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Abstract: It is too difficult to directly obtain the correspondence features between the two-dimensional
(2D) laser-range-finder (LRF) scan point and camera depth point cloud, which leads to a cumbersome
calibration process and low calibration accuracy. To address the problem, we propose a calibration
method to construct point-line constraint relations between 2D LRF and depth camera observational
features by using a specific calibration board. Through the observation of two different poses, we
construct the hyperstatic equations group based on point-line constraints and solve the coordinate
transformation parameters of 2D LRF and depth camera by the least square (LSQ) method. According
to the calibration error and threshold, the number of observation and the observation pose are
adjusted adaptively. After experimental verification and comparison with existing methods, the
method proposed in this paper easily and efficiently solves the problem of the joint calibration of the
2D LRF and depth camera, and well meets the application requirements of multi-sensor fusion for
mobile robots.

Keywords: two-dimensional laser-range-finder; depth camera; extrinsic calibration; data fusion

1. Introduction

With the rapid development of sensor technology and computer vision technology,
laser-range-finder (LRF) and cameras have become indispensable sensors for autonomous
driving, mobile robots and other fields [1]. Two-dimensional (2D) LRF is commonly used
to measure depth information in a single plane due to its high precision, light weight
and low power consumption. The camera acquires rich information, such as color and
texture, but it is sensitive to light and weather, resulting in its poor stability. On the other
hand, it is difficult for the camera to measure depth directly over long distances. Therefore,
laser vision fusion plays an important role in robot self-localization [2,3], environmental
perception [4], target tracking [5], and path planning [6].

To integrate data information from 2D LRF and depth cameras, the relative positional
relationship between the two sensors needs to be precisely known [7]. This is a classical
extrinsic calibration problem, where the objective is to determine the conversion relation-
ship between two coordinate systems. In contrast to 3D LRF, which identifies different
features, 2D LRF only measures depth information in a single plane, and it is difficult for
the camera to see the plane scanned by 2D LRF, which makes extrinsic calibration for 2D
LRF and cameras more challenging. Therefore, additional constraints must be used to find
the correspondence between the 2D LRF and the camera.

There has been a large amount of research work on the extrinsic calibration of 2D LRF
and cameras, which is divided into two categories: target-based calibration and non-target
calibration. References [7-24] are target-based calibration. Zhang and Pless [8] proposed
a method by using point constraints on a plane, but only two degrees of freedom are
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constrained in a single observation, which required a large number of different observations
to ensure accuracy. Vasconcelos et al. [9] proposed to solve the problem in [8] by forming a
perspective three-point (P3P) problem. Zhou [10] further proposed an algebraic method for
extrinsic calibration. Both methods in [9,10] required multiple observations and suffered
from multi-solution problems. Kaiser et al. [11] proposed a calibration algorithm such
that the problem of rigid displacement estimation between two sensors was reduced to
the registration of plane and line. Li [12], Kwak et al. [13] used isosceles triangles and
foliate panels as calibration targets, and used point-line constraint to calibrate the camera
and LRF. Dong et al. [14] proposed a special V-shaped calibration target method with the
checkerboard, which was used for both camera and LRF calibration by a single observation,
but it needed a cumbersome solution process. Itami et al. [15,16] proposed an improved
method for the checkerboard calibration of the camera and LRF, which directly obtained the
point-to-point correspondence between the LRF and camera. Huang et al. [23] proposed a
method to calibrate the 2D LRF and camera using a one-side transparent hollow calibration
board, but it required the scanning surface of the LRF to form a certain angle with the hollow
calibration board. Tu et al. [24] proposed an accuracy criterion for directional synthesis to
eliminate the large error data during observation, but their laser and visual observation
points were less constrained and still required multiple observations. Although there are
many extrinsic parameters calibration methods for the 2D LRF and camera, the problems
of a complex calibration process, high requirements for calibration board production, many
calibration times and a limited calibration environment still exist.

