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Abstract: The vibration energy distribution pattern usually changes with the rotating machine’s
health state and is a good indicator for intelligent fault diagnosis (IFD). The existing initial features
such as RMS are less effective in revealing the vibration energy distribution pattern, and the frequency
spectrum cannot provide a rich and hierarchical description of the vibration energy distribution
pattern. Addressing this issue, we proposed a multi-scale frequency energy distribution (MSFED)
feature for the IFD of rotating machines. The MSFED feature can reveal the vibration energy distri-
bution patterns in the frequency domain in a multi-scale manner, and its one-dimensional vector
and two-dimensional map formats make it usable for most IFD models. Experimental validation on
the gearbox and bearing datasets verified that the MSFED feature achieved the highest diagnostic
accuracy among commonly used initial features, in typical fault diagnosis scenarios except for the
variable-load scenario. Furthermore, the separability and transferability of the MSFED feature were
evaluated by distance-based metrics, and the results were in agreement with the features” diagnostic
performance. This work provides an important reference for the IFD of rotating machines, not only
proposing a novel MSFED feature but also opening a new avenue for model-independent methods of
the initial quality evaluation.

Keywords: intelligent fault diagnosis; rotating machines; multi-scale frequency energy distribution
feature; separability; transferability

1. Introduction

Rotating machines are widely used in industrial fields, such as aerospace, transporta-
tion, and manufacturing. The safety, reliability, and efficiency of rotating machines are of
major concern in those industrial fields [1]. Condition monitoring and fault diagnosis are
critical for avoiding equipment breakdown and human casualties. In the past decade, intel-
ligent fault diagnosis (IFD) has attracted extensive attention owing to its high diagnostic
accuracy and efficiency, and release of human labor. Numerous IFD methods [2-5] based
on machine learning and deep learning have been proposed. Except for a few IFD methods
that directly learn from raw vibration signals, most IFD methods utilize preliminary signal
analysis to relieve the learning stress and promote final diagnostic accuracy. The diagnostic
performance of those methods dramatically depends on the quality of the initial features [6].

The occurrence of failures in rotating machines will typically lead to characteristics
changes in the vibration signals, such as the energy level [7], nonlinearity [8], periodicity [9],
impulsiveness [10], cyclo-stationarity [11], and so on. Most initial features characterize
certain characteristics of vibration signals and therefore can be used to indicate the machines’
health conditions. The statistical features, such as the root mean square (RMS), kurtosis, and
entropy, are the basic features used in IFD of the rotating machine, and their effectiveness
has been widely verified. The RMS is an indication of the average energy level of vibration
signals [12], and the kurtosis is an indication of the impulsiveness of vibration signals.
Entropy and its variants (SampEn, fuzzy entropy, permutation entropy, etc.) can quantify
the complexity and detect the dynamic change by taking into account the non-linear
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behavior of vibration signals [13]. The statistical features calculated on the raw vibration
signal are often recognized as not sensitive enough to the early fault [14]. Recently, the
statistical features extend to the intrinsic mode functions obtained by the adaptive signal
decomposition methods, such as empirical mode decomposition [15] and variational mode
decomposition [16]. The frequency spectrum feature and the order spectrum feature
for time-varying speed conditions are incredibly useful for the IFD of rotating machines
since these features can reveal the periodic behavior hidden in vibration signals. The
presence or absence at specific frequencies and the amplitudes at various component
frequencies can reflect machines” health states [17,18]. The frequency spectrum feature
is prevalent in the IFD of rotating machines to realize an end-to-end application since
few parameters need to be adjusted manually in the data preprocessing. Time-frequency
features, including information regarding both time and frequency characteristics and
can reveal the failure-caused impulsive component in the vibration signal, are frequently
used in the IFD of rotating machines. Some representative time-frequency transforms,
including the short-time Fourier transform (STFT) [19], the Stockwell transform [20], and
the wavelet transform [21,22], are used as the preprocessing techniques to generate the
two-dimensional feature maps for Convolution Neural Networks-based IFD models. Due
to the rotary working mechanism of rotating machines, the collected vibration signals are
inherently cyclo-stationary. The cyclo-stationary analysis techniques are well-suited for
analyzing the vibration signals of rotating machines. Cyclo-stationary features, such as the
cyclic spectral coherence feature [23] and the order-frequency spectral coherence (OFSCoh)
feature [24] have recently been used in the IFD for rotating machines and have shown
promising aspects in IFD under noisy environments [25].

Although the different initial features have had success in the IFD of rotating machines
in various datasets and tasks, there are still some open questions that should be addressed.

Firstly, the existing initial features are less effective in revealing vibration energy distri-
bution patterns. Changes in machines” health states typically not only result in variations
in the vibration energy levels but also the vibration energy distribution patterns [26-29].
The RMS feature can quantify the vibration severity of machines but is deficient to reveal
the vibration energy distribution patterns. The frequency spectrum feature can reveal
the vibration energy distribution to a certain extent; however, it cannot provide rich and
hierarchical descriptions of the vibration energy distribution thanks to the fixed frequency
resolution. Secondly, the results of initial feature quality assessment in existing studies are
susceptible to factors other than the feature. The diagnostic accuracy of initial features on
specific models is typically used to evaluate the quality of initial features. However, the
diagnostic accuracy of specific models on initial features is not purely associated with the
intrinsic characteristic of the feature but also with the algorithms and parameter settings
of models.

To fill these gaps, this paper proposed a multi-scale frequency energy distribution
(MSFED) feature for the IFD of rotating machines. The MSFED feature can characterize the
vibration energy distribution patterns in the frequency domain in a multi-scale manner, and
its one-dimensional vector and two-dimensional map formats make it usable for most IFD
models. The diagnostic performance of the MSFED feature in four typical fault-diagnosis
scenarios, including the diagnosis using limited training data, the diagnosis with class-
imbalanced data, the diagnosis under variable-load or -speed, and the diagnosis with noisy
vibration data, was tested. Furthermore, the separability and transferability of the MSFED
feature were investigated using distance-based metrics.

The main contribution of this paper can be summarized as follows: (1) A new initial
feature, MSFED, has been proposed in this paper to characterize the vibration energy
distribution patterns of vibration signal samples. The MSFED feature can characterize
the vibration energy distribution patterns of vibration signal samples in the frequency
domain in a multi-scale manner, and its one-dimensional feature vector (MSFED-1) and
two-dimensional feature map (MSFED-1) are usable for most IFD models. (2) A distance-
based transferability index (DTI) for initial feature quality assessment is developed. The DTI



Machines 2022, 10, 743

3 0f24

can measure the transferability of the initial feature under variable working conditions in a
model-independent way. (3) The diagnostic performance of the MSFED feature in typical
fault-diagnosis scenarios was evaluated, and the intrinsic characteristic (the separability
and transferability) of the feature were investigated using distance-based indexes.

2. Methodology
2.1. The Proposed MSFED Feature

It is well known that failures in machines typically lead to additional vibration excita-
tions and thereby result in a change in the energy distribution characteristics of vibration
response. For example, the misalignment fault of rotors typically causes misalignment
excitation forces at the coupling location, which raises the vibration energy at the rotor
rotational frequencies, often observed in the low-frequency range. Another example is the
rolling element bearings that the local fault, such as the spalling or cracks on the rolling
races, usually generate impacts when the rolling elements strike a local fault. The impacts
can excite high-frequency resonances of the structure [30], and as a result, the vibration
energy in the high-frequency range will increase. The vibration energy distribution charac-
teristics therefore can be used as the initial features of the IFD of rotating machines. The
frequency spectrum feature can reveal the vibration energy distribution to a certain extent.
However, due to the fixed frequency resolution of the discrete Fourier transform [31], the
frequency spectrum feature can only reveal the vibration energy of a set of frequency bands
with center frequencies at the analytic frequency of the discrete Fourier transform and band-
width equal to the frequency resolution. Therefore, the MSFED feature is proposed to reveal
the vibration energy of frequency bands with a set of center frequencies and bandwidths.

