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Abstract: Recently, with the increasing scale of the volume of freight transport and the number of
passengers, the study of railway vehicle fault diagnosis and condition management is becoming
more significant than ever. The axle temperature plays a significant role in the locomotive operating
condition assessment that sudden temperature changes may lead to potential accidents. To realize
accurate real-time condition monitoring and fault diagnosis, a new multi-data-driven model based
on reinforcement learning and deep learning is proposed in this paper. The whole modeling process
contains three steps: In step 1, the feature crossing and reinforcement learning methods are applied
to select the suitable features that could efficiently shorten the redundancy of the input. In step 2,
the stack denoising autoencoder is employed to extract deep fluctuation information in the features
after the reinforcement learning. In step 3, the bidirectional gated recurrent unit algorithm is utilized
to accomplish the forecasting model and achieve the final results. These parts of the integrated
modeling structure contributed to increased forecasting accuracy than single models. By analyzing
the forecasting results of three different data series, it could be summarized that: (1) The proposed
two-stage feature selection method and feature extraction method could greatly optimize the input
for the predictor and form the optimal axle temperature forecasting model. (2) The proposed hybrid
model can achieve satisfactory forecasting results which are better than the contrast algorithms
proposed by other researchers.

Keywords: axle temperature forecasting; multi-factor driven model; feature extraction; reinforce-
ment learning

1. Introduction

Due to the huge demands of passenger and freight transport on the railway currently,
a mass of transportation tasks are taken by locomotives as one of the main transport
capacities of railway, leading to quite frequent operations [1]. However, fast speeds and
long mileage have also brought greater challenges to the reliability and efficiency of railway
engineering [2]. The axle situation of the bogies is an essential indicator to reflect the real-
time monitoring of vehicle transportation safety. The abnormal thermal wave changes of the
axles may lead to potential accidents, such as cut axle, hot axle, or even train derailment [3].
Therefore, axle temperature forecasting is of great value for real-time monitoring and alarm
equipment in the operation and maintenance strategy [4]. The vehicle data transmitted by
the onboard sensors should be deeply analyzed for the changing trend of the locomotive
data and further drive decision-making [5]. Vale et al. used various sensor data on board
in failure detection for early warnings [6]. Liu proposed a new monitoring system based
on onboard switched Ethernet for the fault diagnosis [7]. Bin et al. constructed a non-
destructive embedding detecting system for axle temperature compensation [8]. The
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above-proposed methods could achieve real-time data measuring of railway vehicles, but
accurate forecasting and the detailed analysis of internal correlations in railway vehicles are
still required precautions to avoid supernumerary vehicle maintenance. Recently, scholars
have developed many forecasting models in the field of temperature prediction [9], wind
speed prediction [10], power prediction [11], traffic flow prediction [12], air pollutant
forecasting [13], etc. Therefore, it is indispensable to establish prediction models for the
changing trend of the axle temperature, to obtain early warning and fault diagnosis of the
faulty position of the axle in advance to prevent major accidents. Therefore, the forecasting
models of railway vehicle status with positive performance are worth studying.

1.1. Related Work

In recent years, scholars have excogitated plenty of effective prediction methods in the
research aspects of railway vehicle fault diagnosis. Mainstream forecasting models include
statistical models, physical models, and artificial intelligence (AI) models [14]. The physical
method mainly predicts the thermal analysis based on the mechanical properties of the
materials on each component for the axle system through physical modeling methods, such
as finite element analysis [15]. Statistical methods mainly use regression modeling methods
to realize the forecasting process by analyzing the historical railway vehicle data of various
influence factors. For example, the stepwise regression analysis was employed to predict
the axle temperature data collected by sensors in high-speed trains, which transmitted the
raw temperature data into the regression equation with other relevant factors [16].

The above two kinds of method still require stable time series data and may present
difficulty in information extraction. However, under non-uniform speeds, the onboard sys-
tem of the trains will collect the original non-stationary axle temperature. On the contrary,
the AI methods could establish nonlinear models by analyzing the deep information of raw
data [17]. Therefore, scholars have proposed various artificial intelligence algorithms to es-
tablish accurate and effective forecasting models for further improvement. Liu applied the
backpropagation neural network (BPNN) to predict trains’ axle temperatures and exceed
GM (1, 1) with better accuracy [18]. Abdusamad proposed multiple linear regression (MLR)
in future temperature forecasting [19]. Xiao et al. conducted experiments on output shaft
gearbox temperature forecasting by the least-square support-vector machine (LSSVM) [20].

As an important part of artificial neural networks, the deep learning algorithm is
widely applied. Fu et al. designed a new modeling structure to analyze the gearbox-
bearing temperature changes by the convolutional neural network (CNN) and the long
short-term memory (LSTM) [21]. Yang et al. used a new modeling structure to analyze
temperature changes during high-speed train operation using the LSTM model, which
showed that the forecasting errors were arranged within a reasonable range [22]. The gated
recurrent unit (GRU) is also employed for bearing residual life forecasting [23]. The GRU
network obtained the best results against other algorithms.

