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Abstract: Since inline monitoring method has the advantages of no sampling, being real-time, no
human intervention, and low error, this paper innovatively proposes to study the inline monitoring
of wear particles in an oil pipeline, from the perspective of the different motion characteristics of the
particles. In this paper, an inline optical sensor was designed and developed by studying the velocity
characteristics of different particles through theoretical calculations, numerical simulations, and
experimental analysis. First, an equation for particle motion was statistically established, based on
the forces acting on wear particles in an oil-filled vertical tube. Then a finite element model of particle
motion in a full-flow oil pipeline was created, to simulate particle motion with various diameters,
densities, locations, and shapes. Finally, the results of the theoretical study were effectively applied to
design an inline optical monitoring sensor, and the experimental validation results demonstrated that
the inline sensor has excellent suitability for monitoring wear particles. This study has significance
for the safe operation of large rotating machinery.

Keywords: oil particle; forces; properties; motion velocity; mathematical model

1. Introduction

After the outbreak of the global epidemic in 2019, there was a massive shortage of
energy supply in the world, while the phenomenon of friction with the presence of relative
motion consumes one third of the world’s available energy; therefore, green tribology is
currently one of the most important development directions of tribology. Tribological wear
is the main cause of material and mechanical equipment failure. Approximately 80% of
machine parts fail due to friction, and over 50% of sever accidents involving mechanical
equipment are caused by lubrication failure and excessive wear [1]. For large rotating
machinery, bearings and gears are commonly used as key transmission components, and
their fault diagnosis has been the focus of research in this field [2–8]. As these components
need to be lubricated, oil is the blood of mechanical equipment. The wear particles in
the oil carry multi-dimensional information for characterizing the health status of the
equipment [9]. Consequently, it is extremely important to monitor the wear particles in oil.

According to tribological research, the type, number, and increase rate of wear particles
are directly proportional to the degree of wear of the friction surface material. The density,
color, and size of particles are closely related to the type and process of wear [10]. Thus,
monitoring the properties of wear particles can play a significant role in determining the
location, severity, developmental trends, and causes of wear faults. There are various
electrostatic [11], capacitive [12], inductive [13], and optical [14] sensors for monitoring the
properties of wear particles. However, with the rapid development of optical hardware
technology and the higher sensitivity of optical sensors compared to other technologies,
there is growing research on the analysis of wear particles using optical techniques [15].
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Offline ferrography [16–19] and online microfluidics [20,21] are common optical tech-
niques for analyzing particles. Ferrography uses a high gradient magnetic field to separate
metallic wear particles from lubricants and contaminants, to analyze the wear particle’s
state, size, composition, and formation mechanism. It is primarily utilized for the qual-
itative and quantitative analysis of ferromagnetic particles. However, the time cost of
iron spectrum preparation is high, the wear particles tend to aggregate into chains on the
spectrum, and wear debris images often suffer from image blurring, due to numerous noise
sources [22,23]; thus, the results of the analysis of wear particles are highly dependent on
the experience of the observer. At the same time, offline sensors are rapidly being phased
out of the market, due to their poor timeliness. In addition, microfluidics is predominantly
an online method, and online sensors also have a high error, due to sample monitoring.
However, inline monitoring has the advantages of no sampling, being real-time, and no
human intervention; as such, it has been rapidly developed over the past several years.

The movement of solid particles in liquids is a relatively classical problem in the
discipline of fluid mechanics, and a great deal of research has been conducted on it. It
is important to monitor solid particles in lubricating oil pipelines effectively. Moreover,
particle flow is a widely occurring phenomenon in nature and industry, such as the spread
of plant seeds, the diffusion of atmospheric pollutants, and the movement of particles in
fluidized beds. Particle motion is influenced by certain variables, including disturbances in
the external environment and interactions between particles. The behavior of individual
particles has a significant impact on the behavior of multi-particle flows. Therefore, the
study of the motion of individual particles is crucial to the further investigation of multi-
particle motion in oil. Segré and Silberberg experimentally demonstrated that the radial
position of a macroscopic rigid sphere moving in a Poiseuille fluid (laminar fluid in an
infinitely long straight circular tube) is finally stabilized at the position of a circular region
of 0.6-times the radius of the tube [24]. Jeffrey et al. investigated the motion of particles in
a laminar vertical pipe experimentally and discovered that the motion of rigid spherical
particles suspended in a viscous liquid was consistent with the Segre and Silberberg
effect [25]. Huang et al. studied the motion of particles in an arbitrary flow field and found
that the diameter and density of particles played an important role in the relative motion
of liquid–solid two-phase flow; the larger the diameter and density of the particles, the
greater the relative velocity of the two phases, and the effect of particle density is greater
than the effect of particle diameter [26]. Choi et al. analyzed the influence of particles of
different sizes, shapes, and densities on particle motion, using the PTV (particle tracking
velocimetry) technique. The results showed that the relative velocities of liquids and solids
were greater when the density difference was large [27]. Miura et al. established that
the equilibrium location of a neutrally buoyant spherical particle moving between two
parallel plates was governed by the particle’s Reynolds number and the distance between
the particle diameter and the two plates [28]. It is worth noting that the majority of the
studies mentioned above on the motion of solid particles in liquids concentrated on the
case of similar densities and small relative velocities or the motion of round spheres in
unbounded fluids. In contrast, research on the combined motion of particles of different
shapes and densities in fixed pipes is rare.

