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Abstract: Multiple object tracking (MOT) is a fundamental issue and has attracted considerable
attention in the autonomous driving community. This paper presents a novel MOT framework
for autonomous driving. The framework consists of two stages of object representation and data
association. In the stage of object representation, we employ appearance, motion, and position
features to characterize objects. We design a spatial pyramidal pooling hash network (SPPHNet)
to generate the appearance features. Multiple-level representative features in the SPPHNet are
mapped into a similarity-preserving binary space, called hash features. The hash features retain the
visual discriminability of high-dimensional features and are beneficial for computational efficiency.
For data association, a two-tier data association scheme is designed to address the occlusion issue,
consisting of an affinity cost model and a hash-based image retrieval model. The affinity cost model
accommodates the hash features, disparity, and optical flow as the first tier of data association. The
hash-based image retrieval model exploits the hash features and adopts image retrieval technology
to handle reappearing objects as the second tier of data association. Experiments on the KITTI public
benchmark dataset and our campus scenario sequences show that our method has superior tracking
performance to the state-of-the-art vision-based MOT methods.

Keywords: multiple object tracking; spatial pyramid pooling hashing; image retrieval; object representation;
data association

1. Introduction

Multiple object tracking (MOT) is the process of recognizing and locating multiple
objects of interest in each frame of a continuous image sequence, assigning and holding
a unique identity (ID) for each object, and yielding individual trajectories. MOT is a
fundamental issue and has attracted considerable attention in the computer vision commu-
nity [1–4]. It has important applications in the fields of autonomous vehicles, robotics, and
surveillance. Particularly in autonomous driving, MOT is essential for analyzing moving
trajectories (behaviors) of other traffic participants and predicting their position at a certain
time, as well as planning the route of the ego-vehicle accordingly.

Owing to the significant progress of object detection technologies, a widely used
contemporary pipeline of tracking methods is the tracking-by-detection method [5–13].
The approaches following this pipeline firstly detect the bounding boxes of objects by a
reliable detector and extract the features of the detected objects. Afterwards, the detected
objects or trajectories are linked by a data association approach based on their affinities,
computed by their features, to form long tracks. For high-quality tracking, accurate object
feature extraction is important. Existing works on MOT such as [6–10] generally apply
object bounding boxes directly to feature extraction. A drawback of these approaches is
the presence of several background regions in the object bounding boxes. These regions
contaminate object attributes and will result in redundant feature extraction and, therefore,
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unreliable object tracking. Therefore, we apply the segmentation method proposed in our
previous work [14] to precisely determine the object regions and correspondingly eliminate
the background regions within the bounding boxes. Furthermore, most existing tracking-
by-detection methods adopt either hand-crafted features [5–7] (shallow level) or employ a
Convolutional Neural Network (CNN) [8–10] to extract high-dimensional representative
features (deep level). These works do not consider multiple levels of abstraction of objects.
In this work, we propose a spatial pyramid pooling hash network (SPPHNet) to generate
hash features for characterizing objects. The hash features are compact binary codes
generated by mapping multiple levels of representative features in the SPPHNet into a
similarity-preserving binary space. The hash features retain the visual discriminability of
high-dimensional features and, at the same time, are of benefit to computational efficiency.
In the proposed SPPHNet, we make use of multiple levels of abstraction of objects rather
than only considering the last layer of abstraction. On the other hand, we introduce a
spatial pyramid pooling module in the proposed SPPHNet to accommodate the various
sizes of bounding boxes so that the hash code can be generated without resizing the
bounding boxes, thus avoiding information loss caused by resizing. Apart from the hash
features (appearance cue), we also take disparity (position cue) and optical flow (motion
cue) for characterizing objects. In this paper, the image sequences used are binocular image
sequences captured by a stereo vision system on board an autonomous driving vehicle.
Binocular images generally consist of two images, left and right, which are captured by the
stereo vision system using the method of observing the same object from two viewpoints
in simulation of human binocular observation of the object, i.e., the same object is captured
by two cameras at different locations. The position cue is the distance between the object
and the cameras’ optical center, calculated according to the triangulation principle using
the disparity between the pixels of the two left and right images [15,16].

Data association is to associate corresponding objects in an image sequence according
to feature affinities, i.e., link objects into trajectories. The challenge of multiple object
tracking lies in the case of occlusion. Existing MOT methods normally work well for
tracking continuously appearing objects, but may fail in tracking severely or long-term
occluded objects due to unreliable data association. A common solution [12,17] is to
reconstruct the entire trajectories of reappearing objects by using trajectory estimation
to fill undetected gaps. This method may fail in cases of severe or complete occlusion.
In this study, we address this issue from a different perspective by using a two-tier data
association scheme. The proposed two-tier data association scheme consists of two tiers
of association using two models: an affinity cost model and a hash-based image retrieval
model. The affinity cost model accommodates hash features extracted by the SPPHNet,
disparity, and optical flow as the first tier of data association. The continuously detected
objects can be associated with the affinity cost model. For the unmatched trajectories
and unmatched objects (mainly for reappearing objects or newly appearing objects), we
construct the hash-based image retrieval model to conduct second-tier data association.
By leveraging the image retrieval of “querying image with image” [18,19], we employ the
hash features to retrieve coarse matching pairs of the unmatched objects in the historical
trajectories, fuse the appearance features with the motion cue to refine the coarse matching
pairs, and finally, obtain the correct IDs of objects.

To summarize, this paper presents a novel MOT framework for autonomous driving.
The main contributions are as follows:

• A spatial pyramidal pooling hash network is designed to generate appearance features.
Multiple-level representative features in the SPPHNet are mapped into a similarity-
preserving binary space, called hash features. The hash features retain the visual
discriminability of high-dimensional features and, at the same time, are of benefit to
computational efficiency. The SPPHNet is capable of accommodating various sizes of
bounding boxes, thus avoiding information loss caused by resizing;

• We design a two-tier data association scheme consisting of an affinity cost model
and a hash-based image retrieval model to address the occlusion issue. The affinity
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cost model accommodates hash features, disparity, and optical flow as the first tier
of data association. The hash-based image retrieval model exploits the hash features
and adopts the image retrieval technology of “querying image with image” to handle
reappearing objects and reduce ID switches as the second tier of data association;

• The ablation study has proven the effectiveness of various components. The exper-
iments conducted on the public benchmark dataset and our own collected campus
scenario sequences demonstrate that the proposed method surpasses state-of-the-art
vision-based MOT methods.