2.1.1. Multi-Scale Frequency Bands Division

For a frequency band, its frequency range [f. — Af/2, fc + Af /2] can be determined
by the center frequency f. and the bandwidth Af. There are infinite sets of center frequency
and the bandwidth in the analytic frequency range 0~ f;. To reduce the amount of computa-
tion, we use the arborescent multi-rate filter-bank structure used in the Fast Kurtogram [32]
to divide the analytic frequency range.

As shown in Step 1 in Figure 1, the analytic frequency range 0~f, is divided into
frequency bands with different center frequencies and bandwidths in a multi-scale manner.
On Scale 1, the analysis frequency range is divided into two frequency bands with equal
bandwidth, B} and B2, whose center frequencies are f,/4 and 3f,/4, respectively. The
value of the vibration energy in B} and B? reflects the energy intensity in the low and high
frequencies of the analytic frequency range. On Scale 2, the analytic frequency range is
further divided into four frequency bands with equal bandwidth of f,/4. Naturally, the
value of the vibration energy in the B} ~ B} can provide more information about the
vibration energy distribution in the analytic frequency range than the B} and B? on the
Scale 1. To obtain more information about the vibration energy distribution in the analytic
frequency range, higher scales, such as Scale 3, 4, 5, and so forth, are desired to be used.

So far, a dyadic grid division method has been adopted for the division of the frequency
analysis range 0~ f;. In this way, each frequency band on Scale # + 1 can only reveal the
energy distribution of the low-frequency and high-frequency ranges of the frequency band
on Scale n, and the frequency band division lacks richness. For example, the frequency
band division of Scale 1 can only reveal the energy distribution of the vibration signal in the
two frequency bands of low frequency and high frequency but cannot reveal the energy of
the middle-frequency region (f;/3~2f,/3) in the vibration signal. Therefore, Scale n + 0.6
is added between the two adjacent Scale n and 7 + 1. On Scale n + 0.6, the whole analytic
frequency range 0~ f; is divided into 3 x 2"~! frequency bands with same bandwidths of
fa/ (3 x 2"~1). The number of frequency bands on each scale of the MSFED feature, and
the bandwidth, the center frequency of each frequency band are as follows:
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Ns = 2" or3 x 21
Afs :fa/Ns (1)
fos =mAfs —Afs/2,m=1,2,...N;

As the scale increases, the number of frequency bands in MSFED increases expo-
nentially. Though the MSFED feature on the high scales can provide a more refined
characterization of the vibration energy distribution, a too-large scale is not recommended.
When the scale is too large, the bandwidth of the frequency bands becomes too small. The
feature value of the MSFED feature is easily affected by the rotating speed variation and
exhibits more considerable distribution divergence. We recommend using a maximum
scale in the range of 5~8.

Input: Frequency spectrum of vibration samples Step 2: Calculating MSFED features
(1) Vibration energy calculation
mafs
herem = 1,2,--, N,
Em — J’ X(f)df W 1y, Ngy
’ (m-1)Af, and Af; = fu /Ns

(2) Vibration encrgy ratio calculation

1 Ng
ar=ERGEY | EM
Ny Lo
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0 1/4fa 172fa 3/4ﬁ1 Ja Step 3: Constructing MSFED Features
Frequency (1) Feature vector (example of maximum scale = 2.6)
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Figure 1. Scheme of the construction of the MSFED feature.

2.1.2. Construction of the MSFED Feature

The vibration energy of each frequency band can be calculated by integrating (or
accumulating) the frequency spectrum, denoted as X( f), within the frequency band (see
Equation (2)). However, we do not recommend directly using the vibration energy values
of frequency bands as MSFED features. The bandwidths vary significantly over different
scales, and consequently, the vibration energy value of different scales has an extensive
numerical range. The extensive numerical range of features makes machine learning prob-
lems hard to handle, as some IFD models such as linear regression and logistic regression
are sensitive to the numerical ranges of features. To eliminate the influence of different
scales on the features, we use the ratio between the vibration energy of the frequency
band and the average vibration energy of all frequency bands on this scale as the MSFED
feature, as depicted in Equation (3). Furthermore, the ratio is dimensionless. As a result, the
MSEFED feature is immune to the energy difference of vibration samples and is insensitive
to variations in the working condition.

E’”—/mAfs X(f)df, m=1,2,--- N @)
s (m—l)Afs 7 — Lr4&s 7 S
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Most current IFD models accept initial features in a one-dimensional feature vector
format or a two-dimensional feature map format. To make the MSFED features usable to
most IFD models, we developed the MSFED-1 feature in one-dimensional feature vectors
format and MSFED-2 in two-dimensional feature maps format. The MSFED-1 feature
vector is constructed by concatenating the feature of each scale end-by-end. As an example,
shown in Step 3 in Figure 1, the scale used in MSFED is 1~2.6, and the lengths of features
of the four scales are 2, 3, 4, and 6. The feature vectors of the four scales are concatenated
end-by-end to form the MSFED-1 feature vector, whose size is 1 x 15. The MSFED-2 feature
vector is constructed by stacking the feature of each scale in the vertical direction. However,
the features of different scales have different sizes and, therefore, must be converted to
the same size before stacking. An easy way is to expand the features of each scale to a
length of the least common multiple of those features. For example, features of size 1 x 2,
1x3,1x4,and1 x 6 onScales 1, 1.6,2, and 2.6 are first converted to size 1 x 12 and then
stacked on the vertical axis to form 4 x 12 size feature maps (see Step 3 in Figure 1).

2.2. The Separability and Transferability Evaluation Metrics

In previous studies, the quality of initial features was often assessed by the diagnosis
performance of specific IFD models. However, it should be noted that even with the same
initial features, the diagnosis performance varies significantly between IFD models with
different algorithms, structures, and parameters. It is common in practical engineering
that the diagnosis performance of an initial feature is better than that of another initial
feature on IFD models with specific algorithms, structures, and parameters, while worse
than that of another initial feature on IFD models with other algorithms, structures, or
parameters. This phenomenon typically confuses the quality assessment of initial features.
Separability is an intrinsic characteristic of a dataset to describe how data points belonging
to different classes mix and can indicate how difficult it is to separate the dataset. Therefore,
we employed a separability evaluation metric in [33] to assess the quality of initial features.
Furthermore, machines in industrial applications often work in variable conditions (load
and rotating speed), and the diagnosing data sometimes have different working conditions
than those of the training data. Based on the separability evaluation metric, we propose a
transferability evaluation metric to evaluate the transferability of initial features between
different working conditions.

2.2.1. Distance-Based Separability Index

Separability can be defined as the similarity of data distributions. It is natural to
understand that the data with the same distribution are hard to separate since it reaches
the maximum entropy within any small regions in the space. An example was illustrated
in Figure 2: the data in Class 1 and Class 2 in Figure 2a have a very similar distribution and
the data points of the two classes are mixed. It is much more challenging to separate the
two classes of data correctly. In contrast, the data in Class 1 and Class 2 in Figure 2d have a
different distribution in the feature space (positions of the data clusters). It is intuitively
much easier to separate the data in Figure 2d than separate the data in Figure 2a.

Guan et al. [33] proposed a distance-based separability index (DSI). It uses the
Kolmogorov-Smirnov (KS) distance of the intra-class distance (ICD) sets and the between-
class distance (BCD) sets to characterize how the two classes of data are mixed. As shown in
Figure 2b,c, the ICD sets and the BCD sets of the low-separable dataset (shown in Figure 2a)
have very similar histograms and empirical cumulative distribution functions. As shown
in Figure 2e,f, the ICD sets and the BCD sets of the high-separable dataset (shown in
Figure 2d) have different histograms and empirical cumulative distribution functions. The
KS distance can measure the similarity of two empirical cumulative distribution functions,
and its mathematic equation is shown below.
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KS(F, F2) = sup|F(x) — F(x)| @)

where the F;(x) and F(x) are two empirical cumulative distribution functions, and the
sup|-| is the supremum operator. The KS distance is equal to the maximal vertical distance
X

(see Figure 2f) between two empirical cumulative distribution functions, and its value
is between 0 and 1. The closer it is to the unity, the more different the two empirical
cumulative distribution functions are.