According to the above research, this paper innovatively proposed to study the inline
monitoring of wear particles with different properties, from the perspective of the different
motion characteristics of the particles. The objective was to identify the properties of
various wear particles based on their different velocities, thus promoting the development
of wear particles in lubricating oil inline monitoring technology and effectively preventing
the occurrence of early failures. In this paper, an inline optical sensor was designed and
developed by studying the velocity characteristics of different particles through theoretical
calculations, numerical simulations, and experimental analysis. Consequently, gear and
bearing wear can be quickly obtained using an optical sensor to inline monitor the proper-
ties of wear particles in the oil pipeline. The research in this paper began with the force of
the particles in the oil fluid and established equations of motion of simply shaped particles.
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Finite element models (FEM) of the particles with different properties were established
in simulation software, and a multi-parameterized analysis was performed, to determine
the motion law of the particles in the vertical pipe. Based on these results, a full-flow
inline wear particle monitoring sensor was designed. Finally, the motion characteristics of
different wear particles were experimentally verified on a pin-disk experimental machine,
to establish a model for the motion monitoring of particles with different properties.

The rest of the paper is arranged as follows: Section 2 details the materials and
methods, and Section 3 provides a detailed analysis of the results and discussion. Finally,
the conclusions are given in Section 4.

2. Materials and methods
2.1. Framework

In large rotating machinery systems such as high-speed trains, civil aircraft, ships, and
military aircraft, the important transmission components are lubricated and wear particles
are present in the oil, due to the operation of the friction pairs (bearings, gears, etc.).
Therefore, oil carrying wear particles could be used as a data source for this paper. This
data then needed to be monitored in real-time, to ensure the normal operation of the
various rotating machines over time. The oil was passed through self-developed inline
monitoring sensors. In combination with the monitoring model and the basic parameters
of the wear particles obtained by the tracking algorithm, the parameters of the wear
properties were obtained, to determine the wear condition of the friction pair. If the
monitored wear properties are greater than the monitoring threshold for the wear status
of the equipment, a message is sent to an engineer. If the monitoring threshold is not
exceeded, the monitoring continues. The monitoring model for the wear particles was
derived from force analysis, numerical simulation, and experimental implementation, all of
which corroborated each other. Force analysis was the first module. This was a mechanical
analysis of a simplified solid particle in a liquid–solid two-phase flow, which gave the
factors influencing the particle motion. The shape and density of the wear particles were
then modelled parametrically in simulation software to analyze the laws. Finally, the laws
were verified through experiments, and a kinematic monitoring model was summarized.
A framework for monitoring the wear state of equipment using wear particles carried in oil
is shown in Figure 1.

2.2. Methods of Analyzing Wear Particle Motion
2.2.1. Theoretical Study

(a) Model assumptions
In order to obtain an inline monitoring model of particle properties, based on the

movement characteristics of the particles in the oil, a force analysis of the particle’s move-
ment in the pipe was first required. It is well known that wear particles have various
shapes, so the following assumptions were made to simplify the solution of the motion
equations for the motion of particles in a pipe:

(1) Oil was stationary.
(2) Particles were rigid spherical particles.
(3) Oil was an incompressible viscous fluid.

(b) Force analysis of wear particle
The force environment of the model was analyzed following the BBO equation for

particle motion in a viscous fluid by Oseen. [29] and the equation of motion for discrete
particles in an arbitrary flow field by Huang et al. [26]: a solid particle of diameter dP and
density ρP, placed in the tube cross-section at z = 0 (see Figure 2), at time t = 0. When t > 0,
it started to move in the z-axis direction under gravity. The axial forces acting on the solid
particle consist of:

Fg =
1
6

πdP
3ρpg (1)
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Ff =
1
6

πdp
3ρ f g (2)

FD =
1
8

πζdp
2ρ f up

2 (3)

FM =
1
12

πdp
3ρ f

d(u f − up)

dt
(4)