References [25-31] are the calibration without target, which are further divided into
feature-based extrinsic calibration and motion-based extrinsic calibration. Levison et al. [25]
proposed a self-calibration method based on edge feature matching. Zhao et al. [26] pro-
posed an extrinsic calibration framework based on motion LRF and visible light camera.
Yang et al. [27] built on previous methods to achieve matching of images and 3D LRF
point clouds by methods such as keyframing and motion recovery structures. However,
since different sensors acquired data on different principles, the transformation of each
sensor was determined based on the sensor that acquired data at the lowest frequency.
Schneider et al. [28] proposed to apply deep learning to LRF and the extrinsic calibration
of the visible light camera, constructing loss functions by photometric loss and point cloud
distance loss, and using unsupervised learning methods for training. However, such
methods rely on image feature points and radar point cloud data that are often difficult
to obtain in natural scenes and have harsh usage conditions. In order to estimate the
LiDAR to stereo camera extrinsic parameters for driving platforms, applying 3D mesh
reconstruction-based point cloud registration, a photometric error function was built [31].
In addition to directly obtaining the extrinsic parameter of calibration, CFNet proposed
by Wang [32] was utilized to predict the calibration flow based on convolutional neural
networks. Recently, other authors proposed to optimize the external parameter calibration
with additional sensors [33]. The targetless extrinsic parameter calibration has a common
feature, where lidar collects 3D point cloud data with rich feature information. So they are
too difficult to be applied to the calibration of 2D LRFE.

In order to solve the calibration problems mentioned above, in this paper, we propose
a method to constrain the correspondence between the depth camera and 2D LRF within a
special calibration plate. The point-line features constraint of the 2D LRF and the depth
camera on the calibration plate is used to realized the joint calibration of the 2D LRF and
depth camera. For the extrinsic calibration of the 2D laser rangefinder and depth camera,
the main contributions of the article are as follows:

1.  Provide a novel specific calibration board which is simple to manufacture for the
2D LRF and camera calibration to construct three observation feature point-line
constraints between two sensors.

2. Through the method in this paper, the joint calibration of 2D LRF and depth camera is
completed by only two observations with an oversimplified operation.
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3. By setting the calibration threshold, the joint calibration of the 2D LRF and depth
camera placed on a movable device adjusts the number of observations autonomously.

The layout of the article is as follows: Section 2 describes the calibration principles of
the 2D LRF and depth cameras. Section 3 describes the calibration methods and algorithms
for the 2D LRF and depth cameras. Section 4 verifies the proposed method by experiments,
and we draw conclusions in Section 5.

2. The Calibration Basis of 2D LRF and Depth Camera

In the process of mobile robot localization and mapping, it is often necessary to
unify the environmental perception data of each sensor to the world coordinate system
called base frame to describe. The joint calibration of 2D LRF and depth camera is to
determine the coordinate transformation relationship between the coordinate system of the
depth camera, 2D LRF and the world. As shown in Figure 1, the calibration involves four
coordinate systems, which are world coordinate system Oy — x3Y,,2zw, LRF coordinate
system O; — xjy,z; called laser frame, depth camera coordinate system O, — x.y_z. called
camera frame, and pixel coordinate system O — uv. The pixel coordinate system is the
reference coordinate system of the camera observation data, which usually needs to be
transferred to the camera coordinate system. With the determined relative position among
Ow — Xw¥Y,, 2w, O1 — x1y;2; and O, — xy.z., the observation point coordinates are able to
be transformed among the coordinate systems. Depending on the application scenarios
and needs, the observation data from the depth camera can be expressed under the LRF
coordinate system and then the data can be projected to describe in the world coordinate
system. The scanned data of the LRF can be also expressed under the camera coordinate
system, and then the data are transformed from the camera coordinate system to the world
coordinate system.

Observation point

Laser frame

Base frame
Image plane

Camera frame

Figure 1. Relationship of coordinate systems.

The 2D LRF is often mounted horizontally in mobile robot applications. However,
due to installation error and uncertainty, the mounting will have some deflection angles.
The camera also has some ang]les relative to the world coordinate system. According to the
rigid body coordinate transformation relationship, the position data collected by the 2D
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LRF and depth camera in their respective coordinate systems correspond to the position of
the observation point in the world coordinate system, as shown in Equation (1).

Xw Xi
Zw Zj

In the formula, x; is the coordinate value in i coordinate system. i = I, ¢, [ is the radar
coordinate system, c is the camera coordinate system. R?’ is the rotation matrix from the
coordinate system to the world coordinate system, and T’ is the translation matrix of
the i coordinate system with respect to the world coordinate system. The camera used in
this paper is the ZED depth camera, and its imaging principle is shown in Figure 2. The
figure contains two coordinate systems: the camera coordinate system O; — xy.z., and
the pixel coordinate system O — uv. The two cameras of the depth camera are located in
the same plane, the optical axes of the left and right cameras are parallel, and the focal
length parameters f are the same. The coordinates of the observation point in the camera
coordinate system are assumed to be P(xc, yc, zc).