Data with low separability

Data Plot Histograms of distances © Cumulative distribution function
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Figure 2. The two-class dataset and their ICD and BCD set distribution: (a—c) the data plot, the
histograms of distances and empirical cumulative distribution functions of low separability dataset,
(d—f) the data plot, the histograms of distances and empirical cumulative distribution functions of
high separability dataset.

The DSI is defined as the average of the KS distances between the ICD sets and the
BCD sets for each class of data in a dataset.

DSI(Cy,C) = KS(Ficp,, Ficn,, ) /2 + KS (Ficp, Ficp,, ) /2 5)

where C; and C; are two classes of dataset, the Ficp,, Ficp,, and the Fpc Dy, are the empirical
cumulative distribution functions of the ICD sets of Class 1 and Class 2, and the BCD sets
of Class 1 and Class 2. The Euclidean distance is recommended since the DSI based on
Euclidean distance has the best sensitivity to complexity [33]. The value of the DSI is
between 0 and 1. The larger the DSI, the better the separability of data.

The DSI can be employed to evaluate the separability of initial features. Supposing
the initial feature set contains N-classes, the DSI of the initial feature set can be calculated
by following.

(1) Calculate the N intra-class distance sets for each class: {ICD,}, n =1,2,...,N.

(2) Calculate the N between-class distance sets for each class: {BCD,}, n =1,2,...,N.
For the n-th class, the between-class distance set is the distances between any two
samples in the n-th class and the class other than the n-th class.
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(3) Calculate the DSIs of N classes, and the DSI of the initial feature is the average of the
DSIs of N classes.

2.2.2. Distance-Based Transferability Index

In the IFD under variable working conditions, it is well recognized that the feature
representation distribution shift between the training dataset and the testing dataset usually
leads to a decrease in the diagnosis performance of IFD models. Since the DSI can measure
the separability of two empirical cumulative distribution functions, we proposed a data
transferability index (DTI) to measure the transferability of initial features on working
conditions. The DTI employs the DSI to quantify the separability of initial feature in the
testing dataset to the training dataset. The DTI is defined as follows:

DTI(C!,C%) = DSI(C},C} 1)/ (DSI(C, C}) +¢) (6)
where the C' and C® are the training datasets and testing dataset. The C} and C! , ; are
the Class 1 and the classes other than Class 1 in the testing dataset. The Cj and C;, , ; are
the Class 1 and the classes other than Class 1 in the training dataset. The ¢ is a small non-
negative number (i.e., 107°) to avoid a denominator of zeros. The DSI (Ci, Ci) measure the
separability of same class in the training dataset and the testing dataset. It can be regarded
that the smaller the DSI (C{, Ci), the closer the feature representation distributions of
the same class in the training dataset and the testing dataset are. The DSI(C!,CS , ;)
measure the separability of different classes in the training dataset and the testing dataset.
It can be regarded that the larger the DSI (Ci, Crot 1), the further the feature representation
distributions of different classes in the training dataset and the testing dataset. Therefore,
the larger the DT1 (Ct, CS) , the closer the same classes in the training dataset and the testing
dataset and the further the different classes in the training dataset and the testing dataset.

The DTI of testing dataset and training dataset that have the same N classes can be
calculated by following:

(1) Calculate the N intra-class distance sets for each class in the testing dataset and the
training dataset: {ICD}}, n=1,2,...,N,and {ICD;}, n =1,2,...,N.

(2) Calculate the N between-class distance sets for each class in the testing dataset:
{BCD,}, n = 1,2,...,N, For the n-th class, the between-class distance set is the
distances between any two samples in the n-th class in testing dataset and the class
other than the n-th class in training dataset.

(3) Calculate the DSIs of each class according to Equation (5) and calculate the ratios of
DSIs of each class according to Equation (6). At last, the DTI between the feature set is
the average of the DTIs of N classes.

3. Experimental Verification on Gearbox Dataset
3.1. Gearbox Testing Rig and Data Description

The gearbox testing rig shown in Figure 3 consisted of an AC motor, a testing gearbox,
a torque sensor, a reducer, and a magnetic brake. An accelerometer is mounted near
the bearing house to collect the vibration signals. Five artificial damages (see Figure 3b),
including two gear failures: the tooth root cracks of 2 mm in depth (G2) and 4 mm in depth
(G4), and three bearing failures: the outer-race fault (OF), the inner-race fault (IF), and the
rolling ball fault (BF) were fabricated in the testing gearbox. Together with the Normal
condition (NC), six health conditions are contained in the dataset. Vibration signals were
collected at 800 rpm (i.e. revolutions per minute), 1000 rpm, and 1200 rpm. The duration
of vibration signals for each health condition and speed is 20 s, and the sampling rate is
24,000 Hz.
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Figure 3. Experiment setup: (a) the gearbox testing rig, (b) artificial damages (arrows were used to
point out the position of damages).

Fifty samples were made for each health condition and rotating speed, and therefore,
900 samples in total for six health conditions and three rotating speeds. Each sample has a
time length of 0.4 s, corresponding to 9600 data points. The detailed information on the
gearbox dataset is listed in Table 1.

Table 1. Description of the gearbox dataset.

Rotating Speed (rpm) Fault Types Number of Samples Class Label
800 & 1000 & 1200 NC 50 & 50 & 50 0
800 & 1000 & 1200 G2 50 & 50 & 50 1
800 & 1000 & 1200 G4 50 & 50 & 50 2
800 & 1000 & 1200 OF 50 & 50 & 50 3
800 & 1000 & 1200 IF 50 & 50 & 50 4
800 & 1000 & 1200 BF 50 & 50 & 50 5

3.2. MSFED Feature Analysis

An analytic frequency range of 0~12,000 Hz and an analytic scale of 1~6 were used to
construct the MSFED-1 feature vector and the MSFED-2 feature map for vibration samples.
Besides, four commonly used features, including the Statistical feature, the FFT spectrum
feature, the STFT feature, and the OFSCoh feature, were also constructed for the comparison
study. The parameter value used in feature construction is presented in Table 2.

Table 2. The parameter value used in features construction.

Features Parameters Size
Max, Min, Mean, Peak to peak, ARV, Var, Std, Kurtosis,
Statistical Skewness, rms, Form factor, Crest factor, Impulse 1x14
factor, Clearance factor
FFT spectrum none 1 x 4800
Analytic frequency range: 0~12,000 Hz, window
STFT length: 0.002 s, Overlap rate: 0.5 64 x 64
OFSCoh Analytic frequency range: 0~12,000 Hz, analytic cyclic 64 % 64
order: 0~10
MSFED-1 Analytic frequency range: 0~12,000 Hz, scales: 1~6 1 x 219
MSFED-2 Analytic frequency range: 0~12,000 Hz, scales: 1~6 64 x 64

Figure 4 presents the MSFED-1 and MSFED-2 features of samples of six health con-
ditions at the rotating speed of 1000 rpm. As shown in Figure 4a—f, the features on large
scales (Scale 5 and 6) provided a more fine-grained characterization of the vibration energy
distribution than those on the small scales (Scale 1 and 2). The G2, OF, and IF samples
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can be intuitively distinguished from the samples of the other three health conditions by
observation, as the amplitude of the MSFED-1 feature vectors of the G2, OF, and IF samples
are much smaller than the MSFED-1 feature vectors of samples of the other three health
conditions. The MSFED-2 feature maps shown in Figure 4g-1 appear more distinguishable.
As can be observed, the energy density of OF samples is significant in the frequency range
of 6000~12,000 Hz, while the energy density of samples in the other five health conditions is
significant in the frequency range of 0~6000 Hz. The G2 sample is distinguished from NC,
G4, IF, and BF samples, as the energy density of G2 samples is much greater than those of
other samples in the frequency range of 9000~12,000 Hz. Even though the MSFED-2 feature
maps of NC, G4, and BF samples look similar and are hard to distinguish by observation,
they should be separable using some IFD models since these models usually have powerful
feature-learning and pattern-recognition capabilities. The feature vectors and maps of the
other four preprocessing methods are provided in Appendix A.

