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Abstract: Condition monitoring and fault diagnosis are topics of growing interest for improving the 
reliability of modern industrial systems. As critical structural components, anti-friction bearings of-
ten operate under harsh conditions and are contributing factors of system failures. Efforts have been 
cast on bearing diagnostics under the sensor fusion and machine learning framework, whilst chal-
lenges remain open on the identification of incipient faults. In this paper, exploiting multi-way rep-
resentations and decompositions of measured vibration data, a novel band separation method based 
on the factorization of spectrogram tensors using the low rank approximated nonnegative Tucker 
decomposition (LRANTD) is proposed and applied to identify detailed fault signatures from the 
spectral, temporal, and spatial dimensions, flexible for extracting multi-sensor features and multi-
dimensional correlations. With the proposed method, informative frequency bands of the latent vi-
brational components can be automatically extracted, in accordance with the inherent temporal pat-
terns that can be conveniently fed for spectral analysis and fault discrimination. Furthermore, an 
improved cross-spectrum can be calculated from multi-channel vibrations via LRANTD with en-
hanced fault features. Based on the real-world vibration data of the accelerated bearing life tests, 
detailed experimental studies and thorough comparisons to the conventional benchmarks have ver-
ified the effectiveness of the reported diagnostic methodology. The proposed method significantly 
improves the presence of the bearing frequency peaks distinctly over the background noises in the 
spectrum and hence improves the bearing defect detection process. 

Keywords: anti-friction bearing; fault diagnosis; multi-sensor fusion; band extraction; tensor; 
Tucker decomposition; low-rank approximation; vibration analysis; low rank approximated 
nonnegative Tucker decomposition (LRANTD) 
 

1. Introduction 
In recent years, condition-based maintenance, involving minimally invasive condi-

tion measurements, massive data analytics, and decision making for complex engineering 
processes, has been considered a critical part of modern intelligent manufacturing for sys-
tem optimization purposes [1], such as sustainable production and quality improvement. 
To prevent fatal system failures and allow scheduled maintenance, advanced prognostics 
and diagnostics are essential for the timely detection of anomalies. 

Anti-friction bearings (AFBs) are critical structural components in various mechani-
cal systems such as hydraulic pumps, induction motors, wind turbines, etc., but they are 
also sensitive parts that account for 45–55% of motor failures [2]. Without maintenance, 
defects in the AFBs could develop into critical disasters with considerable economic losses 
and physical injuries. In this context, condition monitoring and fault diagnosis for AFBs 
can be highly cost-efficient and of great practical significance. 
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Current approaches of bearing diagnosis can be divided into signal processing meth-
ods and machine learning (ML) methods. On the one hand, signal processing methods 
rely on a series of analytic and synthetic manipulations for processing signals to reveal 
specific fault characteristics from the time domain, frequency domain, and time-frequency 
(TF) domain. In this context, typical mainstream techniques include noise cancelation 
(e.g., time-synchronous average and minimum entropy deconvolution [3]), spectral anal-
ysis (e.g., envelope spectrum, spectral kurtosis [4], and cyclostationarity analysis [5,6]), 
time-frequency analysis (e.g., short-time Fourier transform [7]), sparsity diagnostics (e.g., 
sparse representations [8] and compressive sensing [9]), and matrix decomposition mod-
els for source separation (e.g., singular value decomposition (SVD) [10]). Among them, 
envelope analysis is one of the most successful approaches and plays an important role in 
bearing signal enhancement. On the other hand, machine learning methods attempt to 
identify the latent fault features from a data-driven perspective and learn the diagnostic 
model from the condition monitoring data in a reverse manner for state inference, such as 
support vector machines [11,12] and artificial neural networks [13,14]. Despite the suc-
cessful applications in many data analysis challenges, ML methods are likely confronted 
with some last mile issues in industrial diagnostics, such as poor generalization to new 
machine sets and the data imbalance biased towards normal conditions. For both method 
categories, due to the complicated components and interferences inside the measured sig-
nals, challenges remain for robust solutions to bearing fault diagnosis. 

With the advancement of sensing technology, more sensors are deployed for moni-
toring asset conditions and the resulting data exhibits in higher dimensions in the sensor 
networks. Based on the counteraction assumption of the random noise, sensor fusion and 
dimension reduction schemes are developed to enhance the inherent fault signatures from 
multiple measurements [15]. For example, Wodecki et al. [16] proposed a novel adaptive 
band selection method based on non-negative matrix factorization (NMF) of TF spectro-
grams and then further applied NMF to multi-sensor fusion for compound fault separa-
tion [17]. The diagnostic scope of NMF from the aspect of sparse regularization was stud-
ied for bi-spectrum decomposition by Liang et al. [18,19]. He et al. [20] introduced mani-
fold learning for representing fault features in the TF domain by nonlinear mapping. 

However, owing to the dimensional limitation of matrix representations, vectoriza-
tion must be performed to further process higher-order (i.e., order larger than three, or 
multi-way) data, inevitably neglecting the inherent localized features such as multi-di-
mensional correlations. Hence, based on multilinear algebra, researchers resort to tensors 
for representing multi-way arrays and develop tensor decomposition (TD) for multidi-
mensional data mining. As an extension to matrix component analysis, TD fills the gap 
from two-way analytics to multi-way component analytics. Examples of well-known TD 
models include the canonical polyadic decomposition or parallel factor analysis (CAN-
DECOMP/PARAFAC decomposition or CPD in short) [21], the Tucker decomposition 
(aka the higher-order singular value decomposition (HOSVD) with orthogonal con-
straints) [22], nonnegative CPD (NCPD), nonnegative Tucker decomposition (NTD), etc. 
In [23], Cichocki and Mandic et al. gave a thorough review of TD and its applications for 
multi-way component analysis. A detailed guide of tensor methods for multi-sensor sig-
nal processing was summarized by Miron et al. [24]. Whereas in condition-based mainte-
nance, limited applications of TD were found within current literature. Zhao et al. repre-
sented multiple intrinsic mode functions (IMF) into a Hankel tensor and applied tensor 
rank decomposition for bearing fault extraction [25]. The improved support tensor ma-
chine was proposed to classify the high-order condition monitoring data for rotating ma-
chinery diagnosis with imbalanced data [26]. Multi-dimensional noise reduction was in-
troduced by Hu et al. to signal enhancement based on HOSVD for rotating machine diag-
nosis [27]. Sparse NCPD was applied to the impact feature extraction from the three-way 
TF representation of a single vibration signal [28] and to the fault identification using 
multi-channel measurements [29]. These examples have preliminarily demonstrated the 
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efficacy of the high-order tensor representations and the corresponding data mining tech-
niques for fault diagnosis purposes. Following this line of research, some issues that limit 
the diagnostic performance of current TD models are notable and deserve necessary im-
provements: 
(1) For CPD, the rank-one decomposition property requires the same number of lower 

ranks for each tensor mode (the dimensions of a tensor are often referred to as 
modes), which might be incompatible to express the inherent correlations where each 
mode has various number of latent components; 

(2) Although different low-rank dimensions are allowed, the Tucker decomposition is 
often criticized for its poor uniqueness and the curse of dimensionality (i.e., the core 
tensor is dense whose entry number scales exponentially with the tensor order) [30]; 

(3) Diverse ways of representing vibration data as tensors can be found while a physi-
cally interpretable way is needed. To this end, the multi-dimensional correlation 
across different modes (such as the spectral, temporal, and spatial modes) might need 
more intuitive illustrations for diagnostic purposes. 
To address the above issues, a novel diagnostic methodology has been formulated 

on the basis of time-frequency representations and the low rank approximated nonnega-
tive Tucker decomposition [30,31], or LRANTD, a two-step model combining low-rank 
approximation (LRA) and NTD, which adaptively extracts the informative bands of the 
latent temporal patterns from the vibration signals. In the proposed method, a three-way 
TF tensor is generated from the single-channel or multi-channel vibration measurements 
by the introduced segmentation operation; it can be efficiently factorized by LRANTD 
into three factor matrices (embedding the latent features) and a core tensor (preserving 
the multi-dimensional correlations). The interpretation from the decomposed factors to 
the physical dimensions (including the spectral, temporal, and spatial dimensions) is elab-
orated in detail and the multi-dimension correlations preserved by the core tensor are 
illustrated graphically via the Hinton diagrams. Furthermore, the LRANTD model can be 
solved efficiently based on the iterative algorithms that integrate hierarchical alternating 
least squares (HALS) and multiplicative update (MU), which allow the flexible choice of 
the lower rank numbers for each tensor mode as compared to the CPD model and reduces 
the computational cost against the standard NTD. 