Image plane
z
Left camera (= >Ze
. l"\
Base line p S
-
/ o~
Right camera o >
ig ~—
- U, ~_
HH“""*—-. \\
v NE““*HE \\\ x—b
xc U “‘--H\:__\

P(x.,y,,z.)

Figure 2. Imaging principle of binocular stereo camera.

According to the camera’s small-aperture imaging principle and triangle similarity,
we have

P @)

where xc, yc, zc are the coordinates of O, — x.y z.; u; and v; are the coordinates in the left
camera pixel coordinate system; u, and v, are the coordinates in the right camera pixel
coordinate system; f is the focal length of the camera; and b isthe distance which is called
the base line between the binocular cameras. Using the camera coordinate system of the
left camera as the camera coordinate system of the depth camera, the relationship between
the pixel coordinates and the camera coordinates of the depth camera is obtained as

__ Up*Zc
Ye = ’ (3)
o

Zc = Uj—uy
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By Equation (3),
Xc % 0 0 u;
ye | =10 % 0 o |, (4)
zc 00 =1

where d = u; — u,, d is called the parallax of the two cameras. According to the depth
data acquisition principle of the depth camera, the point cloud data of the observed object
is gathered. For the 2D LREF, it directly obtains the distance and angle information of the
obstacle. In practical application, the points of the actual object scanned by the LRF have
a unique point corresponding to them in the depth camera. The polar coordinate data of
the LRF are converted into Cartesian coordinate data, then the Cartesian coordinates are
converted to be expressed under the coordinate system of O — x.y.z. by Equation (5).

xC xl
Ye | =Rj| yi | +Tj, )
Zc Z]
r11 T2 113 ty
where Rf = | 11 12 13 |, T] = t |. Ry denotes the 3 x 3 rotation matrix
r31 32 133 ta
from O; — x;y,z; to O — xcy .z, and T} denotes the translation matrix from O; — x;y,z; to

O; — xcy.zc.

Bec::use the geometric relationships do not vary with the coordinate system, the
coordinate system transformation does not affect the geometric constraint relationships.
The data points acquired by the 2D LRF are transformed to be expressed under the depth
camera coordinate system, and the equations are constructed using the constraints of the
LRF scanned points on the depth camera observation line. The set of equations constructed
using multiple observations is solved by linear least squares for the rotation matrix Rf and
translation matrix Tj.

3. Calibration Methods
3.1. Feature Extraction

Although the scanned points of 2D LRF are not visible, it accurately obtains the contour
of the obstacle. Based on the characteristics of 2D LRF, a specific calibration plate is used
in this paper, as shown in Figure 3. The special feature of the calibration plate is its clever
shape, which makes the laser scan points form three uncorrelated straight lines and makes
the camera’s 3D point cloud form three uncorrelated planes. The calibration plate consists
of two rectangular planes and two triangular planes. There is no limit to the angle between
the various planes in the production of the calibration plate. The only thing that needs
to be ensured is that any three planes are uncorrelated and obtain as many observation
points as possible on the calibration plate. In addition, the calibration plate eliminates the
limitations of the environment and installation relationship during the calibration process,
just ensuring that the LRF and camera observe the calibration plate at the same time. By
the specific calibration plate, the characteristic information of 2D LRF scanning is obtained.
At the same time, the 3D point cloud data of the depth camera observation on calibration
plate are obtained too.

As shown in Figure 4, the calibration plate is placed at the position where the 2D LRF
and depth camera observe simultaneously, and the observation data of 2D LRF and depth
camera are collected. The 2D LRF data are observed based on the LRF coordinate system
O — x7y,z;, and the observation data of depth camera are observed based on the left camera
of depth camera coordinate system O — xy 2.
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Figure 3. Combined 2D LRF and depth camera calibration board.

Depth camera

Figure 4. Feature point extraction.

On the calibration plate, the scanned points of LRF will form a folded shape of
EFGGHI, as shown in Figure 4. By the RANSAC (random sample consensus) method, the
scanned points on the rectangular plane PBDQ) are fitted to the straight line EI, the points
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on the plane ABC are fitted to the straight line FG, and the points on the plane ACD are
fitted to the straight line GH. Any two of the three lines are respectively associated to find
the intersection points F(xll,yll, 0), G(xlz,ylz,O), H(xé,yé, 0).