MSFED-1 feature vectors

NC G2 G4
@?* (ON (6} ©
4 4 4
o3 a3 o3
E E £
<2 <2 <2
1 1 1
0 0 0
50 100 150 200 50 100 150 200 50 100 150 200
Feature index Feature index Feature index
5 OF g IF g BF
(d) ©) 4y
4 4 4
a3 a3 o3
E = E
<2 <2 <2
1 1 1
¢} 0 Q
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MSFED-2 feature maps
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5
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S
(n 3
2
1
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5 5
34 34
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0 6 12 0 6 12 0 6 12
Center freq. (Hz) x103 Center freq. (Hz) x10% Center freq. (Hz) x103

Figure 4. The MSFED-1 feature vectors and MSFED-2 feature maps of vibration samples at 1000 rpm:
(a—f), The MSFED-1 features of NC, G2, G4, OF, IF, and BF samples, (g-1), The MSFED-2 features of
NC, G2, G4, OF, IF and BF samples.
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3.3. Fault Diagnosis Results Analysis

The superior performance of IFD models depends on a large amount of training data.
However, it is often hard to collect a sufficient amount of fault data in practice, particularly
for expensive critical machines. Therefore, fault diagnosis using limited training data is
prevalent in real industrial applications. Moreover, fault data collected from machines
in real industrial environments are often class-imbalanced due to the random occurrence
of different faults. This fact appears as a class-imbalanced data problem [34], where
the correct diagnosis is much more difficult due to the uneven data distribution of each
health condition. Furthermore, machines in industrial applications often work in variable
conditions (load and rotating speed), and the diagnosing data sometimes have different
working conditions than those of the training data. The diagnosis in variable working
conditions is much more complicated than the constant working conditions due to the
training and testing data’s distribution divergence caused by the working condition shift.
In addition, fault diagnosis in noisy environments has also caught much attention.

Four fault diagnosis tasks were designed using the gearbox dataset, as listed in Table 3.
Task T1 is fault diagnosis using limited training samples, in which the training and testing
data consist of the first five samples and the last 45 samples of the six health conditions
and three rotating speeds. The ratio of training and testing data quantities is 10%, in line
with the small sample size scenario. Task T2 is fault diagnosis using class-imbalanced
data. The first 25 NC samples, the first 15 G2 and G4 samples, and the first 5 OF, IF, and
BF samples are used in the training data. The testing data used the last 25 samples of six
health conditions and three rotating speed conditions. Task T3 is fault diagnosis under
variable working conditions. The training data consisted of samples in six health conditions
at the rotating speed of 1000 rpm, and the testing data consisted of samples in six health
conditions at rotating speeds of 800 rpm and 1200 rpm. Task T4 is fault diagnosis under
low signal-to-noise ratio conditions. In this task, the white Gaussian noise with an SNR
of 0 dB is added to the raw vibration signal to simulate the noisy signal in an industrial
environment. The training and testing data consist of the first 25 samples and the last
25 samples of six health conditions and three rotating speed conditions, respectively.

Table 3. Dataset information of four fault diagnosis tasks.

Training Data Testing Data
Tasks SNR
Rotating Speed (rpm) Number of Samples Rotating Speed (rpm)  Number of Samples
T1 No noise 800 & 1000 & 1200 5x6x3 800 & 1000 & 1200 45 x6x3
T2 No noise 800 & 1000 & 1200 (25&15&15&5&5&5) x 3 800 & 1000 & 1200 25x6x3
T3 No noise 1000 50 x 6 x 1 800 & 1200 50 x 6 x 2
T4 0dB 800 & 1000 & 1200 25 x 6 x3 800 & 1000 & 1200 25x6x3

Different IFD models perform differently on datasets and tasks. It is possible for an
IFD model to perform well on one dataset or task but sub-optimally on another dataset or
task. To thoroughly investigate the performance of the initial features, we test and evaluate
the feature on a board set of IFD models. In this paper, seven machine learning algorithms,
including the Softmax classifier (Softmax), the K-Nearest Neighbors (KNN), the Support
Vector Machine (SVM), the Linear Discriminant Analysis (LDA), the Naive Bayes (NB), the
Random Forest (RF), and the Artificial Neural Network (ANN), were used to learn and
classify the six initial features. The Principal Component Analysis is used before machine
learning algorithms to extract the critical features and reduce the dimensionality of the
initial features (except the Statistical feature). The reduction dimensionality of Principal
Component Analysis was set to 50 for all initial features, in which the contribution rates
were larger than 85%. Moreover, three Convolutional Neural Networks in published papers,
including the Yang CNN [35], Chen CNN [25], and Islam CNN [36], are employed to learn
and classify the OFSCoh, STFT, and MSFED-2 features. The training and testing processes
are repeated five times to reduce the influence of the randomness introduced by the IFD
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model’s initialization. The hyperparameter setting of IFD models has a significant influence
on their diagnosis accuracy. To avoid the randomness caused by the hyperparameter setting
of models in the initial feature diagnostic performance comparison, we set a board set of
hyperparameter settings for each IFD model and chose the highest diagnostic accuracy to
represent the diagnosis performance of the IFD model. Taking the KNN model in Table 4
as an example, the parameters “Nearest neighbor search method”, the “Standardize the
features”, the “number of neighbors”, and the “distance metrics” usually have a significant
influence on the KNN model’s diagnosis accuracy. We fixed the parameter “Nearest
neighbor search method” to “exhaustive search algorithm” and the parameter “Standardize
the features” to “True” and tuned the parameter “number of neighbors” in four settings (1,
5,10, and 15) and tuned the parameter “distance metrics” in three settings (the “Cosine”,
the “Euclidean”, and the “Mahalanobis”). There are twelve hyperparameter settings in
total, and the highest diagnostic accuracy of the KNN model with these hyperparameter
settings was chosen to represent the diagnosis performance of the KNN models. The
hyperparameter settings of the ten IFD models are listed in Table 4.

Table 4. Hyperparameter settings of the ten models.

Models Fixed Parameters Tunable Parameters Number of HSs
Softmax / / 1
> Nearest' neighbor sealjch method: the »  The number of neighbors: 1, 5, 10, 15
KNN exhaustive search algorithm . S ) ) .9 12
> Standardize the features: True > The distance metrics *: Cosine, Euclidean, Mahalanobis
> Coding desien: one-vs-one > The box constraint: 0.01, 0.1, 1.0, 10, 100
g cesign: ore N »  The kernel function: gaussian, linear, polynomial3
SVM > Optimization routine: the Iterative Single > The k 1 scale: 0.01.1.0 1 90
Data Algorithm e kernel scale: 0.01, 1.0, 100
> Standardize the features: True, False
»  The discriminant type: Li
LDA > Thg L;ii:gflclgsfrflicizgte thlfgsef\:)l 40 > The Amount of regularization: 0, 0.2, 0.5, and 1.0 4
> The data distributions: Kernel density estimation, the
NB / Multinomial distribution, the Multivariate multinomial 16
distribution, and the normal distribution
»  Kernel type: box, epanechnikov, normal, triangle
> The maximal number of decision splits: 5, 10, 40
> The minimum number of leaf node observations: 5, 10, 40
RE > Tree: the standard CART > The number of features to select at random for each split: 54
> Number of trees: 100 5,10, 40
»  The split criterion: the Gini’s diversity index, the maximum
deviance reduction
»  Sizes of the fully connected layers: 50-10, and 50-25
ANN »  Structure: FCx 2-Softmax »  The activation functions: ReLu, Sigmoid 0
> Training Solver: the LBFGS > The L2 regularization term strength: 0.001, 0.01, 0.1, 1.0
> Standardize the features: True, False
Ch »  Structure: (Conv-GN-Pooling-ReLu) x 2- »  Size of the FC layers: 120-84, and 60-42
CNEQ (FC-GN-Dropout) x 2-Softmax > Sizeof GN:4,8,16 12
»  Convolution kernel size: 3 x 3 »  Dropout rate: 0.2, 0.5
»  Structure: (Conv -Pooling-BN-ReLu- »  The number of kernels in convolutional blocks: 4-8-16,
Yang Dropout) x 3-FC-Softmax and 8-16-32 8
CNN > Convolution kernel size: 3 x 3 > Size of the FC layer: 100, 200
> Pooling kernel size: 2 x 2 > Dropout rate: 0.2, 0.5
> Structure: . .
Islam (Coro-Pooling-ReLu) x 3-FC-Softmax > The number of kernels in convolutional blocks: 64-64-64,
CNN »  Convolution kernel size: 3 x 3 32-32-32 6
> Pooling kernel size: 2 x : 5 > Size of the FC layer: 1024, 512, 256

! The text in regular style is the parameter names, and the text in italic style is the parameter settings. 2 Number
of HSs = Number of hyperparameters settings.