2. Related Work

To be able to give a clear overview of MOT-related work, we divide the existing
approaches into two categories: tracking by detection and joint detection and tracking,
according to whether object detection and association are performed at the same time.

2.1. Tracking by Detection

The booming development of autonomous driving technology has made object de-
tection in traffic scenes a highly researched topic. With their powerful feature extraction
abilities, deep learning-based object detection techniques for traffic scenes have made
breakthrough progress during the past several years [20–22]. Simon et al. [20] proposed a
Complexer-YOLO model, a real-time 3D object detection and tracking model on seman-
tic point clouds, in the context of autonomous driving. The model fuses state-of-the-art
3D detectors of neural networks with visual semantic segmentation. Cai et al. [21] solved
the problem that monocular image target detection is quite difficult to recover position from
in 3D space by decomposing the detection problem into a structured polygon prediction
task and a depth recovery task. Cai et al. [22] proposed an efficient YOLOv4-based single-
stage object detection framework, YOLOv4-5D. The backbone network in the proposed
framework is CSPDarknet53_dcn(P), whose last layer output is replaced with deformable
convolution to improve detection accuracy. In addition, YOLOv4-5D uses the feature
fusion module PAN++ and a five-scale detection layer to improve the detection accuracy of
small objects.

Owing to the significant progress of object detection technologies, tracking by detec-
tion becomes the mainstream MOT paradigm. The pipeline of the tracking-by-detection
method consists of three stages including object detection, feature extraction, and data
association. Object detection is used to locate objects of interest in continuous frames;
feature extraction is used to extract features of the detected objects, while data association is
used for associating corresponding objects according to feature affinities, i.e., linking objects
to trajectories. Li et al. [5] used YOLO2 to detect the object bounding boxes and employed
the object-level segmentation method to obtain object ontology, extracted the color, dis-
tance features, and overlapping score to construct the affinity, and adopted the Hungarian
algorithm [23] to obtain the object trajectory. Karunasekera et al. [6] applied a Recurrent
Rolling Convolution (RRC) network to detect the object bounding boxes and extracted a
Linear Binary Pattern Histogram (LBPH) as object appearance features by gridding within
the bounding box. A dissimilarity measure was defined based on object motion, appear-
ance, structure, and size. The Hungarian algorithm was employed in solving the tracking
identity assignment. Tian et al. [7] strictly used publicly available detections recommended
by benchmarks. The HSV space color histogram was extracted to form the appearance
descriptor, and data association was accomplished by putting together information from
both enlarged structural and temporal domains. Sun et al. [8] first fixed the detection
results provided by the dataset. The appearance features were extracted by a CNN network
and the similarity between detection and trajectory was calculated using the proposed
global and partial feature-matching methods. Afterwards, the cosine distance between the
two bounding boxes was utilized as the cost to obtain the cost matrix and the Hungarian
algorithm was applied to associate the trajectories and detections. Based on the YOLO-v4
detection, Lin et al. [9] used DeepSort’s extraction network to extract object appearance
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features. A hybrid track association method was proposed, which effectively utilizes an in-
cremental Gaussian mixture model to model the historical appearance distances of the track
and integrates the derived statistical information into the calculation of track association
cost. Gonzalez et al. [10] developed a smart multiple affinity metric tracking (SMAT) for
MOT. A Faster R-CNN was utilized for object detection; a Multiple Granularity Network
was applied to extract the object appearance features. The cost matrix combined three
affinity metrics that evaluate the position, appearance, and motion of the objects, and was
solved by the Hungarian algorithm. EagerMOT [11] employed Point-GNN and RRC to
acquire 3D and 2D detections of the objects, respectively. The 3D location and dimensions
of the bounding box and the 2D interaction of union (IoU) were integrated into a simple
tracking formulation. During the greedy association method, all possible match pairs were
sorted by their tracking formulation values in descending order. In MOTSFusion [12],
RRC and Track R-CNN were applied for object detection. A closed-loop method that first
used tracking to reconstruct, and then used the reconstruction to track, was presented.
The method first built up short tracklets using 2D optical flow and then fused these into
dynamic 3D object reconstructions, which enabled a reduction in the number of ID switches
and the recovery of missing detections. LGM [13] adopted CenterNet to detect objects. Two
sub-networks, box and tracklet embedding, were designed to model both local and global
motion cues, without object appearance features. The embedded boxes were associated
with the trajectories by exploiting a bottom-up greedy method.

2.2. Joint Detection and Tracking

The joint detection and tracking method mixes detection and tracking together and
conducts them simultaneously, also referred to as the end-to-end method. CenterTrack [24]
was an end-to-end simultaneous object detection and tracking framework. It produced
detection and tracking offsets for the current frame by performing detection on an image
pair and combining the object detections from previous frames to estimate the object
motion for the current frame. The tracker used the greedy method on objects through time.
PermaTrack [25] is an end-to-end trainable joint detection and tracking method built on
top of the CenterTrack architecture. Compared with CenterTrack, PermaTrack added a
spatio-temporal, recurrent memory module that exploited all previous history to reason
about object locations and identities in the current frame. Chaabane et al. [26] proposed an
efficient joint detection and tracking model named DEFT. DEFT relied on an appearance-
based object matching network jointly learned with an underlying object detection network,
with the addition of a long short-term memory to capture motion constraints. Sun et al. [27]
performed online tracking by associating the objects detected in the current frame with
those in multiple previous frames. The proposed Deep Affinity Network modeled features
of pre-detected objects in the consecutive frames at multiple levels of abstraction, and
inferred object affinities across different frames by analyzing exhaustive permutations of
the extracted features. TraDeS [28] focused on exploiting tracking cues to help detection
and, in return, benefit tracking, and mainly employed two modules, Cost Volume-based
Association (CVA) and Motion-guided Feature Warper (MFW), to accomplish online joint
detection and tracking. The CVA was adopted to learn re-ID embeddings and derive object
motions, while the MFW was applied to track cues from the CVA to propagate previous
object features to enhance current detection or segmentation.

