of the parallel clamping. (a) The gripper is in initial position;
(b) the root knuckle rotates counterclockwise, while the end knuckle rotates clockwise simultaneously,
thereby, the end knuckle maintains a vertical posture until it touches the target; (c) when the end
knuckle contacts with the target, the root knuckle keeps rotating counterclockwise until the gripper
clamps the target tightly.
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Figure 7. Motion curves of gripper knuckles under different clamping attitudes. (a) Parallel Clamping;
(b) Fingertip Clamping; (c) Envelope Clamping; (d) General Clamping.

Figure 7a shows the simulated angle curves when the gripper is driven by tendon_2
for parallel clamping. When driving tendon_2 is tightened, the end knuckle starts to
rotate clockwise around joint_2, while the root knuckle rotates counterclockwise around
joint_1 simultaneously, so αa keeps increasing and βa keeps decreasing slowly. When the
end knuckle contacts the target, the root knuckle keeps rotating counterclockwise around
joint_1, while the end knuckle remains stationary. Therefore, αa keeps increasing while βa1
keeps decreasing until the two knuckles reach their limit position, respectively, thereby,
achieving tight clamping.

Figure 7b shows simulated angle curves of fingertip clamping driven by tendon_1.
When tendon_1 is tightened, the end knuckle rotates counterclockwise around joint_2,
while the root knuckle remains stationary, so αb keeps decreasing and βb remains constant.
When the end knuckle reaches the limit position, the relative position between the root
and end knuckles will be fixed, which means that αb tends to be stable. As the tendon
continues to be tightened, the root knuckle and the end knuckle rotate counterclockwise
around joint_1 simultaneously, so βb keeps decreasing until the target is tightly clamped.

Figure 7c shows the simulated angle curves of envelope clamping driven by tendon_2.
When tendon_2 is tightened, the end knuckle starts to rotate clockwise around joint_2,
while the root knuckle rotates counterclockwise around joint_1 simultaneously, so αc keeps
increasing while βc keeps decreasing. Since the target is big, the root knuckle touches the
target first, then it will stop, so βc remain constant. As the tendon continues to be tightened,
the end knuckle starts to rotate counterclockwise, which means that the angle αc will turn
to decrease, until the target is clamped tightly.

Figure 7d shows the simulated angle curves of general clamping driven by tendon_1.
When tendon_1 is tightened, the end knuckle rotates counterclockwise around joint_2,
while the root knuckle remains stationary, so αd keeps decreasing while βd keeps increasing.
When the end knuckle touches the target, the clamping range formed by two knuckles
will be extended due to the larger size of the target. It is specifically expressed as the
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counterclockwise rotation of the root knuckle and the clockwise rotation of the end knuckle.
Therefore, αd keeps increasing while βd keeps decreasing until a stable clamping is achieved.

3.2. Simulation of End Clamping Force

Under the premise of constant tendon tension, the resultant moment at joint_2 can
be adjusted by switching the driving tendon and, thereby, the end clamping force of the
gripper can be changed too. To compare and analyse the end clamping force driven by
different tendons, envelope clamping and general clamping are chosen and simulated to
grasp four different sizes of objects. The simulated results are shown in Figure 8.
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Figure 8. The simulated end clamping force of two clamping postures when grasping four different
sizes of objects.

It can be seen from the simulation results that, for grasping a same-sized object, the end
clamping forces of general clamping are generally larger than those of envelope clamping.

Therefore, it is theoretically possible to adjust the end clamping force by changing the
driving tendon.

4. Prototype Experimental Testing
4.1. Measurement of End Clamping Force

To verify the influence of the dual-tendon winding path design on the end clamping
force, an experimental platform of end clamping force measurement was built and some
relevant clamping experiments were carried out.

As shown in Figure 9, the experimental platform consists of a protype of the gripper,
two end pressure sensors, a digital pull force gauge, a tendon tension adjuster and sev-
eral objects with different sizes. Information on the sensors and equipment used in the
experimental platform is shown in Table 1.
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Figure 9. The experimental platform of end clamping force measurement.

Table 1. Sensor and other equipment information on the experiment platform.

Equipment Type

End pressure sensor (DYHW-108, DAYSEN-SOR, China)
Digital pull force gauge (DS2-500N, PUYAN, China)

Driving motor (42BYG34-401A, China)

Similar to the simulation, when the prototype gripper grasps an object in a specific
clamping posture, for each specific tendon tension, which is adjusted by the adjuster,
the relevant end clamping force is repeatedly measured ten times by the end pressure
sensors. The mean values and standard deviations of FoE (End Clamping Force of Envelope
Clamping) and FoG (End Clamping Force of General Clamping) are listed in Table 2 and
the curves are shown in Figure 10.

Table 2. The end clamping forces measured by the sensors.