Figure 5 shows the diagnostic accuracies of six features on four diagnosis tasks (see
Appendix A for the details of the average and the standard deviation of the diagnostic
accuracies of ten IFD models and six features). Each one-dimensional initial feature (i.e.,
the statistical feature, the FFT spectrum feature, and the MSFED-1 features) has seven
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Accuracy(%)

diagnostic accuracies. Each two-dimensional initial feature (i.e., the OFSCoh feature, the
STFT feature, and the MSFED-2 feature) has ten diagnostic accuracies. These seven (for
one-dimensional initial feature) or ten (for two-dimensional initial feature) diagnostic
accuracies of each initial feature are arranged in descending order in Figure 5. The abscissa
of Figure 5 is the ranking of diagnostic accuracy from the highest (First) to lowest (Seventh
or Tenth). Note that the ordinates of the charts were designed to be non-uniform to make
all diagnostic accuracy visible and distinguishable. More specifically, the whole range of
the ordinate 10.00~100.00 is divided into three intervals: the Interval 10~90, the Interval
90~98, and the Interval 98~100. The Interval 98~100 has a finer resolution than the other
two intervals.
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Figure 5. Diagnostic accuracy of different features and models on four tasks: (a) T1, (b) T2, (c) T3,
and (d) T4.

As shown in Figure 5a, the FFT spectrum, MSFED-1, and MSFED-2 features achieved
the highest diagnostic accuracy on Task T1. The highest diagnostic accuracies of these
three features are 100%. In contrast, the STFT and OFSCoh features achieved a moderate
diagnostic accuracy, with the highest diagnostic accuracy of 99.11% and 97.78%, respectively.
The diagnostic accuracies of the Statistical feature were the lowest among the six features,
and its highest diagnostic accuracy is only 70.37%. Similar results can be observed from
Figure 5b,d: that the FFT spectrum, MSFED-1, and MSFED-2 features achieved higher
diagnostic accuracy than the STFT feature, the OFSCoh feature, much higher than the
Statistical feature. In Figure 5c, the MSFED-1 and MSFED-2 features achieved the best
diagnostic accuracy among the six initial features. The highest diagnostic accuracies
of the MSFED-1 and MSFED-2 features are 100%. In contrast, the FFT spectrum, which
achieved high diagnostic accuracy on Tasks T1, T2, and T4, suffered significant performance
degradation on Task T3.

The average value of the top-three accuracies of the six initial features is listed in
Table 5. We used the average value of the top-three accuracies because we assume users
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have some expertise in the fault diagnosis and can choose the optimal or suboptimal models
for the task at hand. As shown in Table 5, the MSFED-1 and MSFED-2 features achieved
100% diagnostic accuracy on four tasks, far better than the other four features. The FFT
spectrum feature achieved 100% diagnostic accuracies on Tasks T1, T2, and T4, while
achieving an 86.89% diagnostic accuracy on Task T3. The OFSCoh feature and the STFT
feature achieved moderate diagnostic accuracies on those four tasks among the six features.
The Statistical features achieved the last diagnostic accuracy among the six features. It
can be summarized as follows: (1) The MSFED-1, MSFED-2, and FFT spectrum features
performed better than the OFSCoh, STFT features and better than the Statistical features
on Tasks T1, T2, and T3. (2) The MSFED-1 and MSFED-2 features performed better than
the OFSCoh, STFT, and FFT spectrum features and better than the Statistical feature on
Task T3.

Table 5. The average accuracy of the top-three accuracies.

Average Accuracy of Top 3 (%)

Features
T1 T2 T3 T4

Statistical 67.00 74.90 41.10 74.33
FFT spectrum 100.00 100.00 86.89 100.00
MSFED-1 100.00 100.00 100.00 100.00

OFSCoh 97.40 95.42 97.72 95.78

STFT 98.84 99.51 89.83 98.62
MSFED-2 100.00 100.00 100.00 100.00

3.4. Separability and Transferability Evaluation

The DSIs and DTIs of the six initial features of the gearbox dataset were calculated and
listed in Table 6. As shown in Table 6, the DSIs of the MSFED-1, FFT spectrum, and MSFED-
2 features are higher than the OFSCoh, STFT, and Statistical features, demonstrating that the
MSFED-1, FFT spectrum, and MSFED-2 features have better separability than the OFSCoh,
STFT, and Statistical feature. This result is consistent with the diagnostic performance of
the six features in Section 3.4 in Tasks T1, T2, and T4. The better the separability of features
is, the higher the diagnostic accuracy of features. The average of the DTIs of the OFSCoh is
the highest among the six features, indicating that the feature representation distributions
of the OFSCoh feature at different speeds have a good similarity. It can be observed from
Table 5 that the OFSCoh feature achieved a diagnostic accuracy of 97.72% on Task T3.
Although the diagnosis accuracy of the OFSCoh feature is lower than the MSFED-1 and
MSFED-2 feature on Task T3, the OFSCoh feature is the only one whose diagnosis accuracy
on Task T3 is higher than that on Tasks T1, T2, and T3. The DTIs of the STFT feature
and the Statistical features are higher than that of the MSFED-1, and MSFED-2 features.
However, due to the low separability of the STFT feature and the Statistical features, the
diagnosis accuracies of the STFT feature and the Statistical features are lower than that of
the MSFED-1 and MSFED-2 features.

Table 6. The DSIs of six initial features on the gearbox dataset and the bearing dataset.

DSIs DTIs
Features
800 rpm 1000 rpm 1200 rpm Average 1000—800 rpm 1000—1200 rpm Average

SI 0.45 0.43 0.44 0.440 1.37 0.92 1.145
FFT spectrum 0.70 0.69 0.71 0.700 0.89 0.96 0.925
MSFED-1 0.68 0.70 0.71 0.697 1.12 0.87 0.995
OFSCoh 0.49 0.44 0.45 0.460 2.57 1.77 2.170
STFT 0.42 0.47 0.44 0.443 1.70 2.10 1.900
MSFED-2 0.66 0.69 0.72 0.690 1.12 0.90 1.010
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4. Experimental Verification on Bearing Dataset
4.1. Bearing Testing Rig and Data Description

The bearing dataset provided by the Case Western Reserve University (CWRU) [37]
was used to verify the effectiveness of the proposed MSFED features. The bearing testing
rig in Figure 6 consists of a motor, a torque sensor/encoder, and a dynamometer. The
testing bearings are installed at the motor’s driving and fan end. The vibration signal was
collected at a sampling rate of 12,000 Hz. In addition to the Normal condition (NC), three
failures, including the Outer-race fault (OF), the Inner-race fault (IF), and the Ball fault (BF),
had been fabricated on the testing bearing. Each failure contains three severities with failure
diameters of 7 mils, 14 mils, and 21 mils (1 mil = 0.001 inch). For each health condition,
the vibration signals were collected under four working conditions with load and speed of
0hp/1797 rpm, 1 hp /1772 rpm, 2 hp /1750 rpm, 3 hp /1730 rpm. Therefore, there are, in
total, ten health conditions and four operating conditions in the bearing dataset.

Figure 6. The CWRU bearing testing rig: the motor (left), the torque sensor/encoder (middle) and
the dynamometer (right).