3. Method

Figure 1 gives an overview regarding the framework of our proposed MOT method.
The method includes two stages: (1) object representation, (2) two-tier data association.
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Figure 1. The framework of our proposed MOT method. (1) Object representation (in the red dashed
box). (2) data association (in the blue dashed box).

In the first stage, our previous work [14] is adopted to remove the background from
each detection result of the object detector to obtain an accurate object ontology. Using
the object ontology as input, we apply the hash features generated by the spatial pyramid
pooling hash network as the object appearance features, and in turn, we employ appearance
features, position cues (disparity), and motion cues (optical flow) to characterize the object.

In the second stage, we design a two-tier data association scheme. In the first tier
of data association, we compose an affinity cost model containing appearance, motion,
and location cues to generate matching pairs by solving the model. For the unmatched
objects and unmatched trajectories, we use a hash-based image retrieval model to exploit
the image retrieval of “querying image with image” as the second tier of association. The
model employs the hash features to retrieve coarse matching pairs of objects in historical
trajectories, combines appearance features and motion cues to refine the coarse matching
pairs, and accordingly generates the object IDs.

3.1. Object Representation

We use appearance features, position cue, and motion cue to represent an object. For
position cue and motion cue, they can be obtained from the disparity and optical flow of
the object. We design a spatial pyramid pooling hash network (SPPHNet) to extract the
appearance features of the object.

3.1.1. Architecture of Spatial Pyramid Pooling Hash Network for Appearance
Feature Extraction

The appearance affinity metric is the core feature of objects. The extracted features must
have discriminability, with a larger affinity between the same objects and a lower affinity
between different objects. We design a spatial pyramid pooling hash network (as shown
in Figure 2) for this purpose. The network maps the multiple levels of abstraction into a
similarity-preserving low-dimensional binary (Hamming) space, and then generates the
compact binary codes (hash features) that incorporate both shallow and deep representative
features. The hash features possess a significant discriminability.
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Given an image dataset χ consisting of segmentation results of variable size, and a set
of training images, DT = {d i}N

i=1 ⊂ χ, along with object identities, let sij be the pairwise
similarity label of image pairs di and dj (di, dj ∈ DT , i, j = 1, 2, · · · , N). sij= 1 means
that di and dj are similar (the same object identities), while sij = 0 means that di and dj are
dissimilar (not the same object identities). Our proposed SPPHNet aims to use deep neural
networks to learn a nonlinear hash function F : d 7−→ b ∈ {−1, 1}M that encodes each
d into a compact set of M-bit (in this work, M = 128) hash codes such that the similarity
relations in S = {sij} are maintained in the binary hash codes.

As shown in the blue dashed box in Figure 2, the CNN consists of two convolutional
layers and five residual blocks. The size of the convolutional kernels utilized in the
convolutional layers and residual blocks is 3 × 3, and changing the feature map size is
performed by setting the stride to 2. To remove the fixed input image size constraint of
previous deep hash networks, we add a spatial pyramid pooling (SPP) module [29] between
the fully connected FC1 layer and the res5 layer, as shown in the red dotted box in Figure 2.
The SPP module unfolds the feature maps at the res2 and res5 layers into fixed-length
features and feeds them into the FC1 layer. We adopt a fully-connected hash layer of M
hidden units together with a hyperbolic tangent (tanh) function to transform the feature
representation of the FC2 layer of each image di into M-dimensional continuous code κi
within [−1, 1]. Finally, we obtain binary hash codes by bi = sgn(κi) where sgn(κi) is the sign
function on vectors that, for l = 1, 2, . . . , M, sgn(κil) = 1 if κil > 0, otherwise, sgn(κil) = −1.

To further guarantee the quality of hash codes, we exploit a training loss function
consisting of cross-entropy loss and quantization loss. The cross-entropy loss preserves sij
of the training image pairs {(d i, dj, sij) : sij ∈ S}, and the quantization loss controls the
quantization error. The detailed parameter settings of the network are shown in Figure 3.
In Figure 3, the input is a color image of dimension H ×W × 3; 3 × 3 conv indicates the
convolution kernel size; in the convolution layers and residual blocks, orange numbers
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such as 64,128 indicate the number of feature map channels; 8 × 8, 4 × 4, 2 × 2, and 1 × 1
denote the pyramid pooling sizes.
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3.1.2. Spatial Pyramid Pooling Hash Network Learning

During learning of the parameters of the SPPHNet, the network accepts pairwise input
images {(d i, dj, sij) : sij ∈ S}. Training SPPHNet is achieved by jointly learning pairwise
image similarity labels (0 or 1) and binary encoding.

(1) Cross-Entropy Loss

One of the SPPHNet’s goals is to keep the similarity of the pairwise images consistent
in high-dimensional space with Hamming space. In Hamming space, a larger Hamming
distance dist(b i, bj

)
indicates that the image pair di and dj should be categorized as

different objects (dissimilar, labeled different identities); a smaller Hamming distance
dist(b i, bj

)
indicates that the image pair di and dj should be categorized as the same object

(similar, labeled same identities). Since the similarity label sij can only be 1 or 0, we can treat
this goal similarly as a binary classification problem and the cross-entropy loss function,
Lcross, is formulated as

Lcross = − ∑
sij∈S

ωij(s ijlogpij + (1− s ij)log(1− p ij))

= ∑
sij∈S

ωij(sijlog 1
pij

+ (1− s ij)log 1
1−pij

)
(1)

where pij denotes the similarity between hash codes bi and bj. ωij is the weight for each
training pair (d i, dj, sij

)
to alleviate the imbalance of the data. Inspired by [30], we amplify

the weights of similar pairs in each batch by:

ωij =

{
|S|/|S0|, sij= 0
|S|/|S1|, sij= 1

(2)

where S0 = {s ij ∈ S : sij = 0} is the set of dissimilar pairs, and S1= {s ij ∈ S : sij = 1} is
the set of similar pairs. |·| denotes the total number of image pairs within the corresponding
sets S, S0, and S1.