For performance verification, the proposed method was applied to fault diagnosis 
using the bearing vibration data measured from multiple accelerated run-to-failure exper-
iments [32]. Three typical health states including the incipient fault state, the maximal 
kurtosis state, and the severe fault state (later marked by Case A, B, and C) were analysed, 
whose results indicated the effectiveness of the proposed method for informative band 
extraction and fault signature enhancement. For the analysis using the single-channel sig-
nal, the diagnostic performance of LRANTD was verified through the comparative stud-
ies against a few successful benchmarks including smoothed envelope analysis, fast Kur-
togram (FK), and empirical mode decomposition (EMD). For multi-channel sensor fusion, 
the cross spectrum computed based on LRANTD also outweighed the conventional ap-
proach based on the cross-power spectral density (CPSD). 

This paper first provides the details of experimental vibration data and the observa-
tions made on their trend of the measured vibration RMS and Kurtosis values in Section 
2. The principle of the LRANTD model is presented in Section 3, where the diagnostic 
methodology is also proposed for the defect detection in the anti-frication bearings. In 
Section 4, the LRANTD model is applied to identify fault signatures from the single-chan-
nel acceleration signal. Comparative studies are subsequently provided in Section 5 to 
show the effectiveness of the proposed method. Then, the cross-spectral analysis in Sec-
tion 6 demonstrates the usage of the proposed LRANTD method for multi-sensors fusion 
to further reduce the background noises in the spectrum and hence improve the bearing 
fault detection process. Finally, the concluding remarks are given in Section 7. Basic nota-
tions are listed in Table 1. 
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Table 1. Basic notations and properties. 

 𝟎𝟎 The vector/matrix with all its entries being zero. 
𝑼𝑼 ≥ 𝟎𝟎, 𝒖𝒖𝑟𝑟 Nonnegative matrix 𝑼𝑼 and its 𝑟𝑟-th column vector. 

𝑼𝑼(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝑅𝑅𝑛𝑛, 𝒖𝒖𝑟𝑟
(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×1 

Mode-𝑛𝑛 matrix and its 𝑟𝑟-th column vector, 𝑟𝑟 =
{1,2, … ,𝑅𝑅𝑛𝑛}. 

𝓨𝓨 ∈ ℝ𝐼𝐼1×𝐼𝐼2⋯×𝐼𝐼𝑁𝑁 ,𝒀𝒀(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×∏ 𝐼𝐼𝑖𝑖𝑖𝑖≠𝑛𝑛  N-way arrays or tensor and its mode-𝑛𝑛 matricizaton. 
𝓖𝓖 ∈ ℝ𝑅𝑅1×𝑅𝑅2⋯×𝑅𝑅𝑁𝑁, 𝑮𝑮(𝑛𝑛) ∈

ℝ𝑅𝑅𝑛𝑛×∏ 𝑅𝑅𝑖𝑖𝑖𝑖≠𝑛𝑛  
Core tensor and its mode-𝑛𝑛 matricizaton. 

(𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑁𝑁) Low-rank dimensions for NTD, 𝑅𝑅𝑛𝑛 < 𝐼𝐼𝑛𝑛 
𝕀𝕀 The index set of positive integers, 𝕀𝕀 = {1,2, … ,𝑁𝑁}. 

𝓨𝓨′ = 𝓨𝓨 ×𝑛𝑛 𝑼𝑼(𝑛𝑛) Mode-𝑛𝑛 product, 𝓨𝓨′ ∈ ℝ𝐼𝐼1×⋯𝐼𝐼𝑛𝑛−1𝑅𝑅𝑛𝑛𝐼𝐼𝑛𝑛+1⋯×𝐼𝐼𝑁𝑁 

𝑲𝑲 = 𝑷𝑷⊗𝑸𝑸 
Kronecker product of 𝑷𝑷 ∈ ℝ𝐼𝐼1×𝐼𝐼2 and 𝑸𝑸 ∈ ℝ𝑅𝑅1×𝑅𝑅2  

yields 𝑲𝑲 = [𝑝𝑝𝑖𝑖1𝑖𝑖2𝑸𝑸] ∈ ℝ𝐼𝐼1𝑅𝑅1×𝐼𝐼2𝑅𝑅2  

⊛,
𝑼𝑼
𝑼𝑼′ Element-wise multiplication, division 

𝓖𝓖 ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛) 
is equal to 𝓖𝓖 ×1 𝑼𝑼(1) ⋯×𝑁𝑁 𝑼𝑼(𝑁𝑁).  If 𝓨𝓨 = 𝓖𝓖 ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛), 

then 𝒀𝒀(𝑛𝑛) =
𝑼𝑼(𝑛𝑛)𝑮𝑮(𝑛𝑛)(𝑼𝑼(𝑁𝑁)⨂⋯𝑼𝑼(𝑛𝑛+1)⨂𝑼𝑼(𝑛𝑛−1) ⋯⨂𝑼𝑼(1))T. 

𝒚𝒚𝑖𝑖 ∈ ℝ𝐿𝐿, 𝑖𝑖 = 1, … ,𝑀𝑀 
The 𝑖𝑖-th channel acceleration with 𝐿𝐿 points in length, 

within 𝑀𝑀 sensors measurement. 

𝒚𝒚𝑖𝑖,𝑗𝑗 ∈ ℝ𝐿𝐿𝑠𝑠 , 𝑦𝑦𝑖𝑖 ,𝑗𝑗(𝑗𝑗) 
The 𝑗𝑗-th segment resampled from the 𝑖𝑖-th channel 

signal, the 𝑗𝑗-th entry of  𝒚𝒚𝑖𝑖,𝑗𝑗. 

𝒀𝒀𝑖𝑖,𝑗𝑗 ∈ ℝ𝐼𝐼1×𝐼𝐼2,  𝑌𝑌(𝑖𝑖1, 𝑖𝑖2) Spectrogram matrix with 𝐼𝐼1 frequency bins and 𝐼𝐼2 
time points, (𝑖𝑖1, 𝑖𝑖2)th-entry of 𝒀𝒀 

𝑆𝑆, 𝐿𝐿𝑠𝑠, 𝐼𝐼3 
The number of data segments resampled from one 
signal, the length of each segmentation, the total 

number of segments 

2. Experimental Rig and Measured Vibration 
The bearing vibration data collected from the accelerated life tests available in the 

XJTU-SY bearing database [32] are beneficial for the diagnostic performance validation 
under deteriorating health conditions and thus used in this study. A simple schematic of 
the experimental bearing test rig is shown in Figure 1. It mainly consists of an alternating 
current (AC) induction motor, an intermediate shaft supported through two ball (LDK 
UER204) bearings, and a hydraulic loading system to apply the load on the bearing in the 
horizontal direction. The vibration database [32] are composed of a total of 15 experi-
mental groups based on the three different sets of operating conditions of the running 
speeds and load levels. Further details on the rig, conducted experiments, and the vibra-
tion data can be found in the study by Wang et al. [32]. 

 
Figure 1. Schematic of the experimental rig with accelerometers locations. 
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In this work, the measured vibration acceleration data for the ‘Bearing 1_1’ [32] are 
considered and analysed to demonstrate the usefulness of the proposed method. The vi-
bration acceleration data for the ‘Bearing 1_1’ were collected by Wang et al. [32] with the 
shaft speed of 35 Hz and a hydraulic load of 12 kN being applied to the bearing. The 
‘Bearing 1_1’ data set contains 123 data records, each of which is acquired at an interval 
of 1 Minute and encompasses 1.28 s of vibration acceleration measured on the bearing in 
the vertical and horizontal directions. These 1.28 s data were collected at the sampling 
frequency, 𝑓𝑓𝑠𝑠 of 25,600 Hz. The 123 data records means that the run-to-failure experiment 
lasted for two hours and 3 min until the stopping criteria was met (i.e., the maximum 
acceleration amplitude exceeding 10 times that in the normal state). The bearing specifi-
cations and the calculated faults characteristic frequencies are listed in Table 2. 

Table 2. Test bearing specifications (𝑓𝑓𝑟𝑟:shaft speed, 𝑓𝑓𝑐𝑐 : cage frequency, 𝑓𝑓𝑏𝑏 : ball spin frequency (BSF), 
𝑓𝑓𝑜𝑜: ball pass frequency outer (BPFO), 𝑓𝑓𝑖𝑖: bass pass frequency inner (BPFI).). 