The vibration signals collected at the driving end of the motor are used to make
datasets. Fifty samples were made for each health condition with each load condition.
As a result, 2000 samples were made for ten health conditions and four load conditions.
The samples have a time length of 0.2 s, corresponding to 2400 data points. The details of
bearing datasets are shown in Table 7.

Table 7. Description of the CWRU bearing dataset.

Load (hp) Fault Types Severity (mils) Number of Samples Label
0&1&2&3 NC / 50 & 50 & 50 & 50 0
0&1&2&3 OF 7 50 & 50 & 50 & 50 1
0&1&2&3 OF 14 50 & 50 & 50 & 50 2
0&1&2&3 OF 21 50 & 50 & 50 & 50 3
0&1&2&3 IF 7 50 & 50 & 50 & 50 4
0&1&2&3 IF 14 50 & 50 & 50 & 50 5
0&1&2&3 IF 21 50 & 50 & 50 & 50 6
0&1&2&3 BF 7 50 & 50 & 50 & 50 7
0&1&2&3 BF 14 50 & 50 & 50 & 50 8
0&1&2&3 BF 21 50 & 50 & 50 & 50 9

4.2. MSFED Feature Analysis

The MSFED-1 feature vectors and the MSFED-2 feature maps of the NC, OF7, IF7,
and BF7 samples at 1 hp load are presented in Figure 7. The analytic frequency range is
0~6000 Hz, and the analytic scale is 1~6. As shown in Figure 7, the IF7 samples are easily
distinguished from samples of the other three health conditions, as the amplitude of the
MSFED-1 feature vector of the IF7 samples is much smaller than those of the other three
health conditions. It is also observed from the MSFED feature maps in Figure 7g that the
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vibration energy of IF7 samples dispersed in a wider frequency range compared to that of
samples of the other three health conditions. The NC sample distinguishes from the OF 7
and BF7 samples as its energy density in 0~3000 Hz is much greater. The feature vectors
and maps of the other four preprocessing methods are provided in Appendix A.

MSFED-1 feature vectors

NC OF7 IF7 BF7
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Figure 7. The MSFED-1 and MSFED-2 features of vibration samples at 1 hp: (a—d) MSFED-1 features
of NC, OF7, IF7, and BF7 samples, (e-h) MSFED-2 features of NC, OF7, IF7, and BF7 samples.

4.3. Fault Diagnosis Results Analysis

The fault diagnosis scenarios in Section 3.3 are used again in the bearing fault diagnosis.
Four tasks were designed using the CWRU bearing dataset. As shown in Table 8, the
training and testing data of Task T1 consist of the first five and the last 45 samples of ten
health conditions and four load conditions. In Task T2, the training data consist of the first
25 NC samples, the first 15 OF7, OF14, and OF21 samples, the first 10 IF7, IF14, and IF21
samples, and the first 5 BF7 and BF14 and BF21 samples. The testing data consist of the last
25 samples of all health conditions. Task T3 is used to simulate a diagnosis in variable load
conditions. The training data use all samples in the 0 hp load, and the testing data use all
samples in the 1 hp, 2 hp, and 3 hp loads. Task T4 is used to simulate the diagnosis under
low SNR conditions. The white Gaussian noise with 0 dB is added to the raw vibration
samples, and the training data and testing data consist of the first 25 and the last 25 samples
of all health conditions and load conditions. The IFD models and hyperparameter settings
used in the gearbox case study in Section 3.3 are used for the bearing fault diagnosis.

Table 8. Dataset information of four fault diagnosis tasks.

Training Data Testing Data
Tasks SNR
Load (hp) Number of Samples Load (hp) Number of Samples
T1 No noise 0&1&2&3 5x10 x 4 0&1&2&3 45 x 10 x 4
. (25&15&15& 15& 10 & 10 & 10
T2 No noise 0&1&2&3 &5 & 5 & 5) x 4 0&1&2&3 25 x 10 x 4
T3 No noise 0 50 x 10 x 1 1&2&3 50 x 10 x 3
T4 0dB 0&1&2&3 25 x 10 x 4 0&1&2&3 25 x 10 x 4
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Figure 8 shows the diagnostic accuracies of six features on four diagnosis tasks (see
Appendix A for the details of the average and the standard deviation of the diagnostic
accuracies of ten IFD models and six features). As can be observed from Figure 8a,b,d, the
MSFED-1, MSFED-2, and the FFT spectrum features achieved higher diagnostic accuracies
than the OFSCoh, STFT, and Statistical features on tasks T1, T2, and T3. It is inferred that
the MSFED-1, MSFED-2, and FFT spectrum features are more easily classified by most IFD
models than the OFSCoh, STFT, and Statistical features. In Task T3, the OFSCoh feature
achieved the highest diagnostic accuracy among the six features, as depicted in Figure 8c. It
can also be observed that the MSFED-1 and MSFED-2 features achieved the second-highest
and the third-highest diagnostic accuracy on Task T3. In contrast, the FFT spectrum feature
achieved the lowest diagnostic accuracy on Task T3.
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Figure 8. Diagnostic accuracy of different features and models on four tasks: (a) T1, (b) T2, (c) T3,
and (d) T4.

The average value of the top-three accuracies of the six initial features is listed in
Table 9. As shown in Table 9, the diagnostic accuracies of MSFED-1, MSFED-2, and FFT
spectral features on tasks T1, T2, and T4 are all higher than 99.30%, which is superior to
the other three features. In contrast, the OFSCoh achieved the highest diagnostic accuracy
of 97.87% on Task 3, higher than the 94.24% and 94.14% diagnostic accuracies of the
MSFED-2 and MSFED-1 features. The results can be summarized as follows: (1) The FFT
spectrum, MSFED-1, and MSFED-2, and features performed better than the OFSCoh, STFT
features, and better than the Statistical features on Tasks T1, T2, and T4. (2) The OFSCoh
feature performed better than the MSFED-1 and MSFED-2 features, the STFT, FFT spectrum
features, and the Statistical feature on Task T3.
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Table 9. The average accuracy of the top-three models.
Average Accuracy of Top 3 (%)
Features
T1 T2 T3 T4

Statistical 94.72 94.73 85.83 93.16
FFT Spectrum 99.83 99.50 60.58 99.60
MSFED-1 99.99 99.91 94.14 99.41
OFSCoh 99.14 99.10 97.87 96.16
STFT 97.35 97.33 92.17 94.31
MSFED-2 99.91 99.95 94.24 99.36

4.4. Separability and Transferability Evaluation

The DSIs and DTIs of the six initial features of the bearing dataset were calculated
and listed in Table 10. As shown in Table 6, the DSIs of the MSFED-1, FFT spectrum,
and MSFED-2 features are higher than the OFSCoh feature and much higher than STFT
and Statistical features, demonstrating that the separability of MSFED-1, FFT spectrum,
and MSFED-2 features are better than that of the OFSCoh and far better than that of the
STFT, and Statistical feature. The separability evaluation result is consistent with the
diagnostic performance of the six features in Section 4.4 in Tasks T1, T2, and T4, and as can
be seen from Table 9, the diagnosis accuracy of the MSFED-1, FFT spectrum, and MSFED-2
features are higher than that of the STFT feature, and higher than that of the STFT and
Statistical features.

Table 10. The DTIs of six features on the gearbox dataset and the bearing dataset.