For pij, we utilize the probability function presented in [31], which is expressed as

pij =


1

1 + max(0, dist(b i, bj)−TH)
, sij= 1

1
1 + max(dist(b i, bj) , TH)

, sij= 0
(3)
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where TH is the threshold pre-specified in Hamming space. For a pair of binary hash codes
bi and bj, we employ the relationship between the Hamming distance and their cosine
distance to compute the dist(b i, bj

)
:

dist(b i, bj) =
M
2
(1− cos(b i, bj)) (4)

Specifically, we substitute Equation (3) into Equation (1), then the cross-entropy loss
function, Lcross, can be derived as

Lcross = ∑
sij∈S

ωijsijlog(1 + max(0, dist(b i, bj)−TH))

+ ∑
sij∈S

ωij(1− s ij)log(1 + 1
max(dist(b i , bj) , TH)

)
(5)

(2) Quantization Loss

Obtaining the binary codes for each image is the ultimate goal of the SPPHNet. The
network creates quantization error while we use the sign function to convert the continuous
representation into binary codes. Therefore, we apply the quantization loss function to
control the quantization error. The quantization loss function, Lqua, is formulated as

Lqua =

N

∑
i=1
‖κi − sgn(κi)‖2

2 (6)

(3) Overall Loss

Combining the cross-entropy loss Equation (5) and the quantization loss Equation (6),
the overall loss function, Lloss, for the SPPHNet can be formulated as

min
Θ

Lloss = Lcross + αLqua (7)

where Θ is the set of network parameters, and α is the weighting parameter to trade off
Lcross and Lqua.

3.2. Two-Tier Data Association

The two-tier data association consists of two models including an affinity cost model
and a hash-based image retrieval model.

3.2.1. The First-Tier Data Association: Affinity Cost Model

The affinity cost model accommodates hash features extracted by the SPPHNet, dispar-
ity, and optical flow as the first tier of data association. Assume that, at frames t−∆t to t− 1,
there is a set of existing object trajectories Tc

t−∆t : t−1. We describe the k1th object at frame

t by a state vector ok1
t = (b k1

t , mok1
t , posk1

t

)
, where bk1

t represents the appearance feature,

mok1
t denotes the motion information, and posk1

t is the position information, respectively.

Assume the set of the object states at frame t as Ot (o
k1
t ∈ Ot

)
with k1 = 1, 2, 3, . . . , K1, and

the set of the object states at frame t− 1 as Ot−1 (o
k2
t−1 ∈ Ot−1

)
with k2 = 1, 2, 3, . . . , K2.

K1 and K2 are the number of objects at frames t and t− 1, respectively. The affinity metrics
used in our affinity cost model are described as follows:
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(1) Appearance Affinity Metric

The object appearance features are represented by a set of hash codes that are extracted
using the proposed SPPHNet. For ok1

t and ok2
t−1, we define the appearance affinity Λ

app
k1,k2

as

Λ
app
k1,k2

= 1−
D_H(b k1

t , bk2
t−1

)
M

(8)

where bk1
t and bk2

t−1 denote the hash codes of objects ok1
t and ok2

t−1, respectively; D_H(bk1
t , bk2

t−1)

represents the Hamming distance between ok1
t and ok2

t−1. The smaller the Hamming distance
between two objects, the more likely it is that the two objects are the same, and the greater the
Λ

app
k1,k2

. Conversely, the more likely it is that the objects are different, the smaller the Λ
app
k1,k2

.

(2) Motion affinity metric

In traffic scenes, the object is always in motion (stationary can be seen as a special case
of motion) and its motion information is one of the important characteristics of the object.
We evaluate the motion of an object based on its optical flow information, so the motion
affinity metric Λmo

k1,k2
of ok1

t and ok2
t−1 can be obtained by calculating the cosine distance

between the two motions with the following:

Λmo
k1,k2

=
mok1

t mok2
t−1

‖mok1
t ‖2‖mok2

t−1‖2

(9)

where mok1
t and mok2

t−1 are the mean optical flow information of objects ok1
t and ok2

t−1,
respectively.

(3) Position affinity metric

It is calculated as

Λ
pos
k1,k2

=

e−D_E(pos
k1
t , posk2

t−1), D_E(pos k1
t , posk2

t−1) < U

0.0001, D_E(pos k1
t , posk2

t−1

)
≥ U

(10)

where posk1
t and posk2

t−1 represent the mean position information of objects ok1
t and ok2

t−1 on

the X-Z plane, respectively; D_E(pos k1
t , posk2

t−1

)
is the linear distance (i.e., the Euclidean

distance) on the X-Z plane between ok1
t and ok2

t−1; U is the position threshold, and objects
with position greater than this threshold can usually be considered as objects unrelated to
each other, so the affinity is assigned a value close to zero; when the position is less than
the threshold, the similarity can be calculated according to Equation (10).

Based on the above, the affinity metrics are calculated and collected in a cost matrix
that represents the likelihood of all possible matches. This cost matrix is our affinity cost
model Λ, which can be described as

Λ =
[
Λk1,k2

]
K1×K2

(11)

where Λk1,k2 indicates the affinity between objects ok1
t and ok2

t−1, which can be

Λk1,k2= Λ
app
k1,k2
× Λmo

k1,k2
× Λ

pos
k1,k2

(12)

Once the affinity cost model Λ is established, we determine the optimal association
matching pairs representing the same object responses using the Hungarian algorithm [18]
by maximum cost assignment. When the association cost of an optimal association match-
ing pair is greater than a pre-defined threshold θ1, this pair is considered to be a correct
match and a valid trace. The effective tracking trajectory obtained after the affinity cost
model is denoted as T∗, and the corresponding set of objects at frame t is O∗t . In general,



Machines 2022, 10, 668 10 of 20

the trajectory within T∗ should be the one that can correctly track the continuously detected
objects within Tc

t−∆t : t−1, including objects without occlusion and partially occluded but
detectable objects. This is because, for the continuously detected objects, their trajectories
are continuously updated with association matching, so the affinity metrics are all high;
thus, correct association results can generally be obtained. However, for severely occluded
undetectable objects (including completely occluded objects), there are no detection re-
sponses when they are occluded, and when these objects reappear, the affinities between
the objects and their trajectories are low, resulting in object tracking failure. To solve the
tracking problem of severely occluded undetectable objects, we propose a hash-based
image retrieval data association model.