Parameter Value Characteristics Value 
Mean diameter 34.55 mm 𝑓𝑓𝑟𝑟 35 Hz 
Ball diameter 7.92 mm 𝑓𝑓𝑐𝑐 13.49 Hz 

Number of balls 8 𝑓𝑓𝑏𝑏 72.33 Hz 
Contact angle 0° 𝑓𝑓𝑜𝑜 107.91 Hz 
Load rating 12 kN 𝑓𝑓𝑖𝑖 172.09 Hz 

To better observe the degradation process of the test bearing, the trends of overall 
bearing vibration in both directions are presented in Figure 2 based on two different indi-
cators, i.e., Root Mean Square (RMS) and Kurtosis, for each acceleration record. From the 
normal state to severe-fault state, the RMS indicator follows an increasing trend and 
surges since the 78th minute, whereas Kurtosis is more fluctuant and rises much earlier 
from around the 66th minute, then peaking at the 78th. Based on this observation, as an 
impulsiveness indicator, Kurtosis is justified for recognizing the degradation of AFBs. By 
comparisons, both indicators have higher amplitudes in the horizontal direction than in 
the vertical direction, which is due to the hydraulic loading on the horizontal axis. 

Based on the vibration trend, three typical timestamps indicating incipient-fault 
state, the maximum Kurtosis state, and the severe-fault state were selected for further 
analysis, i.e., the 66th, 78th, and 80th records, as denoted by the capital letters ‘A’, ‘B’, and 
‘C’ in Figure 2. 

(a) 
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(b) 

 

Figure 2. Trends of the overall bearing vibration by the acceleration RMS values and Kurtosis: (a) 
the horizontal-channel vibration and (b) the vertical-channel vibration. 

3. Proposed Method 
The concept of the LRANTD method is presented first and then the diagnostic ap-

proach using this concept is proposed. 

3.1. Nonnegative Tucker Decomposition Based on Low-Rank Approximation 
This section is divided into a number of steps to achieve the optimised LRANTD 

model to aid the understanding. 

3.1.1. Standard Nonnegative Tucker Decomposition (NTD) 
The tensor decomposition theory was first developed for factor analysis and data 

mining of multi-way psychometric data [22]. As an extension of matrix component anal-
ysis, the Tucker decomposition, or higher-order SVD of an 𝑁𝑁-way real-value tensor 𝓨𝓨 ∈
ℝ𝐼𝐼1×𝐼𝐼2⋯×𝐼𝐼𝑁𝑁, can be defined as the mode-𝑛𝑛 products of the core tensor and the factor matri-
ces [22], 

𝓨𝓨 = 𝓖𝓖 ×1 𝑼𝑼(1) ×2 𝑼𝑼(2) ⋯×𝑁𝑁 𝑼𝑼(𝑁𝑁) (1) 

where 𝓖𝓖 ∈ ℝ𝑅𝑅1×𝑅𝑅2⋯×𝑅𝑅𝑁𝑁  is the core tensor and 𝑼𝑼(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝑅𝑅𝑛𝑛 ,𝑛𝑛 = 1, 2,⋯ ,𝑁𝑁, represent 𝑁𝑁 
mode-𝑛𝑛 matrices, respectively. The multilinear rank of the Tucker decomposition can be 
denoted by the 𝑁𝑁-tuple (𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑁𝑁). Note that 𝑅𝑅𝑛𝑛 ≤ 𝐼𝐼𝑛𝑛 , a lot of multi-dimensional 
data, e.g., RBG images and multi-sensor signals, could be well represented by low-rank 
representations. To that end, the HOSVD method is the workhorse for computing such 
representations for unconstrained Tucker decomposition. Similar to the column-wise or-
thogonality of the singular matrices in SVD, the mode-𝑛𝑛 matrices of the HOSVD are also 
semi-orthogonal, i.e., 𝑼𝑼(𝑛𝑛)

𝑇𝑇 𝑼𝑼(𝑛𝑛) = 𝑰𝑰 . Due to the rotational indeterminacy, the uncon-
strained Tucker decomposition can be restricted by the lack of uniqueness and the curse 
of dimensionality [30]. 

For the better uniqueness, Nonnegative Tucker Decomposition (NTD) is put forward 
by relaxing the orthogonality requirement in Tucker decomposition to approximate the 
original tensor via a set of nonnegative factors, i.e., 𝓖𝓖  and  𝑼𝑼(𝑛𝑛)  are subject to ele-
mentwise nonnegativity constraint [33], 

𝓨𝓨� = 𝓖𝓖 ×1 𝑼𝑼(1) ×2 𝑼𝑼(2) ⋯×𝑁𝑁 𝑼𝑼(𝑁𝑁), s. t.𝓖𝓖,  𝑼𝑼(𝑛𝑛) ≥ 𝟎𝟎 (2) 

or equivalently in a matricization form, 

𝒀𝒀�(𝑛𝑛) = 𝑼𝑼(𝑛𝑛)�𝑼𝑼(𝑁𝑁)⨂𝑼𝑼(𝑁𝑁−1) ⋯⨂𝑼𝑼(𝑛𝑛+1)⨂𝑼𝑼(𝑛𝑛−1)⨂⋯𝑼𝑼(1)�𝑮𝑮(𝑛𝑛)
 T = 𝑼𝑼(𝑛𝑛)𝑽𝑽(𝑛𝑛)

 T  (3) 

where 𝒀𝒀�(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×∏ 𝐼𝐼𝑖𝑖𝑖𝑖≠𝑛𝑛  and 𝑮𝑮(𝑛𝑛) ∈ ℝ𝑅𝑅𝑛𝑛×∏ 𝑅𝑅𝑖𝑖𝑖𝑖≠𝑛𝑛  are the mode-𝑛𝑛 matricizations of tensor 
𝓨𝓨�  and 𝓖𝓖, and 𝑽𝑽(𝑛𝑛) is an auxiliary notation defined by, 
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𝑽𝑽(𝑛𝑛) = (𝑼𝑼(𝑁𝑁)⨂⋯𝑼𝑼(𝑛𝑛+1)⨂𝑼𝑼(𝑛𝑛−1) ⋯⨂𝑼𝑼(1))𝑮𝑮(𝑛𝑛)
 T  (4) 

The above nonnegative approximation is achieved by minimizing the approximation 
error based on the squared Frobenius norm, as in Formula (5) that further unfolds into 
matrix form, which can be solved effectively by a few alternating algorithms in the coor-
dinate descent family. 

min
 𝓖𝓖, 𝑼𝑼(𝑛𝑛)≥𝟎𝟎

1
2
�𝓨𝓨 − 𝓨𝓨��

𝐹𝐹
2 =

1
2
�𝒀𝒀(𝑛𝑛) − 𝑼𝑼(𝑛𝑛)𝑽𝑽(𝑛𝑛)

 T �
𝐹𝐹

2 ,𝑛𝑛 ∈ {1, … ,𝑁𝑁} (5) 

Two main attributes are endowed by the imposed nonnegativity: (1) only additive 
operations are allowed without subtractions, thus enhancing the interpretability in feature 
engineering applications; (2) since many entries of the core tensor becomes zeros, the re-
sulting factors are often sparse, exhibiting parts-based features and alleviating the curse 
of dimensionality. 