DSIs DTIs
Features
0hp 1hp 2hp 3hp Average 0—1hp 0—2hp 0—3 hp Average

SI 0.49 0.49 0.51 0.47 0.490 6.67 4.77 3.21 4.883
FFT spectrum 0.67 0.67 0.68 0.69 0.678 0.83 0.86 0.80 0.830
MSFED-1 0.62 0.64 0.65 0.65 0.640 1.03 0.93 0.79 0.917
OFSCoh 0.51 0.53 0.54 0.55 0.533 1.46 1.34 1.17 1.323
STFT 0.44 0.44 0.46 0.45 0.448 3.78 3.33 2.43 3.180
MSFED-2 0.62 0.63 0.65 0.65 0.638 1.21 0.99 0.87 1.023

The DTIs of six features on 0—1 hp are higher than 0—2 hp and higher than 0—3 hp
(except for the DTIs of the FFT spectrum feature), which indicates that the transferability
of features on 0—1 hp is better than 0—2 hp and better than 0—3 hp. The results were in
agreement with the intuitive understanding that the greater the variation between working
conditions, the lower the data distribution similarity, as well as the data’s transferability.
Meanwhile, the diagnostic accuracy results in the variable load conditions in papers [38—40]
are consistent with the trend of DTIs evaluation results. In those papers, the diagnostic
accuracy of 0—1 hp is higher than that of 0—2 hp and 0—3 hp, proving the effectiveness
of the developed data transferability metric. It can also be observed that the MSFED-1 and
MSEFED-2 features have higher DTIs than the FFT spectrum feature on the bearing dataset. It
is in agreement with the diagnosis result that the MSFED-1 and MSFED-2 features achieved
much higher diagnostic accuracy than the FFT spectrum feature on Task T3. In addition, the
DTIs of Statistical features, the OFSCoh feature, and the STFT features are higher than those
of the other three features. However, the DTIs of features should not be wholly equated
with their diagnostic performance on Task T3. It is because the diagnostic ability of features
on the variable working condition scenarios not only relates to the transferability of the
features on working conditions but also depends on the separability of features themselves.

5. Conclusions

This paper proposed a MSFED feature for vibration-based intelligent fault diagnosis of
rotating machines. The MSFED feature revealed the vibration energy distribution pattern
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of rotating machines, and its one-dimensional format (MSFED-1) and two-dimensional
format (MSFED-2) make it usable for most intelligent fault-diagnosis models. Experimental
validation on the gearbox and bearing datasets verified the effectiveness of the MSFED
feature. Furthermore, the separability and the transferability of the MSFED features were
studied using a model-independent method for the first time. The key findings of this
paper are listed as follows.

(1) The MSFED feature revealed the vibration energy distribution pattern and generated
discriminative feature vectors and maps for different fault types. In gearbox fault
diagnosis, the MSFED features achieved accuracy (average accuracy of top three) of
100% in all four tasks, higher than the Statistics feature, FFT spectrum feature, STFT
feature, and OFSCoh feature. In bearing fault diagnosis, the MSFED features achieved
accuracies of 99.99% (MSFED-1) on the limited training data fault-diagnosis task,
99.95% (MSFED-2) on the class-imbalanced data fault-diagnosis task, 94.24% (MSFED-
2) on the variable-load data fault-diagnosis task, and 99.41% (MSFED-1) on the low
signal-to-noise ratio data fault-diagnosis task. The accuracy of the MSFED feature is
higher than the other four features on the limited training data fault-diagnosis task
and the class-imbalanced data fault-diagnosis task, while lower than the OFSCoh
feature on the variable-load data fault-diagnosis task (97.87%), and a little lower
than the FFT Spectrum feature on the low signal-to-noise ratio data fault-diagnosis
task (99.60%).

(2) The separability and transferability evaluation results of the initial features are in good
agreement with the diagnostic performance of initial features. The data separability
index s of the MSFED features are a little lower than that of the FFT spectrum feature,
but higher than that of the Statistics feature, the OFSCoh feature, and the STFT feature,
on the gearbox dataset and bearing dataset. The data transferability index s of the
MSEFED features is lower than the Statistics feature, the OFSCoh feature, and the STFT
feature, but higher than the FFT spectrum feature.

The MSFED feature proposed in this paper provided a promising initial feature for
intelligent fault diagnosis of rotating machines. In addition, the model-independent ini-
tial feature quality evaluation method offers a new means of quality evaluation in fea-
ture development without complex diagnosis-model construction and time-consuming
model training.
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Appendix A. Features of the Gearbox Dataset and Bearing Dataset
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Figure A1. The Statistical, FFT spectrum, OFSCoh, and the STFT features of gearbox dataset at
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Figure A2. The Statistical, FFT spectrum, OFSCoh, and the STFT features of bearing dataset at 1 hp.

Appendix B. Diagnostic Accuracies of the Six Features and the Ten IFD Models

Table Al. The diagnostic accuracies on gearbox dataset.

Feat IFD Accuracy (%)
carures Models T1 T2 T3 T4
Statistical Softmax 54.57 £ 0.00 60.00 £+ 0.00 36.50 £+ 0.00 54.22 + 0.00
KNN 61.36 + 0.00 70.00 +0.00  44.33 +0.00 55.78 + 0.00
SVM 32.47 £0.00 39.11 £ 0.00 16.67 £ 0.00 18.67 £ 0.00
LDA 62.10 4+ 0.00 67.11 + 0.00 38.00 + 0.00 54.67 + 0.00
NB 63.83 + 0.00 67.78+£0.00  38.00 + 0.00 54.44 + 0.00
RF 70.37 = 1.40 79.11 + 0.42 39.87 £0.34 84.67 + 0.37
ANN 66.79 £ 3.01 75.60 +1.77 39.10 £ 11.22  82.53 + 1.84
FFT spectrum Softmax 100.00 + 0.00  100.00 +0.00  85.50 &+ 0.00  100.00 + 0.00
KNN 98.40 £ 0.00 98.22 £+ 0.00 88.00 £ 0.00 99.78 + 0.00
SVM 94.44 + 0.00 100.00 + 0.00 79.83 + 0.00 92.22 + 0.00
LDA 100.00 + 0.00  100.00 +0.00  83.33 +0.00  100.00 + 0.00
NB 91.36 £ 0.00 98.67 £ 0.00 67.67 = 0.00 99.11 + 0.00
RF 100.00 +0.00  98.13 £+ 0.39 80.87 + 0.69 100.00 + 0.00
ANN 100.00 + 0.00  100.00 +0.00  87.17 +0.00  100.00 + 0.00
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Table Al. Cont.
Feat IFD Accuracy (%)
carres Models T1 T2 T3 T4
MSFED-1 Softmax 100.00 £ 0.00  100.00 & 0.00  100.00 £ 0.00  100.00 =+ 0.00
KNN 92.59 £0.00  95.56 & 0.00 73.00 £ 0.00  100.00 £ 0.00
SVM 100.00 +0.00  100.00 +0.00  100.00 +0.00  100.00 + 0.00
LDA 100.00 £ 0.00  100.00 & 0.00  100.00 £ 0.00  100.00 £ 0.00
NB 100.00 +0.00 100.00 +0.00  93.17 +£0.00  100.00 =+ 0.00
RF 100.00 £0.00 9898 £0.27  99.77£0.20  100.00 £ 0.00
ANN 100.00 £ 0.00  100.00 & 0.00  100.00 £ 0.00  100.00 £ 0.00
OFSCoh Softmax 9778 £0.00 9578 £0.00  97.83 4 0.00 95.11 £ 0.00
KNN 9296 £0.00  94.224+0.00  93.67 = 0.00 92.67 + 0.00
SVM 96.67 £0.00 9378 +0.00  97.67 = 0.00 95.78 + 0.00
LDA 96.42 £0.00 94.89 £0.00  96.83 & 0.00 95.78 £ 0.00
NB 83.83 £ 0.00 83.56 £0.00  94.50 £ 0.00 70.89 + 0.00
RF 9573 £0.62  93.69 + 0.61 96.60 + 0.31 92.09 + 0.56
ANN 97.75+£0.05 9511 +0.00  97.67 4+ 0.00 95.78 £ 0.00
ChenCNN 9531 4+0.63  9538+126 9543 +£2.13 92.36 + 1.38
YangCNN  91.78 £1.10 9347 £1.65 89.50 +4.47  85.60 £+ 2.06
IslamCNN 9126 +158  94.09 +1.40 89.47 +£226 8227 +2.60
STFT Softmax 96.79 £0.00  98.22 4+ 0.00 87.00 £ 0.00 97.78 £ 0.00
KNN 88.52 + 0.00 86.22 £+ 0.00 79.00 £ 0.00 88.22 +0.00
SVM 94.94 £0.00  98.00 £ 0.00 87.83 £ 0.00 97.11 £ 0.00
LDA 98.52+£0.00  99.56 =0.00  92.00 £ 0.00 97.78 £ 0.00
NB 81.73 £0.00  90.00 £ 0.00 78.83 £+ 0.00 76.00 £ 0.00
RF 96.10 £0.65  95.78 £ 0.63 8247 +6.02  98.13+0.30
ANN 98.89 £0.00  99.56 & 0.00 88.80 £ 0.19 97.16 + 0.09
ChenCNN  99.11+032  99.42 +0.23 88.70 £ 5.41 98.62 £ 0.65
YangCNN  9240+3.20  96.67 £1.36 77.63 £ 6.40 97.24 £ 0.52
IslamCNN  98.44 +0.70  99.24 4+ 0.44 7330 +3.64  99.11 £0.54
MSFED-2 Softmax 100.00 £ 0.00  100.00 £0.00  99.83 +£0.00  100.00 =+ 0.00
KNN 93.33 £0.00  94.89 £+ 0.00 74.17 £ 0.00  100.00 £ 0.00
SVM 83.33 £ 0.00 83.33+£0.00 100.00 +0.00  100.00 % 0.00
LDA 100.00 £ 0.00  100.00 +0.00  100.00 £ 0.00  100.00 =+ 0.00
NB 99.38 £0.00  100.00+0.00 91.33 +£0.00  100.00 £ 0.00
RF 100.00 £0.00  99.38 £+ 0.29 8797 £3.05  100.00 & 0.00
ANN 100.00 £ 0.00  100.00 +0.00  100.00 £ 0.00  100.00 =+ 0.00
ChenCNN 9998 £0.05  9991+0.18  94.03+3.52 100.00 £ 0.00
YangCNN 9953 +0.30  99.56 £0.28 80.33+£516  99.69 £0.23
IslamCNN  99.63 4+ 0.41 99.56 £0.58  76.83+10.13 9991 £+ 0.11
Table A2. The diagnostic accuracies on bearing dataset.
IFD Accuracy (%)
Features
Models T1 T2 T3 T4
Statistical Softmax 90.78 £ 0.00 87.50 & 0.00 76.47 £ 0.00 89.30 £ 0.00
KNN 88.89 + 0.00 88.80 = 0.00 86.33 £ 0.00 84.80 £ 0.00
SVM 9494 +0.00  94.50 £ 0.00 77.67 £ 0.00 86.90 £ 0.00
LDA 9422 +£0.00  94.50 & 0.00 81.27 £+ 0.00 92.00 £ 0.00
NB 92.72£0.00  93.00 £ 0.00 75.93 £ 0.00 93.10 £ 0.00
RF 9499 £0.06 9518 +0.07  87.71 £ 0.69 94.38 + 0.28
ANN 93.96 + 0.49 87.92 +0.52 83.44 +£0.35 91.90 + 0.11
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Table A2. Cont.
Feat IFD Accuracy (%)
carres Models T1 T2 T3 T4