FB =
3
2

dp
2
√

πρ f ϑ
∫ t

0

d(u f − up)/dτ
√

t− τ
dτ (5)

ζ =


24/Rep, Rep ≤ 2
18.5/Rep

0.6, 2 < Rep ≤ 500
0.44, Rep > 500

, Rep =
ρ f dpup

µ
(6)Machines 2022, 10, x FOR PEER REVIEW 4 of 21 
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Figure 1. The proposed framework for analysis of the motion of wear particles. 
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The radial forces on solid particles included:

Fs = 1.62dp
2√ρ f µ(u f − up)

√∣∣∣∣du f

dy

∣∣∣∣ (7)

(c) Equations to solve
According to publications [30,31], particles with high densities are mainly affected

by drag, gravitational, and buoyant forces. The Bassett and the Saffman lift forces are the
next most important forces for medium density particles. However, it was experimentally
verified in the paper [32] that the Bassett force accounts for less than 1% of the total force.
At the same time, the oil considered in this study was stationary, so the Saffman lift could
be neglected. In addition, the virtual mass force was negligible for almost all particles.
Therefore, the mathematical model developed in this paper was:

π

6
ρpdp

3 dup

dt
=

π

6

(
ρp − ρ f

)
dp

3g− 1
8

πζdp
2ρ f up

2 (8)

Given the initial condition t = 0, the up = 0.
The equation was solved:

up =



dp
2(ρp−ρ f )g

18µ , Rep ≤ 2

0.27

√
dp(ρp−ρ f )g

ρ f
Rep0.6, 2 < Rep ≤ 500

1.74

√
dp(ρp−ρ f )g

ρ f
, Rep > 500

(9)

It can be seen that the velocity of the particles after stabilization is closely related to
their density, diameter, and viscosity, as well as the density of the oil, regardless of the fluid
zone (laminar, transition, turbulent). This paper discusses the situation in the same oil, so
only the variation in the properties of the wear particles was considered. The next step was
to determine the fluid region associated with the actual size of the wear particles.

(d) Comparison of different properties of the particles
As shown in the wear process during the operation of equipment in Figure 3 [33], the

particle’s typical size in the oil was selected for analysis: the size range of wear particles
is approximately 0.1~1000 µm. It can be seen that wear particles in the diameter range of
10–1000 µm should be monitored when the equipment increases wear. The difference in
the trial method is used to determine whether the particles are moving in the laminar flow



Machines 2022, 10, 727 6 of 20

zone, the transition flow zone, or the turbulent flow zone. Assuming that the particles are
settling in the laminar flow zone in the oil, the oil’s viscosity is No. 26 hydraulic oil. Its
viscosity is 0.02184 Pa·s at 20 ◦C, and the density is 840 kg/m3. The particles are aluminum
particles of diameter 1000 µm. The following is obtained according to the settling velocity
formula in the laminar flow zone.

up =
dp

2
(

ρp − ρ f

)
g

18µ
=

(
1× 10−3)2 × (2700− 840)× 9.81

18× 0.02184
= 0.0464 m/s (10)

Then

Rep =
ρ f dpup

µ
=

840× 1× 10−3 × 0.0464
0.02184

= 1.784 < 2 (11)

FD = 3πµdp

(
u f − up

)
(12)

Thus, the original assumption of a laminar flow zone was correct. The viscous forces
of wear particles in the laminar flow region could be simplified [20].
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Figure 3. Relationship between debris generation and wear process. Figure 3. Relationship between debris generation and wear process.

The velocity trends of different densities and diameters of wear particles in oil with
time are shown in Figure 4.
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2.2.2. Numerical Study

On the one hand, simulation of the movement characteristics of wear particles helps
verify the theoretical analysis results. On the other hand, it can contribute to the design
of the particle monitoring optical sensor in the next section and determine the installation
position of the optical lens in the pipeline, to prevent particles from exceeding the lens’s
field of view and depth of field.

(a). Mathematical control equations
Numerical simulation is the process of using a computer to replace continuous physical

quantities in time and space with a series of discrete particle changes and then establishing
mathematical expressions or equations between these discrete particle variables, which
are solved to obtain approximate values of the mass variables and display images of the
calculated results. The fluid flow follows the conservation laws of momentum, mass, and
energy. Since the heat change process during particle motion was not considered, the heat
transfer equation was not analyzed.