3.2.2. The Second-Tier Data Association: Hash-Based Image Retrieval Model

By leveraging the image retrieval of “querying image with image”, the hash-based
image retrieval model employs the hash features to retrieve coarse matching pairs of
reappearing objects in the historical trajectories, and fuses the appearance features with
the motion cue to refine the coarse matching pairs. After the affinity cost data association
model, the hash-based image retrieval model is performed for the unmatched objects O′t
(O∗t ∩ O′t = ∅, O∗t ∪ O′t= Ot, ok′1

t ∈ O′t, k′1= 1, 2, 3, · · · , K′1, K′1 is the total number of
objects within O′t) and unmatched trajectories Tc′ (T∗ ∩ Tc′ = ∅, T∗ ∪ Tc′= Tc

t−∆t : t−1,
c_count is the total number of trajectories within Tc′ ). Usually, these unmatched objects
contain objects that reappeared due to occlusion and newly generated objects. Therefore,
the main role of the hash-based image retrieval model is to associate the reappearing objects
with their broken trajectories.

For the reappearing objects, the change in their appearance features generated within
t−∆t to t is small. As can be seen from Section 3.1, each detected object is extracted with a
set of hash codes as its appearance features using the proposed SPPHNet. Thus, we use all
objects contained in the unmatched trajectories Tc′ as a feature pool and perform image

retrieval and data association within the feature pool using the hash codes of object ok′1
t , as

described below.
Firstly, we calculate the Hamming distance between each object in the feature pool

and the object ok′1
t to be matched using the hash codes and sort from smallest to largest,

and take the top N′ objects after sorting as the possible candidate objects for ok′1
t . The set of

trajectories corresponding to these candidate objects is Tc′′ , and c_num is the total number
of trajectories in Tc′′ .

Secondly, for each trajectory in Tc′′ , find the m nearest objects to the current frame and

calculate their affinity with ok′1
t as follows:

Λr,k′1
= Λ

app
r,k′1
×Λmo

r,k′1
, r = 1, 2, 3, · · · , m (13)

In calculating the affinity, we do not use the affinity metrics of appearance, motion, and
position simultaneously as in Equation (12), but apply only appearance and motion. This is due
to the fact that, for the reappearing objects, the position may change considerably from t−∆t to
t, but the changes produced in the appearance and motion direction are relatively small.

Thirdly, we compute the affinity Λ′num,k′1
of each trajectory in Tc′′ to the object ok′1

t

as follows:

Λ′num,k′1
=

m

∑
r=1

ΛrΛr,k′1
,

m

∑
r=1

Λr= 1 (14)

where num = 1, 2, 3, . . . , c_num, and Λr is the weight. Thus, the affinity Λ′ between Tc′′

and object ok′1
t can be obtained as Λ′ =

[
Λ′num,k′1

]
c num×1

.
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Finally, the maximum value in Λ′ is found, and if this value is greater than the pre-

defined threshold θ2, we consider that the trajectory corresponding to object ok′1
t and this

maximum value is successfully matched and correctly tracked.
In summary, the implementation flow for our proposed two-tier data association

approach is illustrated in Algorithm 1.

Algorithm 1: Implementation flow for our proposed two-tier data association approach

Input: The set of objects of frame t Ot(o
k1
t ∈ Ot

)
k1= 1, 2, 3, · · · , K1;

The set of objects of frame t− 1 Ot−1(o
k2
t−1 ∈ Ot−1

)
k2= 1, 2, 3, · · · , K2;

The set of existing object trajectories Tc
t−∆t : t−1 from frame t−∆t to t− 1;

Output: The set of object trajectories of frame t
1: if K1> 0 and K2> 0 then
2: Calculate Λk1,k2

between ok1
t and ok2

t−1 according to Equation (12);
3: Construct the affinity cost model Λ according to Equation (11);
4: Use the Hungarian algorithm to solve for Λ to obtain the optimal association matching pairs;
5: The affinity of each optimal association matching pair is greater than θ1, and update the
corresponding trajectory;

6: For the unmatched objects O′t(o
k′1
t ∈ O′t, k′1= 1, 2, 3, · · · , K′1) and unmatched

trajectories Tc′

7: if K′1> 0 and c_count > 0 then

8: for the object ok′1
t do

9: Use the hash code to retrieve the N′ objects in Tc′ with the smallest Hamming distance
and their corresponding trajectories Tc′′ ;
10: For each trajectory in Tc′′ , find the m closest objects to the current frame and calculate

the affinity with ok′1
t according to Equation (13);

11: Calculate the affinity Λ′num,k′1
of each trajectory in Tc′′ with ok′1

t according to Equation (14);

12: Construct an affinity Λ′ between Tc′′ and ok′1
t ;

13: if max(Λ′) > θ2 then

14: ok′1
t is matched with the trajectory corresponding to max(Λ′), and update the

corresponding trajectory;
15: end if
16: end for
17: else
18: Generate new trajectories;
19: end if
20: Update the trajectories;
21: end if

4. Experiments

To evaluate the performance of our MOT method, we conducted experiments on the
KITTI MOT dataset [32], a MOT benchmark platform for autonomous driving, and on the
campus scenario sequences captured using the on-board Point Grey binocular camera of
our experimental vehicle, respectively. We only evaluate the tracking performance on the
car category. We used the KITTI MOT dataset for quantitative analysis of our MOT method,
including comparison with state-of-the-art methods, while the KITTI MOT dataset and the
actual campus scenario sequences were used for visually intuitive evaluation (i.e., quali-
tative analysis). The campus scenario sequences have a resolution of 640 × 480 pixels per
image. The KITTI MOT dataset consists of 21 training sequences and 29 test sequences with
a resolution of 1242 × 375 pixels per image. These image sequences contain environmental
factors that can impact the tracking performance, such as varying degrees of illumination,
different degrees of object occlusion, crowded multi-object interaction scenes, changes in
object scale, and so on.
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4.1. SPPHNet Training and Performance
4.1.1. SPPHNet Training

We implement SPPHNet based on the TensorFlow framework and train the network
on a workstation consisting of a Nvidia GeForce GTX1080TI graphics processor with
11 GB video memory, an Intel Xeon Silver 4-core processor, and 16 GB Random Access
Memory (RAM).