FFT spectrum Softmax 99.83 £ 0.00 99.50 = 0.00 55.53 = 0.00 99.60 4= 0.00

KNN 99.39 £ 0.00 99.40 £ 0.00 57.87 £ 0.00 98.70 £ 0.00

SVM 89.61 £ 0.00 82.30 £ 0.00 52.20 + 0.00 61.90 = 0.00

LDA 99.72 £ 0.00 99.20 £ 0.00 59.07 + 0.00 99.30 &+ 0.00

NB 99.72 £ 0.00 99.50 £ 0.00 29.67 £ 0.00 99.50 £ 0.00

RF 99.36 £ 0.15 97.80 +0.11 63.11 £ 1.12 98.94 + 0.20

ANN 99.94 + 0.00 99.50 +0.47  59.57 +4.68 99.70 + 0.00

MSFED-1 Softmax 99.83 £ 0.00 99.80 £ 0.00 93.40 £ 0.00 98.80 £ 0.00

KNN 99.33 £ 0.00 99.70 £ 0.00 68.00 £ 0.00 97.40 + 0.00

SVM 99.78 £ 0.00 99.70 £ 0.00 93.20 + 0.00 98.90 + 0.00

LDA 100.00 £ 0.00  100.00 +0.00  93.67 £ 0.00 99.30 £ 0.00

NB 100.00 £0.00  99.80 £ 0.00 42.80 + 0.00 99.50 + 0.00

RF 99.83 £ 0.05 99.68 + 0.04 92.68 + 0.80 99.18 + 0.25

ANN 99.96 + 0.04 99.92 +£0.07  95.36 £ 0.73 99.42 +0.10

OFSCoh Softmax 98.89 £ 0.00 98.90 + 0.00 97.07 £ 0.00 95.60 £ 0.00

KNN 96.22 + 0.00 96.70 £ 0.00 92.33 + 0.00 91.10 + 0.00

SVM 98.56 + 0.00 98.50 + 0.00 97.67 + 0.00 96.50 + 0.00

LDA 99.22 + 0.00 98.90 + 0.00 98.33 + 0.00 96.00 £ 0.00

NB 94.89 £ 0.00 96.90 + 0.00 71.93 £+ 0.00 93.20 + 0.00

RF 97.57 £0.23 96.62 + 0.26 96.72 +0.73 95.12 + 0.25

ANN 99.31 £ 0.04 99.50 + 0.00 97.61 + 0.03 95.98 + 0.12

ChenCNN  97.67 +0.34 97.68 £+ 0.38 95.41 + 0.88 95.60 + 0.30

YangCNN  96.28 + 0.53 96.70 + 0.41 85.60 + 1.69 92.96 + 0.59

IslamCNN  96.17 4+ 0.85 96.36 + 0.85 90.37 + 1.69 93.20 +0.74

STFT Softmax 84.00 & 0.00 87.80 & 0.00 86.20 £ 0.00 85.10 + 0.00

KNN 75.56 &+ 0.00 81.50 £ 0.00 73.40 £ 0.00 81.00 & 0.00

SVM 88.17 £+ 0.00 91.00 £ 0.00 84.87 £+ 0.00 84.90 + 0.00

LDA 91.22 £ 0.00 92.60 £ 0.00 92.93 £ 0.00 89.20 £ 0.00

NB 87.94 £+ 0.00 92.60 + 0.00 85.93 + 0.00 87.40 + 0.00

RF 89.31 + 0.64 88.32 +1.22 88.72 + 0.44 85.78 £ 0.72

ANN 92.07 £ 0.04 92.60 £ 0.24 89.35 + 0.92 93.68 £ 0.27

ChenCNN  98.00 +0.73 98.18 + 0.44 91.51 +0.95 94.48 + 0.63

YangCNN  95.99 +0.24 95.58 + 0.65 89.92 +1.27  93.36 £0.51

IslamCNN  98.06 + 0.93 98.24 £ 0.52 92.07 £2.20 94.78 £ 0.64

MSFED-2 Softmax 99.89 £ 0.00 99.90 + 0.00 91.27 +0.00 98.50 &+ 0.00

KNN 99.28 £ 0.00 99.90 + 0.00 69.27 £+ 0.00 97.20 + 0.00

SVM 88.56 + 0.00 99.90 £ 0.00 89.13 £ 0.00 98.60 £ 0.00

LDA 99.94 £0.00 100.00 £0.00  96.67 £ 0.00 99.10 + 0.00

NB 99.83 £ 0.00 99.90 + 0.00 44.93 + 0.00 99.10 + 0.00

RF 99.90 £ 0.04 99.96 £ 0.05 94.79 £ 0.60 99.10 £ 0.11

ANN 100.00 £0.00 100.00 £0.00  95.07 £ 3.19 99.64 + 0.05

ChenCNN  99.78 £+ 0.09 99.88 + 0.04 91.01 +1.33 99.46 + 0.12

YangCNN  99.73 + 0.06 98.84 £ 0.76 89.07 £2.70 98.66 £ 0.32

IslamCNN  99.60 + 0.19 99.82 £0.12 89.19 +2.02 99.24 +0.21
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