Despite their frequent application in time-series research, single prediction algorithms
have difficulty in analyzing complicated irregular datasets. The hybrid methods can
integrate artificial neural methods and data processing methods to get higher prediction
accuracy than single predictors. Therefore, the feature extraction and feature selection
approaches are proposed to optimize the input features for the deep learning predictors
and improve model performance dramatically [24]. The feature extraction algorithms
could analyze the implicit data information and improve the input quality for the predictor.
Chen et al. applied the principal component analysis (PCA) to optimize the input of the
radial basis function neural network (RBFNN) [25]. Khan et al. also chose the PCA to
extract the hidden features in the original data and reduce the dimension [26]. Jaseena
and Kovoor presented the stacked autoencoder (SAE) to obtain considerable features
from the raw data, which have greatly improved the results in the LSTM network [27].
Furthermore, Rizwan’s group established a novel power prediction model combining the
stacked denoising autoencoder (SDAE) and SVM, which proved the validity of SDAE in a
hybrid framework [28].
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The feature selection methods are advantageous to reduce data redundancy and
overfitting problems [29]. An efficient feature selection process should be conducted by
the actual data characteristics and could obtain a compact and relevant feature subset to
improve model accuracy and reduce time costs [30]. To analyze the influencing factors in
fault diagnosis, feature crossing (FC) validation could estimate the effect of the modeling
function on the raw datasets to select the proper parameters [31]. The common feature
selection algorithms are mainly heuristic algorithms. Ant colony optimization (ACO) is a
probabilistic and approximation heuristic method to realize complex optimization. Paniri
et al. designed a framework of ACO in ensemble feature selection, which acquires from
experiences, based on the temporal difference (TD) algorithm [32]. For the multi-label
learning processes based on datasets, a multi-label feature selection method based on
ant colony optimization (MLACO) is also proposed to obtain the best features with less
redundancy and better relevancy, which can be applied in different aspects [33]. Hashemi
et al. also constructed an ACO algorithm using a multi-criteria decision-making (MCDM)
process to select the most relevant features for complex optimization [34]. Another filter
feature selection method for multi-label learning, which is the multi-label feature selec-
tion using multi-criteria decision making (MFS-MCDM), could analyze the features based
on their correlation with multiple labels in the information fusion process [35]. Zhang
et al. used the fruit fly optimization (FFO) algorithm in the feature selection approach
to enhance the echo state network (ESN) predictor and obtained satisfying outputs [36].
Zheng et al. selected the features using the particle swarm optimization and gravitational
search algorithm (PSOGSA) for predictors [37]. Bayati et al. developed a memetic-based
sparse subspace learning (MSSL) algorithm for multi-label classification that could select
high-quality features and delete redundant features [38]. Hashemi et al. applied a fast
algorithm for feature selection on the multi-label data with the PageRank algorithm, which
is called multi-label graph-based feature selection (MGFS) [39]. The effectiveness of the pro-
posed model in the classification criteria and run-time has been proved by the experiment
results. The abovementioned algorithms have been applied in prediction and improved to
some extent. For more achievement in the modeling, reinforcement learning is taken into
consideration by scholars. Feng et al. applied Q-learning as the modeling selectors, which
presented adaptive ability and obtained the best result with the highest accuracy [40]. Xu
et al. also chose Q-learning in feature selection to raise the modeling and outperformed
other heuristic algorithms [41].

From the above literature investigation, the integrated modeling algorithms could
eliminate the errors and optimize the hybrid frameworks. The following points can be
given: (1) As the key parts of hybrid frameworks, the complex learning structure in the
deep learning methods may increase the nonlinear fitting ability. (2) The feature selection
based on reinforcement learning is employed to evaluate the effect and relevancy of the
features for data optimization. With the FC validation, the feature selection results could
be more accurate with minimal errors. As a consequence, it is very important to choose
the appropriate feature selection methods for modeling improvement. (3) The feature
extract methods could obtain useful information and alleviate the noise of the input vector.
Therefore, the study applies SDAE to improve the selected input features for the deep
learning predictors after the hybrid feature selection.

1.2. Novelty of the Study

From the related works and literature research results, a multi-data-driven axle temper-
ature prediction framework based on reinforcement learning and deep learning is presented
in this paper. The main innovations and contributions of the study are shown as follows:

(1) In the study, a new locomotive axle temperature forecasting model is constructed
on the locomotive status to comprehensively analyze multi-data and improve the
prediction accuracy of the time series framework.

(2) A new two-stage feature selection method is designed in the paper. The feature
crossing can search for useful features and evaluate the deep information of the
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datasets. The reinforcement learning algorithm is applied to select the optimal feature
to ensure data quality. The hybrid two-stage feature selection structure is firstly
utilized in locomotive axle temperature forecasting.

(3) The stacked denoising autoencoder is used as the feature extraction approach to
obtain the primary features and detailed information of the preprocessed data as the
input of the bidirectional gated recurrent unit (BIGRU). For the favorable forecasting
performance of deep learning, the model is firstly applied in the locomotive axle
temperature prediction model as the core predictor to obtain the final result.

(4) The multi-data-driven model FC-Q-SDAE-BIGRU adopted in the article is a new
structure. To prove the high-precision performance of the presented axle temperature
forecasting model, other alternative models were reproduced and tested with the
proposed model.

2. Methodology

In this section, the main methodologies applied in the proposed model will be ex-
plained in the following subsections, which are the whole framework, the two-stage feature
selection, the feature extraction methods, and the deep learning algorithm.

2.1. The Framework of the Proposed Model

Considering the dynamic influencing factors on locomotive axle temperature, the
forecasting accuracy of simple data series should be further optimized to fulfill the ap-
plication of vehicle status control. The paper presents a multi-data-driven model, which
contains feature extraction, two-stage feature selection, and deep learning methods. The
structure of the proposed model is dispalyed in Figure 1. Eight raw datasets, including
historical datasets of three-axle temperature datasets, locomotive speeds, original total
cylinder pressures, equalize cylinder pressures, original brake cylinder pressures, and
brake cylinder pressures, are applied to establish locomotive axle temperature forecasting.
The original axle temperature datasets are divided into training sets, validation sets, and
testing sets. A two-step feature selection method is utilized to achieve the features that
are rewarding to the forecasting, in which the feature crossing is used to avoid the loss
of useful information and reinforcement learning can be applied to select optimal input
features for prediction. To further reduce the nonlinearity of the datasets, SDAE was used
to extract plenty of input features. The input features after feature selection and feature
extraction will be transmitted into the BIGRU network to form the final forecasting for the
result. The applied methods will be introduced in the following sections.