The depth data from the depth camera are transformed into the 3D point cloud, and
the point cloud data of plane PBDQ, plane ABC, and plane ACD under the observation of
the depth camera are extracted. By RANSAC (random sample consensus ) method, the 3D
point clouds on each plane are fitted to the plane equations of the corresponding planes.
The spatial linear equations of straight line AB, straight line AC and straight line AD are
obtained by associating any two plane equations of plane PBDQ, plane ABC and plane
ACD. Suppose the plane equations of the plane PBDQ, plane ABC, and plane ACD are

A1x*+ By 4+ C1z+ D1 =0
Apx°+ Byt + Coz + Dy =0, 6)
Azx© + B3yc +C3z°+D3=0

Then the spatial linear equations of the line AB, line AC and line AD are

Alxc + B]}/C + Clzc + Dl =0
Apx® + Boyt 4+ Copz° + Dy =0
Apx® + Byt + Cz + Dy =0
Azx® + B3y + C3z° + D3 =0 !
A3x®+ Bsy© + C3z° + D3 =0
A1x*+ By +Ciz+ D1 =0

@)

where Ay, By, C1, A, By, Ca, Az, B3, C3 are known. By extracting and fitting 2D LRF data
and depth camera point cloud data, the linear equations of three feature points based on
the LiDAR coordinate system and three spatial straight lines based on the depth camera
coordinate system are obtained.

3.2. Parameter Fitting

The projection of the three feature points of 2D LRF into the depth camera coordinate
system by Equation (5) has

Xj; rxt+rpyt+ 4
v | = | mx oyttt |, (8)
Zlci 731 xf + 1’32]/5 + 13

where | denotes the 2D LRF coordinate system, i denotes the i-th intersection point under
one 2D LRF observation, and i = 1, 2, 3. From the projection results, it is known that only
nine unknowns need to be solved to obtain the rotation and translation matrices for the 2D
LRF and depth camera coordinate system conversions, so only nine mutually independent
sets of equations need to be coupled. Since the transformation of the coordinate system of
points does not change the geometric relationship, the points under the 2D LRF coordinate
system should be on the straight line AB, the straight line AC and the straight line AD,
respectively, after the points are transformed to the camera coordinate system, i.e.,

Alrnxﬂ + Amzyll + A1ty + Bli’zlxll + B17”22]/11 + Byt + Cli’glxll + C11’32yll + Cit3+ D1 =0
A27’11x11 + A21’12yll + Apt + B2r21x11 + Bzrzzyll + Bty + C21’31x11 + C21’32yll +Cots3+Dy =0
Apri1xh + Agriayh + Aoty + Bararxh + Boraoyh -+ Baty + Corgyxh + Carspyh + Cots + Dy = 0
A3r11x’2 + A3T12y12 + Azt + B3r21x12 + B3r22y12 + B3ty + C3r31x12 + C31’32y12 + Csts+D3 =0
Agi’llxé + A31’12yé + Ast] + B31’21xé + B31’22]/l3 + Bty + C3731xé + C31’32]/é + Cstz+ D3 =0
A11’11xé + Alrlzyé + Aqt1 + 311’21xé + Blrzzyé + Bity + C1r31xé + C11’32y13 + Cit3+ D7 =0