3.1.2. The Low Rank Approximated NTD (LRANTD) Model 
Many efforts have been cast to reduce the computational cost in NTD for the low-

rank approximation (LRA) of large-scale data, especially the computation of the gradients 
for the tensor-based cost function. Given its flexibility to other well-established LRA tech-
niques and noise robustness, the low rank approximated nonnegative Tucker decompo-
sition, or LRANTD, developed by Zhou, Cichocki et al. [30,31] is introduced as the key 
tensor factorization model in this work, which consists of two main steps: 
(1) LRA. Perform unconstrained Tucker decomposition as in (1) using HOSVD to obtain 

an approximation of the original tensor, 𝓨𝓨, which gives 

𝓨𝓨 ≈ 𝓨𝓨� = 𝓖𝓖� ×1 𝑼𝑼�(1) ×2 𝑼𝑼�(2) ⋯×𝑁𝑁 𝑼𝑼�(𝑁𝑁) (6) 

and the mode-𝑛𝑛 unfolding of the LRA tensor, 𝓨𝓨� , 

𝒀𝒀�(𝑛𝑛) = 𝑼𝑼�(𝑛𝑛)𝑮𝑮�(𝑛𝑛)(𝑼𝑼�(𝑁𝑁)⨂⋯𝑼𝑼�(𝑛𝑛+1)⨂𝑼𝑼�(𝑛𝑛−1) ⋯⨂𝑼𝑼�(1))T = 𝑼𝑼�(𝑛𝑛)𝑽𝑽�(𝑛𝑛)
 T  (7) 

(2) NTD. Minimize the new cost functions with the nonnegativity constraints on the fac-
tors as in (8). Note that given the tensor order 𝑁𝑁, a total of 𝑁𝑁 unfolding forms from 
𝓨𝓨�  are defined in (7) and the sequence of 𝑁𝑁 minimization problems should be calcu-
lated for each factor matrix, 𝑼𝑼(𝑛𝑛). 

min
 𝓖𝓖, 𝑼𝑼(𝑛𝑛)≥𝟎𝟎

𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁 = 1
2
�𝓨𝓨� − 𝓨𝓨��

𝐹𝐹
2 = 1

2
�𝑼𝑼�(𝑛𝑛)𝑽𝑽�(𝑛𝑛)

 T − 𝑼𝑼(𝑛𝑛)𝑽𝑽(𝑛𝑛)
 T �

𝐹𝐹

2 , 𝑛𝑛 ∈ {1, … ,𝑁𝑁}. (8) 

Without frequent visits to the original big tensor, the LRA step not only significantly 
reduces the computation complexity for the subsequent optimizations, but also sup-
presses the interference in the raw data tensor [30]. Rather than directly implementing 
NTD of a tensor, LRANTD combines HOSVD with NTD to provide a trade-off between 
efficiency and approximation error. 

3.1.3. Optimization Algorithms 
Both (5) and (8) are known as nonnegative least squares problems, which can be 

solved by a few well-known first-order methods from the area of NMF, such as multipli-
cative update (MU) [34], accelerated proximal gradient (APG) [35], the hierarchical alter-
nating least squares (HALS) algorithm [36], active set methods [37], etc. By a crafty choice 
of learning step, these methods avoid the searching process for an appropriate step size 
in gradient descent and can be further extended to various tensor decomposition models. 

For ease of comprehension, the following optimization algorithm is provided for 
three-way tensor decomposition, i.e., 𝑁𝑁 = 3. The lower rank dimensions of the decompo-
sition are given as (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) ideally in accordance with the number of latent compo-
nents. And the desired variables 𝑼𝑼(𝑛𝑛),𝑛𝑛 ∈ {1, 2, 3} and 𝓖𝓖 are initialized randomly within 
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the interval of 0 and 1. See Figure 3 for an intuitive illustration of the three-way tensor 
decomposition and consult [30] for further details of extensions to higher-order tensor 
(𝑁𝑁 > 3). 

 
Figure 3. An illustration of the tensor decomposition model for TF tensor factorization. 

• The iterative update rule for mode-𝑛𝑛 (factor) matrices 𝑼𝑼(𝑛𝑛) 
The LRANTD of the three-way tensor is computed based on the matricization oper-

ation undertaken for each tensor mode. For example, 𝒀𝒀(1) ∈ ℝ𝐼𝐼1×𝐼𝐼2𝐼𝐼3 is the mode-1 matri-
cization form of the tensor, 𝓨𝓨 ∈ ℝ𝐼𝐼1×𝐼𝐼2×𝐼𝐼3. Taking the LRA step in (7), the approximation 
term 𝒀𝒀�(1) can be obtained and the mode-1 factor matrix 𝑼𝑼(1) ∈ ℝ𝐼𝐼1×𝑅𝑅1  can be calculated 
via the NTD step in (8). 

To generalize, for the mode-𝑛𝑛 matrix, 𝑼𝑼(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝑅𝑅𝑛𝑛 ,𝑛𝑛 ∈ {1, 2, 3}, the low-rank ap-
proximation 𝒀𝒀�(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×∏ 𝐼𝐼𝑖𝑖𝑖𝑖≠𝑛𝑛  is first attained in the LRA step, and the NTD step applies 
the HALS algorithm to update only one column of 𝑼𝑼(𝑛𝑛) at a time subsequently. By defin-
ing the residue term as 

𝒀𝒀�(𝑛𝑛)
 𝑟𝑟 = 𝒀𝒀�(𝑛𝑛) −∑ 𝒖𝒖𝑖𝑖

(𝑛𝑛)𝒗𝒗𝑖𝑖
(𝑛𝑛)T

𝑖𝑖≠𝑟𝑟 , 𝑟𝑟 ∈ {1,⋯ ,𝑅𝑅𝑛𝑛}, 𝑛𝑛 ∈ {1, 2, 3}, (9) 

Equation (8) expands to a series of minimization problems that sequentially optimize 
𝒖𝒖𝑟𝑟

(𝑛𝑛) while fixing the remaining entries and variables, as given by 

min
 𝒖𝒖𝑟𝑟

(𝑛𝑛)≥𝟎𝟎
𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁 = 1

2
�𝒀𝒀�(𝑛𝑛)

 𝑟𝑟 − 𝒖𝒖𝑟𝑟
(𝑛𝑛)𝒗𝒗𝑟𝑟

(𝑛𝑛)T�
𝐹𝐹

2
, 𝑟𝑟 ∈ {1,⋯ ,𝑅𝑅𝑛𝑛}, (10) 

where 𝒖𝒖𝑟𝑟
(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×1 and 𝒗𝒗𝑟𝑟

(𝑛𝑛) ∈ ℝ(∏ 𝐼𝐼𝑖𝑖𝑖𝑖≠𝑛𝑛 )×1 are the 𝑟𝑟-th column vectors of 𝑼𝑼(𝑛𝑛) and 𝑽𝑽(𝑛𝑛) 
with 𝑟𝑟 ∈ {1,2,⋯ ,𝑅𝑅𝑛𝑛}. Note that 𝒗𝒗𝑟𝑟

(𝑛𝑛) always serves as an auxiliary term and is decoupled 
from 𝑼𝑼(𝑛𝑛) as in (4). 

Then, the gradient of 𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁 with respect to 𝒖𝒖𝑟𝑟
(𝑛𝑛) can computed as 

𝜕𝜕𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁
𝜕𝜕𝒖𝒖𝑟𝑟

(𝑛𝑛) = 𝒖𝒖𝑟𝑟
(𝑛𝑛)𝒗𝒗𝑟𝑟

(𝑛𝑛)T𝒗𝒗𝑟𝑟
(𝑛𝑛) − 𝒀𝒀�(𝑛𝑛)

 𝑟𝑟 𝒗𝒗𝑟𝑟
(𝑛𝑛) (11) 

Assigning zero to the gradient and imposing the nonnegativity constraints further 
gives 

𝒖𝒖𝑟𝑟
(𝑛𝑛) = max{0,𝒀𝒀�(𝑛𝑛)

 𝑟𝑟 𝒗𝒗𝑟𝑟
(𝑛𝑛)�𝒗𝒗𝑟𝑟

(𝑛𝑛)T𝒗𝒗𝑟𝑟
(𝑛𝑛)�

−1
} (12) 

Substituting the residue in (7) further gives the following update rule, 

𝒖𝒖𝑟𝑟
(𝑛𝑛) ← 𝒖𝒖𝑟𝑟

(𝑛𝑛) +
1

𝒗𝒗𝑟𝑟
(𝑛𝑛)T𝒗𝒗𝑟𝑟

(𝑛𝑛) max{0,𝒀𝒀�(𝑛𝑛)𝒗𝒗𝑟𝑟
(𝑛𝑛) − 𝑼𝑼(𝑛𝑛)𝑽𝑽(𝑛𝑛)

 T 𝒗𝒗𝑟𝑟
(𝑛𝑛)} (13) 
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Thus, by updating a total of 𝑅𝑅𝑛𝑛 columns, the mode-𝑛𝑛 matrix 𝑼𝑼(𝑛𝑛) can be obtained. 
Consequently, the three factor matrices, 𝑼𝑼(1), 𝑼𝑼(2), and 𝑼𝑼(3) can be successively com-
puted, as in Figure 3. 
• The iterative update rule for core tensor 𝓖𝓖 

Next, the MU algorithm can be applied in the NTD step to update the core tensor, 
𝓖𝓖 ∈ ℝ𝑅𝑅1×𝑅𝑅2×𝑅𝑅3 . From (6) and (8), the gradient of the cost function with respect to 𝓖𝓖 can be 
computed as in 