2.2. Two-Stage Feature Selection Methods

The feature selection methods in the research can be divided into two steps. The first
step is feature crossing, which could extend the feature structure and provide more options
for feature selection. The second step is Q-learning, which selects suitable features for the
following process.

2.2.1. Stage I: Feature Crossing

A feature crossing is an integrated feature created by multiplying two or more fea-
tures so that the integrations of features can possess predictive abilities beyond the single
features [42]. A composite feature is generated by combining separate feature series, which
contributes to establishing nonlinear connections of the data [43]. The initial features
applied in the preprocessing are divided based on different domains. The degree of cor-
relation of features from the locomotive system inside and between groups is different,
considering the different contained amounts of beneficial information. The application
of direct feature selection may lead to information loss, and the data then cannot be fully
analyzed [44]. Therefore, feature crossing can be applied in the research. The application
of feature crossing can effectively extract different information features contained in the
collected data in experiments, thereby improving the performance of feature selection and
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strengthening the model learning ability of complex nonlinear features. In this section,
four feature crossing schemes are proposed. Depending on the categories of the features,
various statistical aggregations or simple calculation methods are performed on the features
to obtain new features. As shown in Figure 2, the feature classes are distinguished by the
colors, and the definite steps are presented as below:

Figure 1. The flowchart of the proposed model.

Figure 2. Feature crossing strategy.

Scheme 1 (FC1): Traverse the features so that the features of data preprocessing can be
added, subtracted, multiplied, and divided.

Scheme 2 (FC2): Within-group features. If the two sets of features can be classified as the
same class, each pair of features can be added or subtracted or otherwise, multiplied or divided.
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Scheme 3 (FC3): Group aggregation features. For all the features in the same class, the
mean value, standard deviation, maximum value, minimum value, and range could be
calculated to obtain new features.

Scheme 4 (FC4): Within-group + group-aggregated features. The new features are
integrated by Schemes 2 and 3.

The original datasets are preprocessed as input features, in which the time-series:
locomotive speeds (LS), original total cylinder pressures (OTCP), equalize cylinder pres-
sures (ECP), original brake cylinder pressures (OBCP), brake cylinder pressures (BCP), and
axle temperatures (AT) are listed into five column vector features. The features generated
by feature crossing may be enhanced and the invalid information may be generated so
that the feature selection algorithm is used for further optimization. However, different
feature crossing methods could enrich the feature structure and provide a basis for feature
selection. The above four schemes are all applied in the research, then all the results and the
original features are utilized in the feature selection process by the reinforcement learning
algorithm. The Table A1 in Appendix A lists partial feature selection results from the four
scheme frameworks, in which only a small part of the results of reinforcement learning are
presented due to article space limitations.

2.2.2. Stage II: Feature Selection by Reinforcement Learning

Reinforcement learning (RL) is an agent-based optimization algorithm, which can be
applied to analyze and settle problems on optimal agent feedback, or to achieve satisfactory
outputs through excellent learning strategies [45]. The feature selection method, which can
be divided into filtering methods and bagging methods, could eliminate the redundancy of
input features and further raise the modeling capability [46]. Different from the traditional
evolutionary algorithms, the deep RL could achieve a positive application value in decision-
making and dynamic optimization in feature extraction [47]. In the research, a feature
selection method using reinforcement of the learning-based bagging method is adopted to
accurately select the features. Therefore, the selection process could avoid over-fitting of
the model and optimize the accuracy of the following BIRGU network. The pseudocode of
Q-learning is listed in Algorithm 1 and the main calculation steps are demonstrated below:

Step 1: Set the parameters of the agent and initialize the status. The action matrix A is
the action to choose these features [48].

S = [s1, s2, . . . , sn] (1)

A(t) = [∆s1, ∆s2, ∆s3, . . . , ∆sn] (2)

where sn represents the selection of the nth feature, and the value of sn is 0 or 1 (0 means
that the feature is not demanded, and 1 means that the feature is required). ∆sn is the action
of adding or removing the nth feature [49].

The action strategy selection by the ε-greedy principal:

A(t) =
{

Action based on maxQ(S, a) (probability of 1−ε)
Random action (probability of ε)

(3)

ε ∈ (0, 1) (4)

where ε represents the exploration probability.
Step 2: Establish the Loss function L and reward R that will affect the agent’s action.

In this paper, the MAE is used to determine the reward value, which is calculated by the
BIGRU model.

L = (
n

∑
t=1
|r(t)− r̂(t)|)/n (5)

R =

{
+1 + Lt − Lt+1(Lt+1 < Lt)
−1 + Lt − Lt+1(Lt+1 > Lt)

(6)
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where r(t) represents the raw data, r̂(t) stands for the forecasting results and n means
the samples.

Step 3: The agent calculates the action based on a deep analysis of the moment situation
and the state S.

Step 4: Calculate and update the status and Q-table according to the parameters. Based
on the reward R, the agent updates the state and Q table by changing the action of input
feature changes. The calculating process for the Q value is presented as follows [50]:

Q (S(t), A(t)) = Q (S(t), A(t)) + β(R(S(t), A(t)) + γmaxQ(S(t + 1), A(t + 1))−Q(S(t), A(t))) (7)

where A represents the behavior of agents, and S stands for the current status of an agent.
γmeans the discount parameter; β represents the learning rate [51].

Step 5: Repeat steps 3 to 4 unless the termination condition of stop is satisfied, where
the matrix S is the optimal result.