Collated by

©)
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1
[ A At Ay Bixp By Bi Gy Gy G e —Dy
Alel Azyll Aj Blel Bzyll B, szll C2]/ll @) f1 —Ds
Alez Azylz Az Blez BzyZZ 32 szlz Cz]/lz Cz ;21 o —Dz (10)
A3xl2 A3]/lz A3 B3x12 B3y12 B3 C3x12 C3yl2 Cs t22 - —Ds !
A3Xé A3yé Aj B3xé B3]/l3 B3 C3xé ngé Cs 72 —Ds
L Alxé Aﬂ/é A1 leé Bl]/é B1 Clxé Clyé Cl 7’2; _Dl
t3
The six equations in Equation (9) are independent of each other. By changing the
calibration model or the position and attitude of the calibration plate, the six constraint
equations are obtained again by the same procedure. Since there are only nine unknowns
in the calibration parameters, the set of equations from the last observation is combined
to form the super-stationary set of equations in Equation (11), where # is the number of
observations. The parameters of the rotation and translation matrices are solved using linear
least squares to determine the coordinate transformation of the 2D LRF and depth camera.
[ Anxyy,  Anyp An Buxyy Buyy Buo Cuxpp Cuyy o Cn ] [ —Dn ]
Apxly  Anpyl, A Bpxl, Bupyl, B Cpxly Coyly Ci —Dyp
Apxly, Anpyl, A Bupxl, Buoyl, B Cipxl, Cuyl, Cn T —Dyp
Apxly, Apyl, A Bixl, Buyl, Bz Cisxly, Cuyly Cis 12 —Ds3
Asxly  Awyly Az Bisxly Bisyly Bis Cisxly Cisyly  Cis t —Dy3
Anxly  Anyly An Buxly Buyly Bn Cuxly Cuyly Cn 21 —Dn
A & s (1)
Anlxiﬂ Anl]/iﬂ An Bnlxiﬂ Bnlyln1 B Cnlxiﬂ Cnlyiﬂ Cin f2 —Din
An2x,l11 An2y£11 An Bn2x,l11 BnZylnl By Cn2x541 Cn2ylnl Cn2 31 —Dy
AanfQ An2y£12 A Bn2x,l12 BnZyi,z By» Cn2x£12 CnZ]/lnz Cn2 32 —Dyp
An3xf12 An3]/£12 Auz Bn3x,l12 Bn3y512 Bus Cn3xf12 CnSJ/fqz Cn3 L 3 J9x1 —Dy3
An3x£13 An3yil3 Aps Bn3x£13 Bn3yln3 B3 Cn3x£,3 Cn3y£,3 Cuz —Dy3
L Anlx,l13 Anl]/iﬁ; Am Bnlx,l13 Bnlyln3 B Cn1x513 Cn1y£13 Cn1 | 611%9 L —Din denx1

3.3. Calibration Algorithm

For the joint calibration of the 2D LRF and depth camera, the method in this paper
aims to determine the coordinate transformation relationship between the depth camera,
LRF and the world. Before the calibration work, the calibrated depth camera had completed
internal parameter calibration. To evaluate the calibration accuracy of the method in this
paper, the three feature points under the LRF observation are projected under the point
cloud reference coordinate system of the depth camera by solving the obtained calibration
parameters, and the projection error of the laser points is calculated using the distance from
the formula point to the straight line. The calibration plate or calibration model’s position
is changed, the experiment is repeated several times, and the average calibration accuracy
is calculated by multiple sets of data.

|ij]' + Bjy]- + C]'Zj + Dj|
[a2 2 2
Aj + Bj + Cj

where N is the number of test, (x;, y;, z;) is the coordinate of the point projected to the depth
camera coordinate system. A jBi,Cj,Djis the linear equation coefficient of the corresponding
line of the projected point. err is the calibration accuracy. The smaller the err is, the higher
the calibration accuracy.

The algorithm framework of the calibration method in this paper is shown in Algorithm 1,
where R, T and ObservNum are defined as the final extrinsic parameter calibration result.

(12)
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Datasets I and S are the point cloud of the depth camera and 2D LRF. Dataset P is the
pose sequence of AGV. Additionally, £ is the error threshold, and Rgt and Tgt are the
ground truth of the rotation and translation matrices. After two observations, the algorithm
first solves the calibration error and compares it with the calibration threshold. When the
calibration error is less than the target threshold, the rotation matrix R, the translation
matrix T and the number of observations are output to complete the extrinsic parameter
calibration of LRF and depth camera.

Algorithm 1 LRF and depth camera extrinsic parameter calibration.

Input: Image set I, point cloud set S, calibration position of AGV set P, and error threshold
&, ground truth Rgt, ground truth Tgt
Output: Calibration result R, T and Observ

1: R4 0,T < 0,0bserv < 0
2: A<+ 0,b<+ 0,err < 100
3: AngularError < 0
4: DistanceError < 0
5 X [r1 ro b ot b ot orn f3 ]T
6: Set firt calibration position of AGV from P
7: Observ <1
8: while err > &£ do
9: Getset I and S
10:  Extracted 3D point cloud of calibration plate features
A1 Bl Cl Dl
11: Calculate M+~ | Ay B, C Dy
As; By C3 Ds
12: Extracted 2D point cloud of calibration plate shape features
)
13: Calculate L | x} yz
X3 Y3
XYy
14: Calculate C <~ | x5 y5
X3 Y3
Aixt Ay A1 Bixd Byt B Cixl Gyt G
Axl Ayl Ay Byx] By By Goxl Gy &
s Ale | A2 Ay Ay Boxy By, By Gy Goyy G