𝜕𝜕𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁
𝜕𝜕𝓖𝓖

= 𝓨𝓨� ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛)
 T − 𝓨𝓨� ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛)

 T  (14) 

where 𝕀𝕀 reduces to 𝕀𝕀 = {1, 2, 3} as 𝑁𝑁 = 3. By taking the step size in the gradient descent 
as 𝜂𝜂 = 𝓖𝓖

𝓨𝓨�×𝑛𝑛∈𝕀𝕀𝑼𝑼(𝑛𝑛)
 T , the additive update rule reduces to pure multiplicative operations, 

providing an efficient computation algorithm for the core tensor, 

𝓖𝓖 ← 𝓖𝓖⊛
𝑚𝑚𝑚𝑚𝑚𝑚{0, 𝓨𝓨� ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛)

 𝑇𝑇 } 
𝑚𝑚𝑚𝑚𝑚𝑚  {0, 𝓨𝓨� ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛)

 𝑇𝑇 }
= 𝓖𝓖⊛

𝑚𝑚𝑚𝑚𝑚𝑚{0, 𝓖𝓖� ×𝑛𝑛∈𝕀𝕀 𝑼𝑼�(𝑛𝑛) ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛)
 𝑇𝑇 } 

𝑚𝑚𝑚𝑚𝑚𝑚  {0, 𝓖𝓖 ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛) ×𝑛𝑛∈𝕀𝕀 𝑼𝑼(𝑛𝑛)
 𝑇𝑇 }

 (15) 

where ⊛ denotes the element-wise multiplication. 

3.2. Diagnostic Scope of the LRANTD Model 
In this section, the diagnostic application of the LRANTD model is illustrated by an-

alysing multi-way vibrational data. The fundamentals of the tensor-based diagnostics are 
explained with practical considerations. Then, the methodology flowchart for fault diag-
nosis of AFBs is presented. 

3.2.1. Data Pre-Processing: Moving Segmentation 
Given the input vibration data, either from single-channel or multi-channel sensor 

measurements, the pre-processing operation termed moving segmentation is introduced 
to the raw signals to generate multi-way arrays that allow the subsequent multilinear data 
mining. Given a signal from 𝑖𝑖-th channel measurement, 𝒚𝒚𝑖𝑖 ∈ ℝ𝐿𝐿 , 𝑖𝑖 ∈ {1,⋯ ,𝑀𝑀}, where 𝑀𝑀 
denotes the total number of sensor channels and 𝐿𝐿 represents the signal length in data 
points, a total of 𝑆𝑆 segments can be resampled from 𝒚𝒚𝑖𝑖 by a moving-window fashion. By 
segmentations, the 𝑗𝑗-th segment, 𝒚𝒚𝑖𝑖,𝑗𝑗 ∈ ℝ𝐿𝐿𝑠𝑠 , of the source signal, 𝒚𝒚𝑖𝑖, is defined by 

𝒚𝒚𝑖𝑖,𝑗𝑗 = [𝑦𝑦𝑖𝑖(𝑗𝑗),𝑦𝑦𝑖𝑖(𝑗𝑗 + 1),⋯ ,𝑦𝑦𝑖𝑖(𝐿𝐿𝑠𝑠 + 𝑗𝑗 − 1)], 𝑗𝑗 = 1, 2,⋯ , 𝑆𝑆 (16) 

where 𝐿𝐿𝑠𝑠 (𝐿𝐿𝑠𝑠 ≤ 𝐿𝐿 − 𝑆𝑆 + 1) controls the length of each segment and is suggested to be an 
integral multiple of the shaft-rotation period. The step size of the segmentation is set at 1 
such that the adjacent segments are highly overlapped and self-similar. The above settings 
are important to enhance the inherent components in the signals as the random interfer-
ence could be suppressed by the subsequent decomposition in ideal conditions. 
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3.2.2. Tensorization: Generating the Time-Frequency Tensor 
The vibration signals from a localized fault in the AFBs are known to be non-station-

ary, i.e., the statistical behaviours of the signals are inconstant, and are indeed pseudo-
cyclostationary as pointed out by Antoni and Randall [38]. As effective non-stationarity 
analysis tools, time-frequency (TF) representations provide a thorough depiction of signal 
variations by balancing the time-domain and frequency-domain features. On each one-
way signal segment, 𝒚𝒚𝑖𝑖,𝑗𝑗, the short-time Fourier transform (STFT) is first performed, as 
given by 

STFT(𝑖𝑖1, 𝑖𝑖2) = � 𝑦𝑦𝑖𝑖,𝑗𝑗(𝑖𝑖2 + 𝜏𝜏)𝑤𝑤(𝜏𝜏)
𝐿𝐿𝑤𝑤−1

𝜏𝜏=0

𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑖𝑖1/𝐼𝐼1  (17) 

where 𝑖𝑖1 = 0, 1,⋯ , 𝐼𝐼1 − 1  denotes the frequency bin with 𝐼𝐼1  bins in total, 𝑖𝑖2 =
0, 1,⋯ , 𝐼𝐼2 − 1 is the time bin for 𝐼𝐼2  bins in total, and 𝑤𝑤(𝜏𝜏) is the window function of 
length 𝐿𝐿𝑤𝑤. In practice, STFT can be efficiently computed by implementing fast Fourier 
transform for each windowed frame. Then, by taking the absolute value of the STFT result, 
the corresponding two-way TF spectrogram, 𝒀𝒀𝑖𝑖,𝑗𝑗, is attained with each entry defined as 

𝑌𝑌𝑖𝑖,𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) = |STFT(𝑖𝑖1, 𝑖𝑖2)| (18) 

Consequently, by arranging the adjacent TF spectrograms, one can construct a three-
way TF tensor from single or multi-sensor measurements by absorbing a total of 𝐼𝐼3 = 𝑀𝑀𝑀𝑀 
spectrograms into the last mode. For illustration, Figure 3 provides an example of the TF 
tensor, 𝓨𝓨 ∈ ℝ𝐼𝐼1×𝐼𝐼2×𝐼𝐼3, spanned by three physical modes, i.e., the frequency mode, the time 
mode, and the data-segment mode. 

Extensive research utilized multiple sensors for vibration measurements under the 
assumption that comprehensive information, including the fault features, could be ob-
tained, while it might be more often a case where a single measurement is analysed with-
out detailed clarification. The motivations of tensorization the raw vibrational signals are 
two folds: 
• Tensors are natural representations for multi-way data beyond the dimensional re-

striction of matrix analysis, which makes possible the data mining for higher-order 
connections among multi-channel vibration measurements; 

• The time-frequency signatures of localized faults in AFBs are likely to be low-rank, 
as inherited by the repetitive occurrences of the impact-like structures in the TF spec-
trogram. It is therefore straight-forward to represent the signature-of-interest 
through low-rank learning models. 

3.2.3. Tensor Decomposition by LRANTD 
After selecting the low-rank dimensions as (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) for decomposition, one can 

further apply the presented LRANTD algorithm to the TF tensor for multilinear data min-
ing and dimensionality reduction, which returns four factors with interpretable physical 
meaning (recall Figure 3 for illustrations): 
(1) Based on the proposed method, the latent frequency bands of the TF spectrograms 

can be automatically extracted without subjective selection. The mode- 1  matrix 
𝑼𝑼(1) ∈ ℝ𝐼𝐼1×𝑅𝑅1  is called the spectral factor that preserves the 𝑅𝑅1 dominant frequency 
bands or spectral subfactors (SS) in its columns, 𝒖𝒖𝑟𝑟

(1) ∈ ℝ𝐼𝐼1 . Each SS is normalized 
within the interval [0, 1] to indicate the informative bands, which in turn rescales 
the corresponding temporal pattern to have meaningful amplitude; 

(2) The mode-2 matrix 𝑼𝑼(2) ∈ ℝ𝐼𝐼2×𝑅𝑅2  serves as the temporal factor that adaptively iden-
tifies the 𝑅𝑅2 principal encoding patterns or the temporal subfactors (TS) embedded 
in the corresponding frequency bands. Essentially, these temporal components are 
the envelope profiles that reveal the variation in TF energy within the informative 
bands as extracted in the corresponding SS; 
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(3) Similarly, the mode-3 matrix 𝑼𝑼(3) ∈ ℝ𝐼𝐼3×𝑅𝑅3  clusters 𝐼𝐼3 data segments into 𝑅𝑅3 seg-
ment-wise subfactors (SWS). Each SWS gives a hint about its relevance to the seg-
ments and sensor channels (or spatial locations). For multi-sensor measurements, the 
multiple SWS represent the dominating spatial components; 

(4) Therefore, the entries of the core tensor 𝓖𝓖 ∈ ℝ𝑅𝑅1×𝑅𝑅2×𝑅𝑅3 reflects the correlations across 
the spectral, the temporal, and the spatial dimensions, which can be visualized intu-
itively. In other words, the core tensor provides direct information about the spectral 
locations of the linked temporal patterns. 
Note that the multilinear rank is always smaller than the input dimension (𝑅𝑅𝑛𝑛 ≪ 𝐼𝐼𝑛𝑛), 

the presented LRANTD also provides an efficient multi-sensor fusion scheme that greatly 
reduces the computational storage, from 𝑂𝑂(∏ 𝐼𝐼𝑛𝑛𝑛𝑛 ) to 𝑂𝑂(∑ 𝐼𝐼𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛 + ∏ 𝑅𝑅𝑛𝑛𝑛𝑛 ), which is of 
practical value in modern manufacturing systems with sensor networks and cloud-based 
computing for condition monitoring. 