Algorithm 1 Feature Selection by Q-Learning

Input:
Feature crossing results of four schemes
Original preprocessed input features
The maximum iteration: K
Discount parameter: γ
Learning rate: β
Algorithm:
1: Initialize all parameters
2: for k = 1: K do
3: Select a through the ε-greedy policy

A(t) =
{

Action based on maxQ(S, a) (probability of 1−ε)
Random action (probability of ε)

4: Construct loss function L and reward R

L = (
n
∑

t=1
|r(t)− r̂(t)|)/n , R =

{
+1 + Lt − Lt+1(Lt+1 < Lt)
−1 + Lt − Lt+1(Lt+1 > Lt)

5: Compute loss function L and reward R, and update the Q table:
Q (S(t), A(t)) = Q (S(t), A(t)) + β(R(S(t), A(t)) + γmaxQ(S(t + 1), A(t + 1))−Q(S(t), A(t)))
6: end for
Output: suitable features from the input

2.3. Stacked Denoised Autoencoder

The Stacked denoised autoencoder was proposed by Vincent et al. [52]. The basic
idea of SDAE is to stack multiple denoising autoencoders (DAE) together to form a deep
architecture, in which the input is only noised during training [53]. Based on the autoen-
coder, the DAE could eliminate the noise information of input features to avoid modeling
overfitting. In the structure of SDAE, each self-encoding layer is independently trained
unsupervised, with the training goal of minimizing the error between the input and the
reconstruction result. The input is the output of the hidden layer of the previous layer.
After the N layer is trained, the N + 1 layer could be trained, since the output of the N layer
has been obtained by forwarding propagation, and then the N + 1 layer is trained using the
output of the N layer as the input of the N + 1 layer [54]. When the training of SDAE is
finished, the high-level features can be used as inputs to traditional supervised algorithms,
such as prediction and classification [55]. The specific training steps of the SDAE algorithm
are listed as [56]:

Step 1: initialize the parameters in the SDAE.
Step 2: train the first layer of DAE and use the hidden layer as the input of the second

DAE. Then repeat the same training until the nth layer of the DAE training is completed.
Step 3: Stack the trained n-layer DAE to generate the SDAE structure and add an

output layer to the top layer of SDAE.
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Step 4: the raw locomotive data is used to start the supervised fine-tuning of the whole
network. The output will be transmitted as the optimal parameter into the predictor.

2.4. Bidirectional Gated Recurrent Unit

To analyze the feature vectors extracted by the SDAE and better learn the wave
information of the axle temperatures from the historical multi-data, it is indispensable to
apply an efficient time series forecasting model [57]. The GRU model, which is a kind
of recurrent neural network (RNN), can be regarded as a simplified version of the LSTM
model [58]. GRU integrates the units of the input gate and forget gate of LSTM so that
it contains only the reset gate and update gate as the key components to form a GRU
unit [59]. The update gate can control the extent of the current state information from the
previous step. The size of the retained state information is proportional to the update gate
value. Whereas the function of the reset gate is to determine the extent of the hidden layer
information from the previous state, which should be deleted. More information will be
deleted by a smaller reset gate [60]. The basic framework of GRU is shown in Figure 3. The
GRU calculation formula is as follows [61]:

Z(t) = σ(WZ·[H(t− 1), xt]) (8)

R(t) = σ(WR·[H(t− 1), xt]) (9)

˜
H(t) = tanh

(
W ˜

H
·[R(t)×H(t− 1), xt]

)
(10)

H(t) = (1− Z(t))×H(t− 1) + Z(t)×H(t) (11)

where R(t) stands for the reset gate, Z(t) means the update gate, and σ represents the

sigmoid activation function.
˜

H(t) represents the candidate activation status information
and H(t) represents the active status information.

Figure 3. The basic structure of GRU.

The BIGRU is short for the bi-directional gated recurrent unit and it is architecturally
composed of a forward-propagated GRU unit and a backward-propagated GRU unit [62].
The status information in a one-direction process will invariably transmit from the front
to the back. However, the BIGRU connects two hidden layers with different directions
for output, which may lead to more information to enhance the prediction process and
improve the modeling performance [63]. The structure of the BIGRU is shown in Figure 4.

The forward and backward layer values
→
H(t)

←
H(t) and final results H(t) are shown below.

→
H(t) = GRU(xt,

→
H(t− 1)) (12)
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←
H(t) = GRU(xt,

←
H(t− 1)) (13)

H(t) = wt
→
H(t) + vt

←
H(t) + bt (14)

where wt and vt are weights relying on the forward or backward status of BIGRU, and bt is
the bias. The pseudocode of SDAE-BIGRU is listed in Algorithm 2.

Algorithm 2 The SDAE-BIGRU algorithms

Input:
Selected features by Q-learning
The weight set [WZ, WR, WH] in the BIGRU network
The number of DAE layer k is l.
The maximum number of SDAE epochs: Z
The maximum number of BIGRU epochs: N
Algorithm:
Step1: Unsupervised layer training of SDAE
1: Initialize all parameters in the SDAE
2: for z = 1: Z do
3: for k = 1: l do
4: train the first layer of DAE and use the hidden layer as the input of the second DAE.
Repeat until the lth layer of DAE.
5: stack the trained n-layer DAE to obtain the SDAE with an output layer on the top
6: end for
7: end for
The output will be transmitted as the optimal parameter into the BIGRU predictor
Step2: Supervised layer training of BIGRU
1: Initialize all parameters in the BIGRU
2: for n = 1: N do
3: Calculate output in the single GRU
Z(t) = σ(WZ·[H(t− 1), xt]), R(t) = σ(WR·[H(t− 1), xt])
H̃(t) = tanh

(
WH̃·[R(t)×H(t− 1), xt]

)
, H(t) = (1− Z(t))×H(t− 1) + Z(t)×H(t)

4: Compute output in the Bi-directional structure
→
H(t) = GRU(xt,

→
H(t− 1))

←
H(t) = GRU(xt,

←
H(t− 1))

H(t) = wt
→
H(t) + vt

←
H(t) + bt

(3) Iteration ends when the stopping criterion is satisfied.
5: end for
Output: The forecasting results

Figure 4. The basic structure of GRU.
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3. Case Study

In this section, the proposed model will be evaluated in the case study to test its
effectiveness and availability in the engineering application. The datasets, the evaluation
indexes, and corresponding experiments are demonstrated in the following subsections.