All network weights in the convolutional layers (including the convolutional layers in
the residual blocks) are initialized as a normal distribution with a mean of 0 and a standard
deviation of 1. In the fully connected layers and the hash layer, the weights are initialized in
the same way as in the convolutional layers. The weights are updated using the mini-batch
stochastic gradient descent (SGD) with 0.9 momentum. The gradients can be computed
by back-propagation through the loss in Equation (7) and the two instances of pairwise
input images {(d i, dj, sij) : sij ∈ S}. The total gradient is the sum of the contributions
from the two instances di and dj. The learning rate is cross-validated from 10−5 to 10−2

with a multiplicative step size. The mini-batch size of images is set as 32 and the weight
decay parameter is 5× 10−5. The weighting parameter α in Equation (7) is selected by
cross-validation and the hyperparameter TH in Equation (3) is set as 2.

4.1.2. SPPHNet Performance

Deep neural networks such as ResNet50 [33] and VGG16 [34] are usually used in MOT
algorithms to extract deep features of objects to improve the accuracy of data association.
To demonstrate the performance of our proposed SPPHNet, we select a number of object
images from the KITTI dataset that contain cars with the same ID (query image, Car1) and
different IDs (Car2, Car3) as shown in Figure 4. We use ResNet50, VGG16, and SPPHNet to
extract the features of the query image and the images in the image database, respectively,
and then calculate the feature distances between the query images and the images in the
image database. The comparison results of the feature distances of the three networks are
shown in Table 1. When using ResNet50 and VGG16 to extract object features, the object
image size should be cropped to 224× 224 and then used as the input of the networks. Since
there is a relationship between the Hamming distance of the hash codes and the cosine
distance as in Equation (4), we use the cosine distance to measure the feature distance.
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Table 1. Feature distance comparison results of ResNet50, VGG16, and SPPHNet.

Object ID Network (a) (b) (c) (d) (e)

Car1
ResNet50 0.7295 0.7425 0.7475 0.712 0.6659
VGG16 0.6809 0.7959 0.7248 0.6976 0.6189

SPPHNet 0.8359 0.875 0.9219 0.9297 0.7653

Car2
ResNet50 0.4956 0.5201 0.5174 0.5334 0.468
VGG16 0.4629 0.5138 0.5389 0.5213 0.5009

SPPHNet 0.1328 0.1953 0.1719 0.1641 0.1406

Car3
ResNet50 0.5177 0.504 0.5371 0.5159 0.4143
VGG16 0.4602 0.4738 0.4904 0.4506 0.4272

SPPHNet 0.2422 0.1328 0.1328 0.0938 0.1328

From Table 1, we can see that the feature distance gap of our proposed SPPHNet
for different objects is larger than that of ResNet50 and VGG16. This also means that
the SPPHNet can still maintain high discriminability of object appearance with mapping
high-dimensional features to low-dimensional hash space, minimizing the feature distance
of the same object and maximizing the feature distance of different objects. The proposed
SPPHNet can make a better distinction of objects with different identities.

4.2. MOT Evaluation Metrics

We evaluate our method using the metrics defined in the literature [35–37] as follows:
Higher Order Tracking Accuracy (HOTA↑): Fairly combines all the different aspects of

the tracking assessment into a single metric. HOTA decomposes the detection and tracking
aspects of MOT by separately measuring detection accuracy (DetA), which evaluates
detection performance, and association accuracy (AssA), which evaluates data association.
HOTA, DetA, and AssA are newly defined in [35] and are adopted as the main evaluation
metrics for MOT in the KITTI MOT dataset.

Identity Switches (IDSw↓): Number of times its corresponding object identity has
changed for a given trajectory.

Multiple Object Tracking Accuracy (MOTA↑) [36]: This metric integrates three error
types: identity switches, false negatives, and false positives. The MOTA can be formulated as

MOTA = 1− ∑t(FP t+FNt+IDst)

∑t GTt
(15)

where FPt, FNt, IDst, and GTt are the number of false positives, of false negatives, of
identity switches, and of ground truths, respectively, for frame t. The range of MOTA scores
is (−∞ , 1].

Mostly Tracked (MT↑): For a certain object, when the track hypothesis is greater than
80% of the ground-truth trajectory, the object is considered to be mostly tracked. For a
given image sequence, assuming that the number of ground-truth trajectories is Mtrac, the
number of ground-truth objects on the mmth trajectory is num_GTmm, and the number of
detections generated by the MOT method to match the ground-truth objects is num_TPmm;
the MT of the image sequence is calculated as

MT =
∑Mtrac

mm=1 MTmm

Mtrac
(16)

where

MTmm =

{
1, i f num_TPmm

num_GTmm
> 80%

0, else
(17)
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Mostly Lost (ML↓): For a certain object, when the track hypothesis is less than 20% of
the ground-truth trajectory, the object is considered mostly lost. For a given image sequence,
the ML is calculated as

ML =
∑Mtrac

mm=1 MLmm

Mtrac
(18)

where

MLmm =

{
1, i f num_TPmm

num_GTmm
< 20%

0, else
(19)

In the above metrics, ↑ indicates the larger, the better, while ↓ indicates the smaller,
the better.

4.3. Ablation Study

In our proposed MOT method, appearance features extracted adopting the proposed
SPPHNet, motion cues, and position cues are employed to represent the objects, and a two-
tier data association approach is applied to match the detections and trajectories. In order
to verify the role of each component (three types of features, two data association models),
we have conducted an ablation study on different versions of the proposed method by
splitting the 21 KITTI MOT training sequences into training/validation sets. The results
are summarized in Table 2. In Table 2, app represents the appearance features, mo denotes
the motion feature, pos represents the position feature. AC denotes the affinity cost model,
and HIR denotes the hash-based image retrieval model.

Table 2. Quantitative comparison of different versions of our method.