3.2.4. Evaluation Based on Spectrum Inspection 
Finally, based on the separated TS, Kurtosis values are used to assess their impul-

siveness and the frequency spectra are calculated to identify the characteristic frequencies 
of bearing faults. Overall, the proposed the diagnostic methodology based on LRANTD 
can be summarized into the flowchart in Figure 4. 

 
Figure 4. Flowchart of the diagnostic methodology. 

4. Data Analysis and Case Studies 
In this section, the proposed method was first applied to single-channel vibration 

(i.e., 𝑀𝑀 = 1) for AFB diagnosis under three typical health conditions. The diagnostic re-
sults based on LRANTD were elaborated. Further comparative studies against a few 
benchmark models were provided in Section 5. 

4.1. Case A 
It can be seen from the vibration trend in Figure 2 that the Kurtosis at timestamp A 

just begins to climb during the incipient stage of bearing degradation. Provided that the 
hydraulic load was applied from the horizontal axis, the horizontal acceleration was se-
lected for further analysis. In Figure 5a, a few irregular impacts appear in the acceleration 
signals, where judgment can hardly be made about the health state of the test bearing. In 
the amplitude spectrum in Figure 5b, the spectral peak points at around 1.2 kHz with 
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multiple bands rich in energy. Then, the signal was high-pass filtered with the cut-off fre-
quency at 1 kHz. After performing STFT with the 63-point Hanning window (using con-
sistent settings hereafter), the TF spectrogram of the filtered signal is still complex as 
shown in Figure 6a, where some impacts signatures are slightly clearer in the bands cen-
tred at 1.2 kHz, 5.5 kHz, 6.5 kHz, and 11 kHz. Hence, the early fault signal is hardly rec-
ognizable due to considerable background contaminations. 

(a) 

 

(b) 

 

Figure 5. (a) The horizontal acceleration signal and (b) its amplitude spectrum in Case A. 

 

 

(a) (b) 

Figure 6. Time−frequency representations of the analysed data: (a) STFT spectrogram. (b) Time−fre-
quency tensor reorganized from the spectrogram segments, 𝓨𝓨 ∈ ℝ256×14640×8. 

Setting the segmentation length to 20 times of rotation periods, i.e., 20𝑓𝑓𝑠𝑠/𝑓𝑓𝑟𝑟 ≈ 14640 
(0.57 s), the frequency bins of STFT as 256, and the number of segments as 𝑆𝑆 = 8 (𝐼𝐼3 =
1𝑆𝑆 = 8), the TF tensor in Case A, 𝓨𝓨 ∈ ℝ256×14640×8, could be constructed according to the 
procedure in Section 3, as shown in Figure 6b. 

As the number of latent features cannot be priorly known and the source determina-
tion remains a major challenge in current research, the low-rank dimensions (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) 
were selected based on trial and error as (4, 4, 2). Then, LRANTD was performed on 𝓨𝓨 
for multi-way data mining based on the algorithms combining the HALS and MU update 
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rules, which returned a factor set including the spectral factor 𝑼𝑼(1) ∈ ℝ256×4, the temporal 
factor 𝑼𝑼(2) ∈ ℝ14640×4 , the segment-wise factor 𝑼𝑼(3) ∈ ℝ8×2 , and the core tensor 𝓖𝓖 ∈
ℝ4×4×2, as in Figure 7. 

 
(a) 

 
(b) 

 
(c) 

  
(d) (e) 

Figure 7. Factors of LRANTD: (a) the Spectral Factor, (b) the Temporal Factor, consisting of 4 tem-
poral subfactors with kurtosis of 2.98, 4.1, 15.7, and 13.3, respectively, (c) the Segment-wise Factor 
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with 2 subfactors, and (d) the Core Tensor represented via its frontal slice w.r.t. SWS1, and (e) that 
w.r.t. SWS2. 

(1) Note that each SS in 𝑼𝑼(1)  had been normalized to intuitively reveal the spectral 
weight of the correlated TS, 𝑼𝑼(1) thereby adaptively extracted multiple dominant 
bands from the TF tensor, as shown in Figure 7a; 

(2) For the temporal factor 𝑼𝑼(2), it was found that the TS 3 and TS 4 exhibit apparent 
impulsive features and have relatively higher kurtosis, as shown in Figure 7b: 

(3) Each SWS in the segment-wise factor 𝑼𝑼(3) was found to have a correlation of over 
97% to all data segments. This is because all data segments are sampled from the 
same channel measurement and hence resemble one another; 

(4) Unlike the NMF factors, the mode matrices of LRANTD are implicitly linked with 
one another due to the flexible choice of lower rank dimensions. Such interconnec-
tions are embedded in entries of the core tensor, 𝓖𝓖. For visualization, the Hinton di-
agram of each frontal slice of the core tensor is shown in Figure 7d,e. For example, 
from Figure 7d, TS 4 was found to have a more distinctive correlation with SS 2 
against SS 1, indicating TS 4 is more likely to contain high-frequency components as 
inferred from Figure 7a. 
Then, the amplitude spectrum of each TS was computed and that with respect to the 

4th TS is shown in Figure 8. Both BPFO and its 2nd harmonics are clear and dominant, as 
marked by the green dash-dot line. Tracing the spectral property of this temporal pattern 
(TS 4) according to the Hinton diagram in Figure 7, it was found that the dominant fre-
quency band was extracted by the spectral factor in SS 2, indicating that the band from 11 
to 12 kHz is likely to comprise the outer-race fault components. 

 
Figure 8. Case A result via LRANTD: The amplitude spectrum of TS 4 with clear outer-race fault 
component. 

Therefore, the above result has shown the efficacy of the proposed diagnostic meth-
odology based on LRANTD for informative bands extraction, which is further verified by 
comparative studies in Section 5. 

4.2. Case B 
In Case B, the bearing vibration data with the maximum kurtosis (at the 78th minute) 

were analysed. From the horizontal acceleration signal in Figure 9a, it can be recognized 
that more impacts appear in repetitive but uneven patterns as compared to the Case A 
signal (Figure 5a). In the corresponding frequency spectrum, the dominant bands remain 
similar to the early stage as in Figure 5b, whereas the bands centred at 7.5 kHz and 12 kHz 
have gained more intense energy. Correspondingly, the TF spectrogram based on STFT is 
given in Figure 9c. The impact-like signatures with high amplitudes lie above 10 kHz in 
the TF domain. While the 1k Hz components, dominating the frequency spectrum, show 
more regular patterns but much lower energy in the spectrogram. Given the maximum 
kurtosis of the analysed signal, no pivotal diagnostic information can be learned from the 
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above observations directly. By TF analysis, one can better recognize the spectral locations 
of the inherent temporal behaviours, while the complex TF features still limit its diagnos-
tic performance, for which more advanced analysis should be introduced. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. (a) The horizontal acceleration signal, (b) the amplitude spectrum, and (c) the correspond-
ing STFT spectrogram in Case B. 

Presumably, the fault signatures in Case B (maximum kurtosis state) are more prom-
inent than that in Case A (at the early stage). Therefore, the low-rank dimensions were 
reduced to attain more concentrated fault features, i.e., (𝑅𝑅1,𝑅𝑅2,𝑅𝑅3) was set to (3, 3, 2). 
Keeping other settings same to the Case A, LRANTD was performed for factorizing the 
TF tensor, 𝓨𝓨 ∈ ℝ256×14640×8, obtained in the similar fashion according to Section 3. 