The continuity equation expresses the law of conservation of mass in a fluid flow.
When the fluid flows steadily, the equation is:

∂
(

ρ f ux

)
∂x

+
∂
(

ρ f uy

)
∂y

+
∂
(

ρ f uz

)
∂z

= 0 (13)

The motion equation is a specific expression of momentum conservation law in fluid
flow. Since oil is an incompressible fluid, the simplified equation is:

ux
∂ux
∂x + uy

∂ux
∂y + uz

∂ux
∂z + ∂ux

∂t = fx − 1
ρ f

∂p
∂x + ν

(
∂2ux
∂x2 + ∂2ux

∂y2 + ∂2ux
∂z2

)
ux

∂uy
∂x + uy

∂uy
∂y + uz

∂uy
∂z +

∂uy
∂t = fy − 1

ρ f

∂p
∂y + ν

(
∂2uy
∂x2 +

∂2uy
∂y2 +

∂2uy
∂z2

)
ux

∂uz
∂x + uy

∂uz
∂y + uz

∂uz
∂z + ∂uz

∂t = fz − 1
ρ f

∂p
∂z + ν

(
∂2uz
∂x2 + ∂2uz

∂y2 + ∂2uz
∂z2

) (14)

(b). Foundation of geometrical model and condition setting
Figure 5 depicts the entire modelling and simulation process, which included setting

the model environment, creating geometric figures, setting material properties, defin-
ing physical boundary conditions, establishing meshes, running simulations, and post-
processing results.

The first step was to set up the model environment. The simulation of this model
adopted two-dimensional geometry. The fluid flow employed a fluid–structure interaction
module (the fluid–structure interaction module is required to simulate the motion law of
relative macroscopic objects in the fluid, and the particle tracking module can be used
when the particles are small, such as electrons and molecules), laminar flow, transient (field
variables vary with time), Newtonian fluids, and liquid–solid two-phase flow.

Second, the geometry was established, and the geometry’s size parameters and mate-
rial properties were set. As illustrated in Figure 6 [34,35], the pipe diameter had a significant
effect on the sedimentation velocity of the particles. As the ratio of particle diameter dp to
pipe diameter D grows, the effect of the pipe wall on particle’s movement velocity becomes
increasingly significant. Therefore, the wider the pipe diameter, the less the influence on the
movement of the particles. Combined with the diameter of the conventional wear particles
in Figure 2, ranging from 0.1 to 1000 µm, and the diameter of an actual common engine
pipeline, the diameter of the round pipe was set to D = 8 mm, as well as combined with
Figure 7, for the large density copper particles with a diameter of 1000 µm in oil, it takes
about 0.14 s to reach the maximum stable speed of 0.2 m/s, and the maximum moving
distance is still less than 30 mm; therefore, the pipe length L in the simulation model was
set to 40 mm, to meet the moving distance of all particles in the system and to achieve a
stable speed. In addition, the diameter of normal wear particles is less than 20 µm, and the
wear of equipment can be determined by calculating the diameter and number of particles.
Concerning shape, different wear mechanisms produce different shaped wear particles.
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When it comes to color, different wear areas are located in different places and produce
different components of wear particles. Therefore, the diameter, shape, and density of the
wear particles were used as parameters for analysis. In theoretical analysis, to qualitatively
analyze the influencing factors of particle motion, the particles were reduced to spherical
shapes. In the actual process, the shapes of the wear particles are mostly irregular flakes,
blocks, strips, and regular spheres [36]. Therefore, this simulation took different shapes
(round, triangular, rectangular) into account. At the same time, the three-dimensional
model was simplified to a two-dimensional planar model, to simplify the model calculation.
No. 26 industrial white oil with a viscosity of 0.022 Pa·s and a density of 850 kg/m3

was selected as the moving medium. The design of various detailed parameters of wear
particles is shown in Table 1.
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Table 1. Particles for parametric sweeps.

Shape Diameter
(mm)

Density
(kg/m3) Material Width

(mm)
Height
(mm) Circularity

round

1
8960 copper

/ 1
0.5 / 1
0.1 / 1
0.5 4940 titanium / 1
0.5 2700 aluminum / 1

triangle / 8960 copper 1 1 0.6
square / 8960 copper 1 0.2 0.5

Circularity = 4π * Area/Circumference2.
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The physical boundary conditions of the model were then defined, and the mesh was
divided. Since the particle’s initial velocity was zero, it settled down under the action of
gravity, so the upper boundary was set as an open boundary. After the grid independence
verification, it was found that the calculation performance was the highest when a finer
grid was used. At the same time, automatic meshing was used in the solution process. The
time step of the transient solution was set to 0.001 s, and the total solution time was 0.2 s.

Finally, the model was simulated, and the results were post-processed. In this paper, a
parametric sweep was used to specify multi-dimensional parameters once, and the analysis
results of different parameters were compared systematically, as shown in Figures 8–11.
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Figure 11. Velocities of 0.5 mm copper particle at different times after entering the pipeline from 
different positions (y = 2 mm, y = −2 mm). 