3.1. Locomotive Datasets

To fully verify the performance and application of the designed model, the datasets of
1000 samples were applied in the paper, which were collected during the locomotive opera-
tion period with a 1-min interval. The data has been preprocessed to remove outliers and
smoothed for the sensor’s stepped data. The time series characteristics and the fluctuation
information of the datasets are described in Figures 5 and 6 shows the locomotive axle in the
refurbishment test after the operation. The historical datasets include the axle temperatures
from three axles in a bogie of the Harmony electric locomotive, the locomotive speeds, the
original total cylinder pressures, the equalize cylinder pressures, the original brake cylinder
pressures, and the brake cylinder pressures, in which the last five are used as auxiliary
features in the feature selection process. In the experiments, the 1st–600th samples were
regarded as the training set. The 601st–800th samples were selected as the validation set.
The 801st–1000th samples were the test set. The experiments of this paper are conducted
on Matlab2020, the Python 3.8.8 platform, and TensorFlow 2.3.0, which is run on a personal
computer with Ci77700-2.81 GHz, 8 GB RAM, and Windows 10 64-bit operating system.

Figure 5. Raw temperature data #1, #2, and #3, and other data collected from a locomotive bogie.
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Figure 6. The locomotive bogie in refurbishment test after the operation.

3.2. The Evaluation Indexes in the Study

The evaluation indexes will reflect the modeling forecasting performance. In the
experiments, four indexes, namely the mean absolute error (MAE), the root mean square
error (RMSE), the mean absolute percentage error (MAPE), and the standard deviation
of error (SDE) were utilized to test the forecasting accuracy. What’s more, the promoting
percentages of these indexes are also applied. These indexes are defined as below:

MAE = (
n
∑

t=1
|r(t)− r̂(t)|)/n

MAPE = (
n
∑

t=1
|(r(t)− r̂(t))/r(t)|)/n

RMSE =

√
(

n
∑

t=1
[r(t)− r̂(t)]2)/n

SDE =

√
(

n
∑

t=1

[
r(t)− r̂(t)−

n
∑

t=1
(r(t)− r̂(t))/n

]2
)/n

(15)


PMAE = (MAE1 −MAE2)/MAE1
PMAPE = (MAPE1 −MAPE2)/MAPE1
PRMSE = (RMSE1 − RMSE2)/RMSE1
PSDE = (SDE1 − SDE2)/SDE1

(16)

where r(t) represents the raw data, r̂(t) is the forecasting result and n means the samples in
raw datasets.

3.3. Comparing Analysis with Alternative Algorithms

In this section, the comparative experiment will be conducted by the main types of the
proposed model to test each partial algorithm.

3.3.1. Comparative Experiment of Different Predictors

To verify the forecasting performance of the predictor BIGRU in time series modeling
in-depth, the experiments will be conducted in comparison with some traditional shallow
neural network predictors and classical deep learning predictors including LSTM, GRU,
RNN, deep Boltzmann machine (DBM), evolutionary neural networks (ENN), extreme
learning machine (ELM), multilayer perceptron (MLP), and radial basis function (RBF).
Figures 7 and 8 present statistical indexes of the prediction results. According to the
experiment results, the following conclusions can be drawn:

(1) Compared to ELM, MLP, and RBF, other deep learning models with complex struc-
tures could obtain better axle temperature forecasting results. The forecasting ac-
curacies of the traditional shallow neural network approaches are lower than deep
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learning models, which may be caused by the high fluctuation and irregular feature
information of the original data. The deep learning algorithm, which could iden-
tify and analyze the series wave information by the multiple hidden layers, could
effectively extract the deep information of the original data by an iterative process to
obtain positive results.

(2) By the deep learning networks, the accuracies of GRU and LSTM in the results outper-
form others. The reason may be that the gated structure can efficiently ameliorate the
process and select more information, which enables GRU and LSTM to analyze the
characteristics of deep data fluctuation acquisition. Meanwhile, the prediction error
of the BIGRU is lower than that of others and obtains the best forecasting results in
all series. The feasible cause may be that the bidirectional operation structure could
optimize the analytical capability for the core information to effectively improve the
training ability and raise the calculation speed. However, for different axle tempera-
ture datasets of fluctuation characteristics, it can be observed that a single predictor
is difficult to adapt to various cases. As a consequence, it is essential to utilize other
algorithms to increase the applicability and recognition ability of the model.

Figure 7. Forecasting performance evaluation indexes: MAE, MAPE, RMSE, and SDE values of
different predictors.

3.3.2. Comparative Experiments and Analysis of Different Feature Extraction Methods

To fully prove the performance of the proposed feature extraction approach for the
accuracy improvement of BIGRU in locomotive axle temperature forecasting, the experi-
ments are conducted to compare the prediction results of SDAE-TCN and TCN. Moreover,
the SDAE is also compared with SAE and PCA. Figure 9 presents statistical indexes of
the prediction results and Table 1 lists the promoting percentages of the SDAE-BIGRU.
According to the experiment results, the following conclusions can be drawn:

(1) In contrast to single BIGRU predictors, the hybrid structure with a feature extraction
algorithm can normally obtain better results with lower errors. The feature extraction
algorithms effectively improve the prediction accuracy of the BIGRU, which extracts
the input vector information and optimizes the fluctuation characteristics of the
axle temperature datasets. The overall results showed that these feature extraction
methods effectively raise the prediction accuracy in all cases. The probable reason
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may be that the feature extraction algorithms could deeply analyze the multi-data
information and effectively reduce the modeling difficulty by raw data to promote
the overall results.

(2) By comparison with SAE and PCA methods, all results proved that the SDAE achieves
the best results. SDAE can effectively decrease the data redundancy so that the recog-
nition ability of the predictor can be further increased. Furthermore, the deep architec-
ture of the SDAE is based on multi-layer DAE, which greatly increases the information
extraction ability of the hybrid structure. Consequently, the feature selection approach
based on SDAE is intensely effective for all datasets in axle temperature forecasting.