The resulting factors of the LRANTD are shown in Figure 10. Three SS with different 
dominant frequency bands were extracted in the spectral factor, i.e., [11, 12.5], [1,6], and 
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[7,8] kHz. The Kurtosis values of the three TS in Figure 10b are 19.5, 3.54, and 8.36, re-
spectively. Furthermore, the segment-wise factor in Figure 10c shows an opposite trend 
between the two SWS, indicating apparent differences between the separated compo-
nents. 

 
(a) 

 
(b) 

 
(c) 

  
(d) (e) 

Figure 10. Factors of LRA-NTD: (a) Spectral Factor, (b) Temporal Factor, (c) Segment-wise Factor, 
and (d) the Core Tensor represented via the frontal slice 1 and (e) the frontal slice 2. 
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Next, the amplitude spectrum of each TS was computed and those of the first two 
temporal factors were shown in Figure 11. As the test bearing had further degraded in 
Case B, both the amplitude spectra of the TS 1 and TS 2 have captured the characteristics 
of the outer-race fault, whereas the spectrum of TS 2 shows more prominent signs with 
higher peaks at the BPFO and its 2nd multiple. Recalling the core tensor in Figure 10d,e, 
the TS 1 are dominated by SS 1 and TS 2 by SS 2, indicating that the outer-race fault com-
ponent is more likely to locate itself in the bands of [1,6] and [11, 12.5] kHz. 

 
(a) 

 
(b) 

Figure 11. Case B results via LRANTD: (a) The amplitude spectrum of TS1 and (b) that of TS2. 

4.3. Case C 
In Case C, the source separation capability of the diagnostic algorithm based on 

LRANTD was demonstrated using a severe fault case (at the 80th minute) as the outer-
race fault developed. For consistency, the horizontal channel acceleration signal was ana-
lysed. As shown in Figure 12, the time-domain acceleration signal exhibits impulsive be-
haviour of high-amplitude (over 10 g) in a cyclic (or regular) manner, while the frequency 
spectrum shows that the most dominant band lies in [1, 2] kHz. Moreover, a closer look 
at the STFT spectrogram in Figure 12c provides that the dominant band centred at around 
1.2 kHz contains a series of impact signatures, while other bands remain highly complex 
and may scarcely help diagnosis. 
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(a) 

 
(b) 

 
(c) 

Figure 12. (a) The horizontal acceleration signal, (b) the amplitude spectrum, and (c) the correspond-
ing STFT spectrogram in Case C. 

Next, the same settings as in the flowchart in Figure 4 were used to obtain the three-
way TF tensor 𝓨𝓨 ∈ ℝ256×14640×8 and to perform LRANTD for tensor factorization. The 
resulting four factors are shown in Figure 13. The spectral factor in Figure 13a has ex-
tracted three SS whose dominant frequency bands are centred at 1.2 kHz, 11.5 kHz, and 
7.5 kHz, respectively. Three TS in Figure 13b show obvious impulsive patterns whose 
kurtosis values from TS 1 to TS 3 are 2.56, 8.06, and 4.30. Note that the core tensor in Figure 
13d,e have large values in the diagonal entries, indicating the one-to-one correspondence 
between each SS and TS (e.g., SS 1 is most relevant to TS 1, so is SS 2 to TS 2, etc.). 
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(a) 

 
(b) 

 
(c) 

  
(d) (e) 

Figure 13. Factors of LRANTD: (a) Spectral Factor, (b) Temporal Factor, (c) Segment-wise Factor, 
and (d) the Core Tensor represented via the frontal slice 1 and (e) the frontal slice 2. 
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Further, the amplitude spectrum of each TS was calculated and those of the 1st and 
3rd TS (or TS1 and TS3) were given in Figure 14. Both spectra contain apparent frequency 
component at BPFO and its high-order harmonics. Interestingly, it is notable that the im-
pact sequences in TS1 and TS3 are indeed quite different, as they possess different phase 
properties. In Figure 13b, this difference is highlighted by marking the local peaks of TS1 
by red dash lines and those of TS 3 by green dots. The observations suggest that although 
TS1 and TS3 are similarly modulated by BPFO, they are intrinsically two different sources 
of impact components with different spectral excitations. Such spectral differences are re-
vealed by the extracted spectral factor in Figure 13a, which shows that the fault impacts 
of TS1 was excited at about 1.2 kHz while the fault impacts of TS 3 are dominated by a 
broad band that peaks at 7.5 kHz. 

On the above basis, the source separation capability of LRANTD is demonstrated. As 
the test bearing had undergone a severe outer-race fault, it is justifiable to infer that these 
two different impact patterns were resulted by the rolling elements entering and exiting 
the defect zone. 

 
(a) 

 
(b) 

Figure 14. Case C results via LRANTD. (a) The amplitude spectrum of TS1 and (b) that of TS3. 

5. Comparisons with Benchmark Methods 
In this section, to verify the performance of the proposed diagnostic methodology, 

the result of the LRANTD in the early fault case (Case A) was compared against a few 
practical benchmarks including envelope analysis, FK, and EMD. For illustration, the 
spectral result based on the LRANTD in Case A is recalled and shown in Figure 15. 
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Figure 15. The amplitude spectrum attained by the LRANTD method in Case A (Proposed method). 

5.1. Envelope Analysis 
Figure 16 shows the smoothed envelope spectrum of the filtered (high pass above 1 

kHz) signal of the horizontal acceleration in Case A. For noise reduction, the averaging 
operation was performed based on 90% overlap between the adjacent Fourier frames. Ap-
parently, the envelope spectrum peaks at the shaft rotation frequency, as marked by the 
red dot, whereas the BPFO component is less prominent due to the masking of ambient 
interferences. 

 
Figure 16. Smoothed envelope spectrum (with 90% overlap and resolution at 1.5625 Hz). 

Compared to the envelope analysis, the spectral result of LRANTD in Figure 15 ef-
fectively removes the cyclic interference from the shaft rotation and presents clear fault 
characteristics for diagnosis. 

5.2. Fast Kurtogram 
As an effective band selector, fast Kurtogram is another pragmatic benchmark for 

rotating machine diagnosis [4]. The Kurtogram was computed based on the decimated 
filter banks and shown in Figure 17a. The result indicates that the impulsive components 
are more likely to dominate over 10 kHz, which is consistent with the spectral extraction 
result of LRANTD, as the SS 2 in Figure 7a. 

Based on the returned optimal filter band with the highest kurtosis value, i.e., 
[11200, 12800] Hz, the envelope spectrum of the filtered signal is further given in Figure 
17b. Here, the square operation of the envelope has been omitted for comparisons. In this 
result, the BPFO component is also dominated by the rotation frequency (dotted in red) 
and is of much lower energy than the envelope spectrum in Figure 16 due to a small band 
width. 
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(a) 

 
(b) 

Figure 17. Results of Fast Kurtogram: (a) Kurtogram with the maximum kurtosis, 7.1, found at level 
3, with band width 1600Hz, and the central frequency at 12000Hz. (b) The envelope spectrum of the 
filtered signal using the aforementioned optimal filter band. 

In contrast, the LRANTD method benefits from the source separation capability of 
tensor decomposition that facilitates adaptive band extraction and hence provides more 
prominent diagnostic signatures. 

5.3. Empirical Mode Decomposition 
Lastly, the results were compared for the Case A signal using the empirical mode 

decomposition and the LRANTD method. Figure 18 shows the envelope spectrum of the 
1st intrinsic mode function (IMF) (for comparison, the best result among 10 IMFs was se-
lected), where the similar masking behaviours to the BPFO can be found from the shaft 
speed (dotted in red) and the other low-frequency components. This can be attributed to 
the incipient degradation condition where the BPFO component is low in energy and 
heavily contaminated. 
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Figure 18. The envelope spectrum of the 1st IMF. 

On the other hand, the proposed method effectively enhanced the inherent signa-
tures within the original measurement by fusing multiple signal segments in an overlap-
ping fashion and further mining the multi-way arrays by the LRANTD model. 

6. Cross-Spectrum Methods Based on Sensor Fusion 
Next, the proposed methodology was applied to multi-sensor fusion based on the 

two-channel vibration data. Since both horizontal and vertical acceleration signals were 
measured, we set 𝑀𝑀 = 2, 𝑆𝑆 = 4, and the total number of data segments 𝐼𝐼3 = 𝑀𝑀𝑀𝑀 = 8, to 
create a three-way TF tensor, 𝓨𝓨 ∈ ℝ256×14640×8, in a consistent manner as in Section 3. 