  

Figure 11. Velocities of 0.5 mm copper particle at different times after entering the pipeline from
different positions (y = 2 mm, y = −2 mm).

3. Results and Discussion
3.1. Theoretical Study Results

Figure 4 demonstrates that the motion of a particle in a vertical pipe is divided into
two periods, namely the acceleration period at the beginning and the uniform velocity
period later. The reason for this is that when the particle begins to move, its initial velocity
is zero, so the drag force is zero, and the acceleration is maximum. After the particle begins
to move downwards in the vertical direction, the drag force increases as the particle velocity
increases, and the acceleration decreases accordingly. When the velocity reaches a certain
value, the drag force, buoyancy force, and gravity are in balance. The combined force on
the particle is zero, making the acceleration zero. Then the particle’s velocity no longer
changes and performs a constant downward movement with velocity uP. It is worth noting
that the greater the particle density, the higher the final stable velocity, and the longer the
time required to reach stability and the greater the distance covered. The larger the particle
diameter, the higher the final steady velocity and the longer the time required to reach
stability and the greater the distance covered. However, the time to reach steady-state
velocity does not exceed 0.1 s in all cases. At the same time, the final velocity of the particles
varies depending on their diameter and density, so the idea that the steady-state velocity of
the particles can be used to distinguish the properties of the wear particles is correct.

3.2. Numerical Study Results

(a) Different times
Figure 8 shows the velocities of copper particles with a diameter of 1 mm in the

pipeline at different times. It was found that it only takes a short time for the particle’s
velocity to go from zero to a constant. The theoretical simulation results in Figure 8 validate
the theoretical analysis results in Figure 7 very well. However, there was a slight difference
between the two at t = 0.01 s, because the theoretical analysis equation did not consider
the influence of the pipe wall. Nevertheless, the speed of stability was highly consistent.
This showed that the particles could reach a stable speed in a short time after entering the
pipeline. We can directly consider the stabilization speed of the different property particles
and ignore the accelerated stage at the beginning.

(b) Different diameters
Figure 9 depicts the velocities of three kinds of copper particles with diameters of

0.1 mm, 0.5 mm, and 1 mm after entering the pipe from the center of the pipe. It was found
that after all the particles are released in the middle position, the particles hardly move in
the horizontal direction during the descending process, and the particles settle vertically
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along the center line. The stable velocity of copper particle with a diameter of 1 mm was
0.2 m/s, which was consistent with the results in Figure 7, indicating that the simulation
results were correct. In addition, the larger the particle diameter, the larger the final particle
movement speed, and the particles hardly moved in the horizontal direction during the
descending process. The particles settled vertically along the centerline. The entire flow
field was symmetrical. The difference between the density of the particles and the fluid
caused the particles to move in the direction of gravity. The drag force generated in the
movement causes the fluid near the particle to move downward. At the same time, the
fluid on both sides was squeezed during the particle’s falling process, so that it had an
upward velocity vector, thereby forming a vortex structure. With the increase of time, the
particle’s velocities gradually increased from zero and then reached a stable velocity under
the action of the drag force. During this process, the vortex structure near the particle
changed gradually. Finally, it formed two elongated vortex structures, due to the influence
of the boundary. Moreover, the greater the particle’s velocity, the greater the vortex.

(c) Different densities
Figure 10 displays the velocities of particles with a diameter of 0.5 mm and a density

of 2700 kg/m3, 4940 kg/m3, and 8960 kg/m3 entering the No. 26 oil from the center of the
pipeline. It was found that the greater the density of the particles, the greater the velocity
needed to reach stabilization and the greater the distance travelled. Likewise, the particles
had almost no movement in the horizontal direction during the descending process, the
particles settled vertically along the centerline, and the entire flow field was symmetrical.

(d) Different locations
Figure 11 shows the velocities of 0.5-mm copper particles at different times after

entering the pipeline from different positions (y = 2 mm, y = −2 mm). The particles
gradually approached the axis of the pipeline as the time increased during the descending
process. Moreover, the particles’ velocities in the vertical direction were gradually increased.
After the particles were released in symmetrical positions, their sedimentation trajectory
was symmetrical around the centerline. In the y-direction, when the particle moved to the
position of the centerline, the horizontal velocity was almost zero. The particles moved
downward steadily in the vertical direction, and finally, the sedimentation velocity of the
particles tended to become stable. Furthermore, the final velocity of the particles released
from the eccentric position and the central position was the same, and this is consistent
with the findings of Yang’s study [34]. Therefore, the initial release position of the wear
particles had no significant effect on the final velocity or the stabilization position in this
pipe. The reason for this was that, under the action of gravity, the drag force drives the
fluid near the particles downward and squeezes the fluids on both sides, to make them
have an upward velocity vector, thus forming a vortex structure and making the particles
finally descend along the axis of the pipe.