Figure 8. Scatter plots of BIGRU, GRU, and LSTM.

Figure 9. Forecasting performance evaluation indexes: MAE, MAPE, RMSE, and SDE values of
different feature extraction methods.
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Table 1. The promoting percentages of the SDAE-BIGRU by the others.

Methods Indexes Series #1 Series #2 Series #3

SDAE-BIGRU vs. SAE- BIGRU

PMAE (%) 7.0247 0.8298 3.1263
PMAPE (%) 4.4482 2.9477 1.4102
PRMSE (%) 5.8370 4.7737 4.0274
PSDE (%) 5.2867 1.6556 4.7917

SDAE-BIGRU vs. PCA- BIGRU

PMAE (%) 7.6462 0.9642 7.3119
PMAPE (%) 6.1473 2.9477 0.4911
PRMSE (%) 5.3941 6.8141 5.1383
PSDE (%) 5.0270 4.5342 11.0127

SDAE-BIGRU vs. BIGRU

PMAE (%) 16.2541 1.1176 11.1565
PMAPE (%) 16.7721 4.4492 6.3628
PRMSE (%) 15.2911 8.3613 6.7314
PSDE (%) 13.0474 7.3538 12.9618

3.3.3. Comparative Experiments of Different Feature Selection Methods

To evaluate and test the performance of the Q-learning-based feature selection ap-
proach, the FC-Q-SDAE-BIGRU model is compared with the SDAE-BIGRU to prove the
effectiveness of the feature selection method in decreasing modeling input redundancy and
forecasting errors. Furthermore, to prove the favorable application of the reinforcement
learning algorithm in feature selection, the Q-learning algorithm is also tested with tradi-
tional meta-heuristic algorithms like the genetic algorithm (GA), gray wolf optimization
(GWO), particle swarm optimization (PSO), simulated annealing (SA), and random genera-
tion plus sequential selection (RGSS), respectively. The results are presented in Figure 10
and Table 2. Table 3 displays the feature selection results obtained by the Q-learning algo-
rithm, which can fully list the influence of various feature information on the prediction
accuracy of axle temperature in detail. Figure 11 shows the values of Loss during the
iterations of Q-learning, GWO, PSO, GA, SA, and RGSS. Based on the experiment results, it
can be concluded that:

(1) The experimental results fully prove the ability of the feature selection algorithm to
raise the prediction accuracy of SDAE-BIGRU in all cases. The possible reason is
that the two-stage feature selection algorithms applied in this paper can unearth the
deep correlation between axel temperature and other locomotive feature historical
data, and selects the suitable features of the best quality, which could effectively avoid
overfitting and obtain the best input for BIGRU.

(2) By comparison with the traditional heuristic algorithms, the forecasting accuracy of
the models with the reinforcement learning algorithm as feature selection is better than
other methods in all datasets. Different from the population iteration process of the
heuristic algorithms, the reinforcement learning algorithm improves the intelligence
of the hybrid model by constantly training agents. By analyzing the relevance between
input and output results, Q-learning could raise the decision-making ability and select
the optimal features of axle temperature modeling.

(3) The locomotive speeds and the cylinder pressures also have a great influence on the
prediction results of FC-Q-SDAE-BIGRU. As the key component of the transmission
system, the cylinder pressures can reflect the control status of the bogie. The speed
is also a direct signal in the driven status of locomotives. In addition, the historical
information on axle temperature could efficiently reflect the changing trend with the
assistance of multiple auxiliary datasets. Therefore, these variables play a crucial role
in establishing the prediction model. An accurate forecasting framework can conduct
a precise estimation of future data changes so that the drivers and the train control
centers can make accurate adjustments to stabilize the vehicles and avoid accidents.
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Figure 10. Forecasting performance evaluation indexes: MAE, MAPE, RMSE, and SDE values of
different feature selection methods.

Figure 11. Values of Loss during the iterations of Q-learning, GWO, PSO, GA, SA, and RGSS in series
#1, #2, and #3.
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Table 2. The promoting percentages of the FC-Q-SDAE-BIGRU by the others.

Methods Indexes Series #1 Series #2 Series #3

FC-Q-SDAE-BIGRU vs.
GWO-SDAE-BIGRU

PMAE (%) 3.8403 6.5267 22.8677
PMAPE (%) 2.0378 5.0379 23.3769
PRMSE (%) 5.2122 5.7531 18.5088
PSDE (%) 4.9913 0.9963 13.2719

FC-Q-SDAE-BIGRU vs.
PSO-SDAE-BIGRU

PMAE (%) 4.7154 4.2024 7.5213
PMAPE (%) 2.0377 1.3020 8.3931
PRMSE (%) 8.1762 6.1503 5.7634
PSDE (%) 8.4175 3.2797 14.2463

FC-Q-SDAE-BIGRU vs.
GA-SDAE-BIGRU

PMAE (%) 7.5454 19.4326 15.2749
PMAPE (%) 8.9646 19.2124 15.3632
PRMSE (%) 16.7306 17.4696 13.9796
PSDE (%) 11.7552 3.1363 13.3462

FC-Q-SDAE-BIGRU vs.
SA-SDAE-BIGRU

PMAE (%) 9.1784 21.6088 12.4518
PMAPE (%) 6.8321 20.6416 16.2403
PRMSE (%) 13.4685 22.4770 8.3616
PSDE (%) 10.6700 4.7808 18.7424

FC-Q-SDAE-BIGRU vs.
RGSS-SDAE-BIGRU

PMAE (%) 10.8928 22.5579 14.2563
PMAPE (%) 9.6355 20.0147 18.2668
PRMSE (%) 16.6820 21.5992 17.7818
PSDE (%) 16.5202 6.6571 15.0032

Table 3. Feature selection results of reinforcement learning method for the axle temperatures series.