Different Versions of
Our Method

HOTA
(%)↑

DetA
(%)↑

AssA
(%)↑

MOTA
(%)↑

MT
(%)↑

ML
(%)↓ IDSw ↓

app + mo + pos + AC + HIR 82.37 80.16 85.23 90.70 96.84 0 7
mo + pos + AC + HIR 74.28 69.3 79.86 79.02 74.74 4.21 31
app + pos + AC + HIR 76.15 71.44 81.37 79.02 73.68 5.26 24
app + mo + AC + HIR 77.24 72.68 82.32 80.89 84.21 6.84 21
app + mo + pos + AC 77.27 72.89 82.16 84.18 87.89 5.26 19

The first row is the standard version of our method with all components employed.
Comparing other rows with the first row can exhibit how each component contributes to
the tracking performance.

The second–fourth rows are versions using different features. The second row is the
version using motion and position features without using appearance features; the third
row is the one using appearance and position features without using motion features,
while the fourth row is the one using appearance and motion features without using
position features. It has the largest drop (8.09% HOTA) in tracking performance when
the appearance features are removed (the second row). The HOTA drops 6.22% when the
motion feature is removed (the third row). The HOTA drops 5.13% when the position
feature is removed (the fourth row). These results indicate that all three types of features
contribute to the tracking results, while the appearance features play the most significant
role. This result is in line with the actual situation, as a human mainly pays attention to
appearance features (such as color, texture, shape, etc.) for tracking objects. On the other
hand, the comparison also proved that the proposed SPPHNet is capable of integrating the
hierarchical features of the objects at multiple levels of abstraction, and the binary hash
codes generated by the SPPHNet are a good representative of objects’ appearance.

Comparing the fifth row with the first row shows the impact of the two proposed data
association models on the performance. When only using the affinity cost model without
using the hash-based image retrieval model (the fifth row), the HOTA decreases by 5.1%,
and the IDSw increases by 12. This is because the affinity cost model only considers the
affinity between the current frame and the previous frame and does not pay attention
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to the past trajectories of the reappearing objects. The hash-based image retrieval model
uses the image retrieval of “querying image with image” to retrieve the information of the
reappearing objects in the historical trajectories. It is effective to find the best match for
the reappearing objects, thereby reducing ID switches. The comparison indicates that the
hash-based image retrieval model is a good complement to the affinity cost model, and the
two models work in cascade to ensure robust tracking.

4.4. Comparison with the State-of-the-Art Methods
4.4.1. Benchmark Evaluation

With the use of 29 testing sequences, we compare our method with eight state-of-
the-art methods [6,7,10,12,13,24–26], among which [6,7,10,12,13] are tracking-by-detection-
based methods and [24–26] utilize joint detection and tracking methods. Table 3 lists the
comparison result. The data for eight state-of-the-art methods were from the KITTI MOT
leaderboard. The numbers were accessed on 6 December 2021. It is worthy to note that all
methods in Table 3 are only vision-based methods.

Table 3. The comparison of our method with the state-of-the-art methods on the KITTI MOT testing set.

HOTA
(%)↑

DetA
(%)↑

AssA
(%)↑

MOTA
(%)↑

MT
(%)↑

ML
(%)↓ IDSw ↓ Runtime

(ms)↓

CenterTrack [24] $ 73.02 75.62 71.20 88.83 82.15 2.46 254 45
DEFT [26] $ 74.23 75.33 73.79 88.38 84.31 2.15 344 40
PermaTrack [25] $ 78.03 78.29 78.41 91.33 85.69 2.62 258 100

JCSTD [7] 65.94 65.37 67.03 80.24 57.08 7.85 173 70 + D
MASS [6] 68.25 72.92 64.46 84.64 74.00 2.92 353 10 + D
LGM [13] 73.14 74.61 72.31 87.60 85.08 2.46 448 80 + D
SMAT [10] 71.88 72.13 72.13 83.64 62.77 6.00 198 100 + D
MOTSFusion [12] 68.74 72.19 66.16 84.24 72.77 2.92 415 440 + D
Ours 74.69 70.74 80.38 85.72 74.61 3.54 104 37 + D

$ represents the joint detection and tracking-based method. The others are the tracking-by-detection-based method.
Runtimes are from the leaderboard. +D means detection time. The best performance is shown in bold type.

The first three rows in Table 3 are the joint detection and tracking-based methods,
while the fourth–ninth rows are the tracking-by-detection-based methods. It can be seen
that our method dominates all scores and performs best in the category of the tracking-by-
detection-based methods.

Compared with the joint detection and tracking-based methods (The first three rows),
our method has achieved the best performance in terms of AssA (80.38%) and IDSw (104).
This is because our two-tier data association approach exhibits superior association perfor-
mance with fewer changes in the object identity of the tracked trajectory and high reliability
of the tracking results. This is mainly benefited from the excellent ability of our proposed
SPPHNet to extract visually structured information, while the hash-based image retrieval
model is able to match with historical trajectories for reappearing objects. Our method
obtains a HOTA of 74.69%, which is only lower than the PermaTrack [25]. This is because
PermaTrack applies a spatio-temporal, recurrent memory module to reason about the
location of severely and completely occluded objects using the entire previous history, and
not just the current observation. However, our method exploits an object detector that acts
only on the current frame, and once an object becomes severely or completely occluded,
the detector fails and the trajectory is corrupted. In terms of DetA, MOTA, MT, and ML,
our method is not the best, mainly because these metrics are strongly influenced by the
object detector detection results. DetA measures the detection performance of detectors.
These methods use different object detectors, which result in performance differences.
Although MOTA is also an evaluation metric that combines detection performance and
association performance, it is greatly influenced by the performance of the input detector,
and measures the detection performance of MOT methods significantly outweighing the
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association performance [35]. Similarly, the MT and ML values can be affected by the
detection results. When an object is intermittently detected due to severe occlusion or
complete occlusion, the two adjacent detections may differ by many frames. In spite of
utilizing the image retrieval of “querying image with image” to process these reappearing
objects and associate them with past trajectories, our algorithm cannot reconstruct their
trajectories on the undetected frames, even though those trajectories are real. Therefore, as
a result, the MT and ML values may be inferior to other methods. We show the qualitative
comparison results between our method and PermaTrack [25] on the KITTI MOT testing
sequence 0010 in Figure 5. As can be seen in Figure 5, for our method, a car (Obj. 5) with a
red circle drawn on the figure is completely occluded by a grey car in frame 123 and then
associated to the correct label in frame 274 after it reappears, while the PermaTrack [25]
fails in the association (ID changes from 5 to 47). This demonstrates the effectiveness of our
proposed SPPHNet and data association method.
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dataset is captured at 10 frames per second, our MOT method is capable of meeting the 
real-time requirements with the appropriate choice of detector. 