In the following, the three typical cases (from Case A to C) were revisited but ana-
lysed with two-channel fusion via LRANTD to present a novel cross-spectrum. The cross 
spectral results from the LRANTD model are shown in Section 6.1 and the comparative 
results based on the conventional cross power spectral density are given in Section 6.2. 

6.1. The Cross-Spectrum Based on LRANTD 
By performing the proposed method on the data in Cases A to C, two-directional 

acceleration signals were first fused and then factorized using the LRANTD model. Con-
sequently, the cross spectra based on the fast Fourier transform of the temporal factors 
were obtained in succession, as shown in Figure 19. From Case A to Case C, it can be 
observed that the BPFO component gradually increases in spectral amplitude, and the 
harmonics of BPFO also become more prominent as the out-race fault developed. 

 
(a) 
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(b) 

 
(c) 

Figure 19. (a–c): The cross-spectra based on LRANTD fusion for Cases A to C. From Case A to 
Case C, the low-rank dimensions are, respectively, (3,4,2), (4,4,2), and (3,3,2). 

6.2. The Conventional Method 
For comparisons, the cross power spectral density (CPSD) of the envelope signals 

from two orthogonal acceleration measurements was calculated using the Welch’s aver-
aged periodogram method with 90% overlap. The resulting spectra of Case A, B, and C 
are, respectively, shown in Figure 20 and adjusted to the same scale as those in Figure 19. 
For Case A and Case B, the BPFO component and its harmonics in the CPSD are interfered 
by other cyclic components, in particular the shaft rotation frequency, as marked by the 
red dots in Figure 20a,b. 

 
(a) 
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(b) 

 
(c) 

Figure 20. (a–c): Results based on the cross-power spectral density of the two-channel envelope sig-
nals, from Case A to Case C. 

In contrast, the cross spectra obtained by the LRANTD-based sensor-fusion in Figure 
19 provide more prominent fault features in terms of spectral amplitude and concentra-
tion, which eventually confirms the effectiveness of the proposed diagnostic method. 

7. Summary of Observations 
Tables 3 and 4 summarise the observations made from this study using one sensor 

and 2-sensors data fusion. The results of the proposed LRANTD method are also com-
pared. The background noise is calculated based on the mean of spectral amplitude within 
the range 0-400 Hz. The ratio in the bracket is calculated using the ratio of the spectral 
amplitude at a frequency to the mean background noise. This study clearly indicates the 
predominance of the outer-race defect in the bearing. The “Remark” in Tables 3 and 4 is 
given by comparing the BPFO amplitude ratio (BPFO amplitude by background noise) 
with respect to the BPFO Baseline ratio of the envelope analysis as the reference (under-
lined in the table) within each case study. The following advantages are clearly observed 
for the proposed LRANTD method that are expected to improve the bearing fault diag-
nosis process significantly: 
(i) Reducing the presence of the shaft speed related frequency; 
(ii) The signal-to-noise ratio is much better for the proposed LRANTD method, hence 

improving the appearance of the bearing defect frequencies in the spectrum; 
(iii) Significant improvements in the BPFO amplitude, generally in the order of 90% for 

the sensor fusion cases (B and C) compared to the envelope cross-spectrum. 
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Table 3. Characteristic spectral amplitude in g (with its ratio to the mean background noise) for 
Case A. 

 Case A (Single-Channel) Case A (Sensor-Fusion) 

Component 
Envelope 
Spectrum 

Fast  
Kurtogram 

EMD LRANTD 
(Envelope)  

CPSD 
LRANTD 

Shaft Speed fr 0.1115 (5.21) 0.0138 (6.27) 0.1181 (5.15) 0.0211 (2.63) 0.043 (5.58) 0.0214 (2.05) 
Cage Freq. fc 0.0819 (3.82) 0.0109 (4.95) 0.0866 (3.78) 0.0292 (3.65) 0.0362 (4.70) 0.0416 (4.00) 

BSF fb 0.0202 (0.94) 0.0019 (0.86) 0.0244 (1.06)) 0.0090 (1.12) 0.0103 (1.33) 0.0069 (0.66) 
BPFO fo 0.0656 (3.06) 0.0096 (4.36) 0.0661 (2.88) 0.0375 (4.68) 0.0332 (4.31) 0.0597 (5.74) * 
BPFO 2x 0.0388 (1.81) 0.0047 (2.13) 0.0348 (1.51) 0.0211 (2.63) 0.0226 (2.93) 0.0294 (2.82) * 
BPFO 3x 0.0230 (1.07) 0.0021 (0.95) 0.018 (0.78) 0.0060 (0.75) 0.0080 (1.03) 0.0118 (1.13) * 

BPFI fi 0.0209 (0.97) 0.0043 (1.95) 0.0218 (0.95) 0.0123 (1.53) 0.0117 (1.51) 0.0115 (1.10) 
Background Noise 0.0214 0.0022 0.0229 0.008 0.0077 0.0104 

Remark BPFO Baseline +1.30 (+42.48%) −0.18 (−5.88%) +1.62 (+52.94%) BPFO Baseline +1.43 (+33.18%) 
* The best amplitude ratio for the specific spectral component in each case 

Table 4. Characteristic spectral amplitude in g (with its ratio to the mean background noise) for 
Case B and Case C. 

 Case B (Sensor-Fusion) Case C (Sensor-Fusion) 
Component CPSD LRANTD CPSD LRANTD 

Shaft Speed fr 0.1244 (7.36) 0.0217 (2.08) 0.0958 (6.02) 0.0394 (4.37) 
Cage Freq. fc 0.112 (6.62) 0.0205 (1.97) 0.0562 (3.53) 0.0157 (1.74) 

BSF fb 0.0405 (2.39) 0.0184 (1.76) 0.0404 (2.54) 0.0137 (1.52) 
BPFO fo 0.0969 (5.73) 0.1134 (10.90) * 0.2335 (14.68) 0.2525 (28.05) * 
BPFO 2x 0.0451 (2.66) 0.0488 (4.69) * 0.1021 (6.42) * 0.0464 (5.15) 
BPFO 3x 0.0170 (1.01) 0.0232 (2.23) * 0.0690 (4.33) 0.0405 (4.50) * 

BPFI fi 0.0128 (0.75) 0.0146 (1.40) 0.0126 (0.79) 0.0054 (0.60) 
Background Noise 0.0169 0.0104 0.0159 0.009 

Remark BPFO Baseline +5.17 (+90.23%) BPFO Baseline +13.37 (+91.07%) 
* The best amplitude ratio for the specific spectral component in each case 

8. Conclusions 
In the presented work, a novel diagnostic methodology based on the LRANTD model 

was proposed to tensorize the single-channel or multi-channel vibration into multi-way 
time-frequency tensors and to identify the latent fault signatures with different spectral 
excitations, temporal patterns, and sensor locations. Detailed observations and diagnostic 
analysis were provided based on the XJTU-SY bearing run-to-failure data, including the 
illustrations on three typical cases during the bearing lifespan to demonstrate its superi-
ority in adaptive frequency band extraction and fault feature separation. 

The LRANTD model was first introduced to bearing fault diagnostics to overcome 
the drawbacks of unconstrained tucker decomposition while enhancing the performance 
of NTD by low-rank approximation. The higher-order correlations among the spectral, 
temporal, and segment-wise dimensions were intuitively visualized using the Hinton di-
agrams. Moreover, the cross-spectrum derived from LRANTD also shows improved ca-
pability for sensor-fusion. The experimental and comparative studies have confirmed the 
diagnostic performance of the proposed tensor-based method. The proposed LRANTD 
method for the bearing fault diagnosis is significantly increasing the signal-to-noise ratio 
and reducing the presence of the shaft speed frequency and its harmonics. This improves 
the appearance of the bearing defect frequencies in the spectrum and hence eases the bear-
ing defect detection process. The multi-sensors fusion further helps in improving the sig-
nal-to-noise ratio and the amplification in the peak amplitude of the bearing defect fre-
quency by nearly 90% as compared to the envelope analysis. The proposed method is 
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showing encouraging potential for the reliable bearing fault diagnosis, and useful for the 
industrial application. Further studies are underway with more case studies to observe 
the robustness of the proposed method for the industrial application. Since the computa-
tional time is not significant compared to the conventional approaches, the method can 
further be explored for the online monitoring. 
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