Series Time Locomotive
Speeds

Original Total
Cylinder
Pressures

Equalize Cylinder
Pressures

Original Brake
Cylinder
Pressures

Brake Cylinder
Pressures

Axle
Temperature

#1

T-5 0 0 0 0 0 0
T-4 1 0 0 1 0 1
T-3 1 1 1 1 0 0
T-2 1 0 0 1 1 0
T-1 0 0 0 0 1 0

#2

T-5 0 0 1 1 0 1
T-4 1 1 0 0 0 1
T-3 0 0 1 1 0 1
T-2 0 0 0 0 1 0
T-1 1 1 0 1 1 0

#3

T-5 0 1 0 0 1 1
T-4 1 1 1 0 1 0
T-3 1 0 0 1 1 1
T-2 1 1 0 1 1 0
T-1 0 1 1 1 1 1

3.4. Comparative Experiments with Benchmark Models

To verify the availability and advancement of the proposed FC-Q-SDAE-BIGRU model,
comparative experiments are conducted in the analysis with two existing state-of-the-
art models in time series forecasting, namely Shang’s model [12], and Liu’s model [13]
and two kinds of classic models, which are MLP and RBF. These state-of-the-art models
have obtained positive results. Figure 12 presents the evaluation index values of all the
benchmark models. Figures 13–15 display the results of the proposed model and other
existing models. Based on the comparative results, it could be summarized as follows:

(1) By comparison with the MLP and RBF, other hybrid ensemble models can achieve
more satisfactory axle temperature modeling results. The single predictor can explore
the simple nonlinear relation of the raw data, but it is arduous to follow the deep
fluctuation information and the multi-data effect. On the contrary, the hybrid models
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can effectively integrate the advantages of each component and accomplish a valid
modeling structure based on the multi-data.

(2) In the above models, the proposed model acquires the best results with lower errors
in all cases. This fully demonstrates that the FC-Q-SDAE-BIGRU framework is of
favorable scientific modeling value, and combines the advantages of feature analysis
and deep learning. A multi-data-driven axle temperature forecasting framework was
utilized to construct more detailed mapping relationships than univariate models,
and ensure that more influencing factors will be taken into account. The reinforce-
ment learning-based two-step feature selection and SDAE-based feature extraction
approaches were applied to improve the modeling input, analyze the advantageous
information, and decrease the redundancy from raw data features. Finally, the ap-
plication of the BIGRU model has also further improved the forecasting accuracy of
classical deep learning methods.

3.5. Sensitive Analysis of the Parameters and the Computational Time

The parameters of the algorithms play an important role in the modeling experiments.
For example, the maximum number of training epochs control the rounds or iterations of
the algorithm, which could directly limit the operation time. The sparsity proportion is
the parameter of the sparsity regularizer, which controls the sparsity of the hidden layer
output [64]. The batch size affects the optimization degree, the speed of the model, and
the conditions of the GPU. The learning rate determines whether and when the objective
function converges to a local minimum [65]. Briefly, the parameters could affect the
direction, speed, and scope of modeling optimization, data selection, and feature extraction.
The performance of the model is directly related to the selection and correlation of these
parameters and the application of different datasets. To achieve better prediction accuracy,
it is necessary to compare and adjust the model parameters.

Figure 12. Forecasting performance evaluation indexes: MAE, MAPE, RMSE, and SDE values of the
proposed model and existing models.
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Figure 13. Prediction results and errors of series #1: (a) prediction results; (b) error distribution.

Figure 14. Prediction results and errors of series #2: (a) prediction results; (b) error distribution.

Figure 15. Prediction results and errors of series #3: (a) prediction results; (b) error distribution.
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In this section, the sensitivity of the parameters in the proposed framework is analyzed.
The parameters are tested by five different values in three axle temperature datasets. The
sensitivity analysis results of the important parameters in the proposed model are presented
in Figure 16. The MAEs are utilized to represent the model forecasting accuracy. It can
be found from the graphic results that the proposed model is generally stable and robust
to the parameters with a few fluctuations in different datasets. For example, when the
discount parameter is 0.95, the MAEs have the smallest values in all datasets, which stands
for the best forecasting accuracy. In the maximum iterations of Q-learning, the changing
of the parameter value has little influence on the results. To save computational time, it is
rational to set the maximum iterations as 100.

Figure 16. The sensitivity analysis results of the proposed model.

Based on Table 4, it can be determined that the average calculation time of the hybrid
model is more than that of the single models in the datasets of this paper. The time costs
of deep learning models are also higher than the traditional shallow neural networks,
which may be caused by the complex network structure and more hidden layers. With
the application of various optimization methods, feature extraction, feature selection, etc.,
the structure of the hybrid model tends to diversify, which could effectively extract the
deep information of the original data by an iterative process to obtain positive results.
Aside from the improvement in model forecasting accuracy, these complex structures also
intensify the expansion of computational cost and time.
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Table 4. The average computational time of different models in the axle temperature dataset.

Algorithms Computational Time

BIGRU 42.61 s
GRU 25.45 s
LSTM 28.85 s
ELM 12.41 s
MLP 15.93 s

SAE- BIGRU 53.42 s
GA-SDAE-BIGRU 107.67 s

GWO-SDAE-BIGRU 99.43 s
PSO-SDAE-BIGRU 93.26 s
FC-Q-SDAE-BIGRU 124.08 s

The calculation cost of the proposed model is also given in Table 5. The parts of the
models contribute to the best accuracy of other benchmark models with higher time costs.
Considering the dataset of 1000 samples with the output of 200 samples from the normal
operation, the model effectively predicts the changing trend of axial temperature under a
certain time consumption. For predictions over a longer time horizon, it may be necessary
to increase the time interval with the updated sensor data process to effectively evaluate
the accuracy and availability of the model.

Table 5. The computational time of the proposed model.