Object Size Tendon Tension
(N) FoE (N) FoG (N) Increase

Φ70

10 0.76 ± 0.05 0.85 ± 0.07 11.8%
20 1.38 ± 0.21 1.57 ± 0.13 13.8%
30 2.51 ± 0.17 3.26 ± 0.46 29.9%
40 3.13 ± 0.25 5.68 ± 0.74 81.5%
50 3.77 ± 0.41 7.44 ± 0.98 97.3%

Φ80

10 0.60 ± 0.04 1.21 ± 0.13 101.7%
20 1.38 ± 0.16 2.13 ± 0.18 54.3%
30 2.51 ± 0.32 3.38 ± 0.27 34.7%
40 3.14 ± 0.25 5.78 ± 0.81 84.1%
50 3.76 ± 0.41 7.09 ± 0.89 88.6%

Φ90

10 0.61 ± 0.09 0.86 ± 0.09 41.0%
20 1.47 ± 0.12 2.37 ± 0.21 61.2%
30 2.59 ± 0.19 3.59 ± 0.47 38.6%
40 3.25 ± 0.49 4.80 ± 0.43 47.7%
50 3.58 ± 0.27 6.11 ± 0.86 70.7%
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Figure 10. The measured end clamping force for grasping objects of different sizes in general clamping
and envelope clamping postures.

It can be seen from the experimental results that, for grasping a same-sized object, the
end clamping force of general clamping is larger than the envelope clamping, increasing by
at least 11% and at most 101%, which is consistent with the simulation results. Therefore,
it is feasible to adjust the end clamping force of the gripper by switching the tendon
winding path.

4.2. Test of Grasping Objects

To test the performance of grasping objects of different sizes, a prototype dual-tendon-
driven gripper (as shown in Figure 11) was fabricated by 3D printing and four kinds of
objects with different shapes and sizes were selected as the grasping targets. By switching
the driving tendon, all the targets are grasped tightly for at least 10 s by four different
clamping postures, as shown in Figure 12. The dimension and mass of each target are
shown in Table 3.
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Figure 12. Four kinds of objects are grasped by the prototype gripper. (a) parallel clamping;
(b) fingertip clamping; (c) envelope clamping; (d) general clamping.

Table 3. The results of clamping experiments.

Serial Number Target Size (mm) Mass (g)

Figure 12a Square box 64.42 9.13
Figure 12b Spanners 1.47 4.31
Figure 12c Tapes 129.90 12.49
Figure 12d Paper rolls 57.89 155.53

5. Conclusions

In order to meet the adaptive clamping requirements of multi-category objects on the
occasion of robotic autonomous sorting, a novel dual-tendon-driven underactuated gripper
is proposed in this paper. Different from the traditional single-tendon-driven gripper, the
novel gripper is driven by two tendons. Since each tendon winding path is different, the
resultant moment at the rotating joint of the end knuckle enacted by each driving tendon is
different, which will change the movement sequence of the two knuckles. Compared with
the traditional tendon-driven gripper, the novel gripper enables more flexible grasping
operations and is more suitable for the sorting of multi-category objects. In addition to
that, the end clamping force of the novel gripper can also be adjusted in a larger range.
When grasping some objects with similar dimensions but large weight differences, the
end clamping force can be enlarged by switching the driving tendon. According to the
experimental results in this paper, by switching the driving tendon, the end clamping
force of the gripper prototype can be increased by at least 11% and at most 101%. The
specific increase magnitude may be different due to the difference in friction and structural
assembly process in another experiment platform.

Although the novel gripper proposed in this paper performs well in the laboratory
environment, it still has some shortcomings and limitations. The existing problems will
continue be researched in subsequent studies:

1. Although the resultant moment at the rotating joint of the end knuckle can be adjusted
by switching the driving tendon, this kind of method is a little discrete; a more stepless
adjusting method should be studied in the future.

2. The end clamping force of a tendon-driven gripper can also be enlarged by optimising
the geometric parameters of the gripper, such as the length and width of the knuckle,
which is another area of research and has already been studied for some time.

3. The end clamping force of a tendon-driven gripper is hardly influenced by the magni-
tude of a tendon tension; slight fluctuations in tendon tension may cause a sudden
release by the gripper. Therefore, a kind of anti-loosen mechanism should be added
to the gripper.
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4. The grasping operation of the gripper is not smooth enough, so it is necessary to
improve the rotating joint structure of each knuckle to improve the clamping efficiency.
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Appendix A

Table A1. Index of variables and abbreviated words.

Name Meaning Position

R The radius of guide wheel at the rotary joint of knuckle Figure 2a
Darm The moment arm of driving tendon tension at rotatory joint Figure 2b

m1(m2) The mass of root knuckle (end knuckle) Figure 3
L1(L2) The length of root knuckle (end knuckle) Figure 3
θ1(θ2) The angle between the root (end) knuckle and the horizontal line Figure 3
Fd(Fr) The tension of driving tendon (recovery tendon) Figure 3

Fe The reaction force of root knuckle acting on the end knuckle Figure 3
Dd(Dr, De) The moment arm of Fd (Fr, Fe) Figure 3
Td(Tr, Te) The torque at joint_2 generated by Fd (Fr, Fe) Section 2.4

α
The angle between the centrelines of end knuckle and

root knuckle Section 3.1

β the obtuse angle between the root knuckle and the horizontal line Section 3.1
FoE End Clamping Force of Envelope Clamping
FoG End Clamping Force of General Clamping
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