(e) Different shapes
Figure 12 shows the sedimentation motion of three different shapes of particles in the

oil. It can be seen that the higher the circularity of the particles, the higher the falling speed
after the particles have stabilized. The particles eventually descended steadily along the
tube axis, and the vortices on both sides of the particles were symmetrical. Therefore, the
force of the particles on both sides of the tube axis was also symmetrical.

Hence, the sedimentation state of the particles did not depend on the initial placement
position of the particles, and the particle’s stable velocity was influenced by its diameter,
density, and circularity, regardless of where the particle entered the pipe. Consequently, the
particle’s properties could be judged by observing its velocity after stabilization.
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Figure 12. Velocities of particles with different shapes at t = 0.15 s. 
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3.3. Inline Monitoring Sensor Design

Based on the theoretical analysis results and simulation results of the movement laws
of particles with different properties in the vertical pipeline, an inline monitoring sensor
for particles was designed. Its structure and diagram are shown in Figure 13. An LED
surface light source was placed to capture a clear particle profile. The source’s light could
pass through the entire measurement section. The time-series images of the particle motion
field in a two-dimensional oil stream were recorded using a CMOS camera. The camera
captured 210 images per second at full resolution. Due to the small diameter of the wear
particles, a magnifying objective lens of 2× was attached to the front of the camera. After
calibration, the field of view was limited to 8 mm × 6 mm, and the camera resolution was
4 µm/pixel. In addition, the particle velocity was calculated using the ECO algorithm
in the next section, and the time interval depended on the CMOS frame rate. Streampix
software was used to record the videos, and it could be used to change many important
photographic parameters (such as the recording time, exposure time, and shooting rate).
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In addition, the choice of measurement section had a significant influence on the cal-
culation results, and the image of the near-wall area of the circular pipe was distorted by 
the optical lens, which reduced the identification of particles in the near-wall area. At the 
same time, since the visible area was too small to reflect the real flow field, a custom-
designed flow channel for inline flow was used, as illustrated in Figure 13b. The specific 
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In addition, the choice of measurement section had a significant influence on the
calculation results, and the image of the near-wall area of the circular pipe was distorted
by the optical lens, which reduced the identification of particles in the near-wall area.
At the same time, since the visible area was too small to reflect the real flow field, a
custom-designed flow channel for inline flow was used, as illustrated in Figure 13b. The
specific principle was that a 5-cm long rectangular oil-filled sleeve was attached to the
outside of the circular pipe in the measurement section, to prevent distortion of the visual
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image. In addition, the viewport was made of highly-transparent quartz glass with good
corrosion resistance.

3.4. Experimental Study Results
3.4.1. Velocity Measurement of the Particles

As images of solid particles in liquid–solid two-phase flows are subject to interference
from the liquid environment, they can suffer from morphological changes, image blurring,
and other disturbances, and the motion tracking of particles can be greatly affected. This
paper introduced the robust ECO tracking algorithm for the tracking and velocity mea-
surement of wear particles in a full-flow inline environment. The ECO algorithm mainly
consists of steps such as a correlation filter and efficient convolution operation, and it was
implemented in the Python environment.

(a) The principle of the correlation filter is shown in Figure 14: first, the similarity
between the selected filter and the input image was calculated, to obtain the correlation
function. The larger the value, the higher the correlation. When the value reached the
maximum, the image of the tracking target could be determined, and then the filter was
continuously updated using an inverse Fourier transform method.
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(b) For efficient convolution operation, the response function was obtained by first
extracting the feature function of the input image using the resolution and combining it
with the constantly updated filter. Then a matrix was created, to convolve the feature map
based on the feature contribution, thereby reducing the dimensionality of the feature map.
The final result was the continuous tracking of the target.

3.4.2. Experimental System

The experiments were carried out in the Key Laboratory of Civil Aviation Health Mon-
itoring and Intelligent Maintenance at Nanjing University of Aeronautics and Astronautics.
The experimental system is shown in Figure 15, which included a MMW-1A pin-disk test
rig (particle generator), a self-made full-flow inline optical monitoring sensor, a manual oil
pump, an oil storage tube, and other components. Above the oil inlet of the full-flow inline
optical sensor, there was a vertical transparent acrylic pipe with a test part under the ball
valve 1. The length was 300 mm, which provided a long enough distance for the particles’
vertical movement, so that the particles’ velocities passing the sensor reached stability. The
inner diameter of the vertical pipe was 8 mm. The oil sample used in the equipment was
No. 26 industrial white oil. In accordance with the materials commonly used in engines
in [14], the ball test piece of the pin-disk friction and wear test machine was made of bearing
steel. Three types of materials were used for the disc test piece: copper, titanium, and nylon
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of high, medium, and low density; the parameters are shown in Table 2, and the detailed
internal structure of the pin-on-disk was described in a previous study [14].
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Figure 15. Inline monitoring sensor installed on a pin-disk test rig.