Figure 5. Qualitative comparison results between our method and PermaTrack [25] on the KITTI
MOT testing sequence 0010. Each tracked vehicle is represented in a unique ID. The red circles mark
the objects severely or long-term occluded in subsequent frames. (a) Qualitative results on the KITTI
MOT testing sequence 0010 of PermaTrack [25]. (b) Qualitative results on the KITTI MOT testing
sequence 0010 of our method.

As a standard for the KITTI MOT dataset, the detector runtime is not included in any
MOT method when submitting test results to the server. Our MOT method runtime of
37 ms per frame took less than JCSTD [7], LGM [13], SMAT [10], and MOTSFusion [12],
and more than MASS [6] in the tracking-by-detection-based methods. Since the KITTI MOT
dataset is captured at 10 frames per second, our MOT method is capable of meeting the
real-time requirements with the appropriate choice of detector.

4.4.2. Benchmark Evaluation in Multiple Dimensions

As an integrated measure, HOTA can be decomposed into different types of track-
ing errors including false negatives, false positives, fragmentations, mergers, etc., and
these errors reflect different aspects of tracking performance including the detection and
association. Therefore, to further evaluate these methods, we performed a multidimen-
sional analysis on our method and eight state-of-the-art methods in virtue of the HOTA
sub-metric in [35] (as shown in Figure 6). The HOTA sub-metrics are DetA (consisting
of detection recall and detection precision) and AssA (consisting of association recall and
association precision). Detection recall (DetRe), detection precision (DetPr), association
recall (AssRe), and association precision (AssPr) are equivalent to false negatives, false
positives, fragmentations, and mergers, respectively. The DetRe evaluates the percentage
of ground-truth detections that have been correctly predicted by the MOT method, while
the DetPr evaluates the percentage of detection predictions made that are correct. The
AssRe measures how the MOT method avoids splitting an object up into multiple shorter
trajectories. In contrast, the AssPr measures how to avoid merging multiple objects into
one trajectory.
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The multidimensional analysis allows one to clearly see the benefits and pitfalls of
certain methods and allows for the selection of top-performing methods for different
applications that may have different requirements. In Figure 6, any tracking method along
the multidimensional Pareto front (red dashed line) can be regarded as state-of-the-art in at
least one aspect of tracking performance.

Figure 6a shows how the HOTA score (grey curve) of the MOT method increases as
the detection and data association scores increase. As can be seen in Figure 6a, our method
is the best in data association, while PermaTrack is better in detection. In fact, these two
methods lie on the Pareto front. Thus, for some trade-offs between detection performance
and data association, each of them is the best choice.

In Figure 6b, CenterTrack, DEFT, and LGM have similar DetRe scores and are all able
to find more true objects, but also predict more false detections (lower DetPr) compared
to SMAT. Our method is relatively low in both DetRe and DetPr, which points the way to
further improve the detector performance.

As seen in Figure 6c, PermaTrack is more likely to split trajectories into multiple
smaller trajectories than our method but is better at not merging trajectories. Our method
has not only the highest AssRe, but also a good AssPr, with the smallest difference between
the two values, reaching a certain degree of balance. This also shows the effectiveness and
superiority of the two-tier data association approach we have designed.

4.5. Visually Intuitive Evaluation

Figure 7 shows visually intuitive results of our method on some typical scenarios. The
Figure 7a–c are the visual results on the KITTI MOT testing sequences, and the Figure 7d,e are
the visual results on the campus scenario sequences captured by our experimental vehicle.

In Figure 7a, Obj. 1, 2, 5, and 6 appear consecutively at frames 40 to 49 and are tracked
with their IDs unchanged. Obj. 3 (marked by a red circle) is completely occluded by Obj. 2
and 1 at frame 4. When it reappears at frame 49, our method correctly recovers its trajectory
with ID 3. In Figure 7b, Obj. 23 was completely obscured by the tanker truck for a long
period. It can be seen how our method successfully re-tracks it. In Figure 7c, Obj. 2 is
severely or long-term occluded by Obj. 3 at frames 15 to 43. Our method correctly associates
the trajectory with the object at frame 43. In Figure 7d, the objects are in a dimly lit position.
Obj. 6 is occluded by Obj. 7 at frame 230. When it reappears, our method is able to maintain
its unique identity. In Figure 7e, despite Obj. 10 undergoing complete occlusion, it can
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still be assigned the correct identity at frame 665. These five examples demonstrate the
robustness of our method in dealing with reappearing objects caused by occlusion.
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Figure 7. Visual results of some typical scenarios. In each sequence, the tracked vehicle is masked
with a unique color and assigned with an ID. The red circles mark the objects severely or long-term
occluded in subsequent frames. (a) Visual results on the KITTI MOT testing sequence 0017. (b) Visual
results on the KITTI MOT testing sequence 0015. (c) Visual results on the KITTI MOT testing sequence
0018. (d) Visual results on the campus scenarios sequence 0002. (e) Visual results on the campus
scenario sequence 0005.

5. Conclusions

In this paper, we present a robust multiple object tracking following the tracking-by-
detection paradigm for autonomous driving. A spatial pyramid pooling hash network is
proposed to map multiple levels of abstractions into discriminative, compact hash codes.
The obtained hash codes are used as object appearance features and are more robust
to object appearance during tracking. We extract the appearance, motion, and position
features of the detected objects and use them to design three affinity metrics. According
to the characteristics of the different appearing states of objects (continuously appearing,
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reappearing), these metrics are applied to a two-tier data association scheme consisting
of an affinity cost model and a hash-based image retrieval model to improve the tracking
performance of our method. The hash-based image retrieval model introduces image
retrieval technology to reduce ID switches caused by severe occlusions. Quantitative and
qualitative experiments on the KITTI MOT dataset and the campus scenario sequence
demonstrate that our MOT method works well in various scenarios and achieves state-of-
the-art performance.
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