Algorithms Computational Time

FC-Q 61.05 s
SDAE 20.42 s
BIGRU 42.61 s

Total 124.08 s

4. Conclusions and Future Work

The axle temperature forecasting could render a technical analysis for the status
detection of locomotives. In pursuit of forecasting accuracy, a novel multi-data-driven
model based on reinforcement learning and deep learning is proposed in the research, which
consists of the reinforcement learning feature selection, the SDAE feature extraction, and
the BIGRU neural network. The study can be elaborated from the following perspectives:

(1) This paper analyzes the influence of multi-factor inputs on axle temperature forecast-
ing modeling. The FC-Q-SDAE-BIGRU framework could deeply recognize the wave
features of the raw data and analyze the influence of input features on forecasting
modeling of the changing trend. The experimental results show that the auxiliary
inputs are beneficial to accomplishing accurate forecasting.

(2) From the comparative experiments, it could be found that the existing single predictors
are not able to extract deep nonlinear characteristics to acquire satisfying results.
Different from the traditional single predictor time series forecasting framework, the
study designed a multi-data-driven hybrid forecasting model.

(3) A new two-stage feature selection structure could be utilized to preprocess an original
input. The FC method could further explore the potential features of the raw data
and the reinforcement learning algorithm (Q-learning) comprehensively, considering
the influence of other features from different angles on axle temperature, which helps
to select the optimal features. SDAE method effectively extracts the deep cognition
of the features and eliminates data redundancy, which significantly improves the
modeling capability. Based on the principle of GRU and RNN, the bidirectional
operation framework of GRU possess excellent time series modeling and forecasting
ability that BIRGU revealed positive analytical capability and forecasting accuracy by
comparison to other deep learning models and traditional neural network predictors.

(4) The multi-data forecasting model combining the reinforcement learning and deep
learning presented in the paper integrated the advancement of each component. In
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general, the proposed framework proved to be better than the benchmark models in
all cases, which described excellent applicability to axle temperature forecasting.

The axle temperature model presented in the study renders technical support for the
intelligent control of locomotives and early warning. Based on the historical data, the
forecasting process could output judgments about the future operation trend of railway
vehicles, which also contributes to predictive maintenance to decrease operation costs.
The modeling framework can be also applied for the analysis of other time series data of
railway vehicles and other engineering fields. For future research, the framework could be
optimized and expanded from the following aspects to enhance the practical value:

(1) Besides the axle temperature data, the influence of other factors such as power con-
sumption, locomotive ambient temperature, and maintenance engineering plan on
the abnormal trends of temperature data is also worth further studying.

(2) During the life cycle, a huge amount of data will continue to accumulate with the
operation of the locomotive so the forecasting model must also be constantly updated.
Moreover, the intelligent big data platform could accomplish model parallel comput-
ing and analysis ability. In the future, the proposed model can be embedded into an
intelligent big data platform such as Spark to further improve the comprehensive
performance of the model and to establish an intelligent railway vehicle system. The
systematic integration of data and models deserves further study.
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Appendix A

Table A1. Partial feature selection results of RL based on feature crossing frameworks for input features.

Datasets Partial FC Calculation T-5 T-4 T-3 T-2 T-1

LS-LS1-FC1 0 0 0 0 -
LS-OTCP1-FC1 0 0 0 1 0

#1

LS-BCP1-FC1 0 0 0 0 0
LS-AT1-FC1 0 0 0 0 0

LS-LS1-FC2 0 0 0 0 -
LS-OTCP1-FC2 0 0 0 0 0
LS-BCP1-FC2 0 0 0 0 0
LS-AT1-FC2 0 0 1 0 0

LS-LS1-FC3 0 0 0 0 -
OTCP-OTCP1-FC3 0 0 0 0 -

BCP-BCP1-FC3 1 0 0 0 -
AT-AT1-FC3 0 0 0 0 -

LS-LS1-FC4 0 0 0 0 -
OTCP-OTCP1-FC4 0 0 0 0 -

BCP-BCP1-FC4 0 0 0 1 -
AT-AT1-FC4 0 0 0 0 -
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Table A1. Cont.

Datasets Partial FC Calculation T-5 T-4 T-3 T-2 T-1

#2

LS-LS2-FC1 0 0 0 - 0
LS-OTCP2-FC1 0 0 0 0 0
LS-BCP2-FC1 0 0 1 0 0
LS-AT2-FC1 0 0 0 0 0

LS-LS2-FC2 0 0 0 - 0
LS-OTCP2-FC2 0 0 0 0 0
LS-BCP2-FC2 0 0 0 0 0
AT-AT2-FC2 1 0 0 0 0

LS-LS2-FC3 0 0 0 - 0
OTCP-OTCP2-FC3 0 0 0 - 0

BCP-BCP2-FC3 0 0 0 - 1
AT-AT2-FC3 0 0 0 - 0

LS-LS2-FC4 0 0 0 - 0
OTCP-OTCP2-FC4 0 0 0 - 0

BCP-BCP2-FC4 0 0 0 - 0
AT-AT2-FC4 0 0 1 - 0

#3

LS-LS3-FC1 0 0 - 0 0
LS-OTCP3-FC1 0 1 0 0 0
LS-BCP1-FC1 0 0 0 0 0
LS-AT1-FC1 0 0 0 0 0

LS-LS3-FC2 0 0 - 0 0
LS-OTCP3-FC2 0 0 0 0 0
LS-BCP3-FC2 0 0 0 0 0
LS-AT3-FC2 0 0 0 1 0

LS-LS3-FC3 0 0 - 0 0
OTCP-OTCP3-FC3 0 0 - 0 0

BCP-BCP3-FC3 0 0 - 0 0
AT-AT3-FC3 0 0 - 0 1

LS-LS3-FC4 0 0 - 0 0
OTCP-OTCP3-FC4 0 0 - 0 0

BCP-BCP3-FC4 1 0 - 0 0
AT-AT3-FC4 0 0 - 0 0
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