Table 2. The material of the test piece of the disc.

Test Material Copper Titanium Nylon

Density (kg/m3) 8900 4500 1150

Before starting the experiment, the entire experimental pipeline was filled with oil,
and then the ball valve 1, ball valve 2, and ball valve 3 were closed, and the load of the
pin-disk friction and wear tester was set to 300 N. After it had worked for 5 h, ball valve
2 was opened, and the oil pump was manually kneaded ten times to make the oil sample
carrying particles in the pin plate mix evenly in the whole pipeline, then ball valve 2 was
closed. After the oil sample had been stationary for 10 min, ball valve 1 was opened, the
full flow inline optical sensor was opened, and the solid particles were injected into the
dead oil. This ensured that the particles had no initial velocity in the oil and the falling
velocity of a single particle was zero when it entered the monitoring sensor. It then became
constant due to the action of gravity, drag force, and buoyancy. The bearing steel ball
specimen and disc specimen were replaced. Five measurements were performed for each
experiment, to eliminate experimental random error, and the particle velocity was finally
averaged. After all the experiments were completed, ball valve 3 was open, and the oil in
the pipeline flowed into the oil cup.

3.4.3. Experimental Results

In the experiment, the motion of a copper particle from its appearance in the sensor
field of view to its departure was recorded, as shown in Figure 16, and the camera captured
a total of 11 photographs. It can be seen that the wear particles moved gradually towards
the center in the Y-direction of the transparent pipe and moved with the same displacement
in the Z-direction at the same time interval, so the velocity of the wear particles had reached
stability. Their velocity vector no longer varied with time, which also proved the correctness
of the simulation. We could calculate the diameter of the particles by the size of the pixel
area they occupied (dP =

√
4S/π). Then the different particle velocities could be calculated

using the ECO tracking velocimetry algorithm. In addition, it can also be seen that, in
the experiments, certain irregularly shaped particles did not move along the center of the
pipe. The reason for this was that the surface roughness of irregularly shaped particles was
not considered in the previous theoretical analysis and simulation. At the same size, the
rougher the particle surface, the greater the flow field effect on the particle surface. Due to
the irregular shape of the wear particles, the flow resistance and the gravity of the particles
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were not in the same line, which led to an unbalanced combined force on the particles, so
several particles were not in the center of the pipe.
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3.4.4. Monitoring Model

The velocities of all the particles monitored by the sensors in the experiment and the
curve fitted to their trends are shown in Figure 17. We can see that the overall velocity
of particle movement increased with increasing particle size. For the same particle size,
the greater the density of the particles, the greater the velocity of movement, which was
consistent with the theoretical calculations and simulations. At the same time, the smaller
diameter particles made up a larger proportion, which was also in line with the wear curve
pattern of the equipment in Figure 3. The polynomial function was used to fit the velocity
points of the different densities of particles separately. The R2 showed that the regression
equations of all three fitted curves had a high degree of fit (the closer the R2 is to 1, the
better the fitted curve fits the original data [20]), indicating that these three curves could
be used as a monitoring model for these three typical densities of particles in this sensor.
In this model, since the diameter of the particles can be directly observed using the inline
optical monitoring sensor designed in this paper, and as the velocity of the particles can be
obtained through the particle velocimetry algorithm, a rough value of the particle density
can be obtained with the monitoring model.
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It can be seen that there was a high degree of agreement between the experimental and
model fitting results for particles below 300 µm in diameter, while as the particle diameter
became larger, the error became larger. Hence, we set the monitoring threshold to 300 µm,
and according to the particle’s velocity and diameter, the density of the particles could be
directly obtained, so that the wear parts could be accurately obtained. Meanwhile, from the
wear law of mechanical equipment in Figure 3, it can be seen that when the particle diameter
is greater than 300 µm, a catastrophic accident will occur in the equipment. Therefore,
the sensor and monitoring model can be effectively used for inline wear monitoring of
the equipment.

3.5. Discussion

We verified the theoretical calculations and simulations analyses step by step, to
determine the feasibility of identifying the properties of wear particles based on their
motion characteristics. Then, an inline optical detection sensor was designed to monitor
the particles generated by the wear of rotating parts in real time in the oil line. When the
particle size is larger than 300 µm, the system will raise an alarm for the engineer. The
above experiments clearly confirmed that the designed inline optical particle monitoring
sensor is able to monitor the appearance of particles with good sensitivity and in real
time. Compared to conventional ferrography [9,16–18], this method avoided aggregating
many ferromagnetic particles into chains due to magnet adsorption. It improves the
efficiency of individual wear particle identification. Instead of other microfluidic optical
sensors for offline monitoring [14,20], we used inline monitoring for full-flow real-time
monitoring of wear particles, with the advantages of no sampling, being real-time, and
no human intervention. In addition to considering simple spherical wear particles and
ferromagnetic particles, we also simulated the motion of other typical shapes and particle
densities. Therefore, the proposed method and the designed sensor in this paper are of
great significance for the monitoring of rotating machinery.

4. Conclusions

In order to monitor the wear particles appearing in a lubricating oil pipeline in real-
time, this paper designed and processed a lubricating oil wear particle inline monitoring
sensor based on theoretical analysis and simulation research, which mainly consists of a
camera, telecentric lens, LED light source, rectangular oil sleeve to prevent image distortion,
and target tracking speed measurement algorithm. The sensor can monitor the diameter
and density of micro-sized particles in the inline oil pipe, and the following conclusions
were drawn:

(1) Utilizing the characteristics of the wear particles monitored by the sensor, an ECO-
based target tracking velocity measurement algorithm was developed. The experimental
results showed that it has a good robustness.

(2) The velocities of wear particles within the self-developed sensor were divided into
an acceleration section at the beginning and a later uniform velocity section. However,
the acceleration time was within 0.1 s. Furthermore, the uniform velocity was positively
correlated with the particle size and density, but not linearly. The greater the particle
density, the greater the final stabilization velocity. The larger the particle diameter, the
greater the final stabilization velocity. As demonstrated experimentally, the stabilization
velocity of the particle was related to its circularity. The more round the particles were, the
higher the velocity after stabilization. Notably, the initial position of the wear particle had
no significant effect on the final stabilization position and the velocity in the sensor.

(3) The number of particles with diameters less than 300 µm observed in the exper-
iment was large. The data model fitting results were compared with multiple sets of
experimental results monitored by the inline sensor. The results showed that the model
had a better fitting effect with wear particles of different densities, and the R2 values were
all larger than 99%. The distribution range of the particle diameter conforms to the particle
generation law of rotating equipment, so 300 µm was used as the monitoring threshold
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for the sensor. When the threshold is exceeded, monitoring information will be sent to the
engineer, and the severe wear area will be judged according to the abrasive particle density.

This research showed that an inline method, based on wear particle velocity analysis,
for monitoring wear particles is feasible for practical applications in lubricant monitoring
and could have some industrial applications. Moreover, the inline optical sensor studied in
this paper contributes to speeding up the visualization process in the monitoring and diag-
nostic process of the operating status of rotating machines in SCADA (Supervisory Control
and Data Acquisition) systems. Since the inline optical monitoring method proposed in this
paper has the advantages of no sampling, being real-time, and no human intervention, oil
monitoring techniques are greatly improved. Future work including particle roughness fac-
tors and the effect of irregular shaped of particles will be added to subsequent calculations
and simulations, to obtain more accurate particle movement monitoring results. Further-
more, a comprehensive 3D data model will be established, to monitor the properties of
wear particles in real-time, based on a large amount of experimental data. At the same time,
after the practical application of this monitoring system, a monitoring model considering
other properties of the oil and the velocity of wear particles will be developed. Finally, the
ability to inline monitor mechanical equipment failures could be greatly improved.
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Nomenclature

Symbol Unit Description
dp µm Particle size
g m/s2 Gravitational acceleration
d µm Pipe diameter
L µm Pipe length
ρp kg/m3 Particle density
ρ f kg/m3 Oil density
ζ / Drag coefficient
up m/s Particle movement velocity
upt m/s Free settling velocity of a single solid sphere in an unbounded fluid
u f m/s Fluid flow rate
ϑ m2/s Kinematic viscosity coefficient of oil
µ N·s/m2 Dynamic viscosity coefficient of oil
t, τ s Time
Fg N Gravity
Ff N Buoyancy
FD N Drag force
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FM N Additional mass force
FB N Basset force
FS N Saffman lifting force
Rep / Particle Reynolds number
u′p m/s Particle movement velocity
P Pa Pressure
ux, uy, uz m/s The velocity component of the fluid at time t in the x, y, z direction
fx, fy, fz m/s The external force per unit volume of fluid in the x, y, z direction
S µm2 Particle image pixel area
e / Circularity of particle
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