Asxy Asyh As Bsxh Bsyb Bs Cax, Gayh Ga
Asxy Asyh As Bsxh Bsyh, Bs GCaxy Gayy Gs
Aixy Ay A1 Bixy Biyy B Cixy Ciyy G
1 bl |[-Dy —-Dy -Dy —Dy —-D3 —Dj|"

17: if Observ>2 then

3 ‘Ax+B]y]+Cz +D;

18: err < x Z
2 2 2
] ] \/Aj+Bj +C
19: if err < £ then
M1 T2 "3
20: Calculate R <— | rp7 7y 73
r31 T3 733
T
21: Calculate T« [ 1 £ 13 ]

1 trace (Rg_,lR)fl
22: AngularError <- cos™ | ———5——
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Algorithm 1 Cont.

23: DistanceError < ||T — T,

24: else

25: Add Alinto A

26 Add blinto b

27: Calculate X by AX =Db

28: Set another calibration of AGV position from P
29: Observ <— Observ + 1

30: end if

31: else

32: Add Alinto A

33: Add blinto b

34: if Observ = 2 then

35: Calculate X by AX = Db

36: end if

37: Set another calibration board position from P
38: Observ <— Observ + 1

39: end if

40: end while
41: return R, T and Observ

4. Calibration Experiments and Analysis of Results
4.1. Experimental Equipment and Environment

The experiments in this paper are based on a ROS (robot operating system) under the
Linux environment. As shown in Figure 5a, Pepperl+Fuchs R2000 2D LRF and a stereolabs
ZED2i stereo binocular camera are used to collect the 2D point cloud data from the LRF and
the 3D point cloud data from the depth camera, respectively. The detailed parameters of
depth camera and LRF are shown in Tables 1 and 2. In Experiment, both the depth camera
and LRF select a 30 Hz sampling rate.

Table 1. 2D LRF basic parameters.

Range/m Rate/Hz Resolution/° Accuracy/mm Angle/°
0.1-30 10-50 0.042 +25 360

Table 2. Depth camera basic parameters.

Depth Range/m  Depth FPS/Hz Resolution Aperture Field/°
0.2-20 15-100 3840 x 1080 /1.8 110H x 70V x 120D

The calibration experiments are performed on a homemade automated guided vehicles
(AGV) vehicle. The installation relationship of the experimental equipment is shown in
Figure 5. The 2D LRF is installed behind and above the depth camera. It is basically installed
horizontally. The camera is installed horizontally in front of the 2D LREF, and the relative
position of the depth camera and the LRF is kept constant during the experiment. The
calibration plate is placed at the location where the 2D LRF and the depth camera observe
simultaneously. Through the calibration algorithm proposed in this paper, experimental
data under different observation positions, which are adjusted by controlling the AGV, are
collected to complete the autonomous joint calibration of the 2D LRF and the depth camera.
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Automated Guided Vehicles

(b)

Figure 5. Experimental equipment and sensor installation location. (a) Experimental equipment.

(b) Relationship of sensor mounting position.

4.2. Experimental Steps

The experiments in this paper are performed in a ROS environment. After running

the function package of 2D LRF and depth camera, a node and two topics are established
to receive respectively the scan topic of 2D LRF and the depth image topic of the depth
camera. Then the depth data of the depth camera are converted into 3D point cloud data.
The calibration of the 2D LRF and depth camera are completed by executing the following
steps in the calibration program.

1.

Identify and extract the point cloud data gathered by 2D LRF on the calibration plate
by line and corner feature detection algorithms; split the point cloud data into three
parts; fit the point cloud of each part into a straight line; and solve the intersection
point of any two straight lines. The feature extraction process is shown in Figure 6.
Project the intersection points found in the previous step under the depth camera
coordinate system by Equation (8).

Identify and extract the point cloud collected by the depth camera on the calibration
plate by edge and corner detection algorithms. Segment the three planes of the
calibration plate; obtain the equation of the plane by fitting the point cloud on the
plane; and find the equation of the intersection line between two planes in the three
planes. The feature extraction and fitting process are shown in Figure 7.

Using the point on the line as a constraint, the coordinates of the projected point are
substituted into the intersection equation to obtain six equations.

Move the AGV to adjust the observation position, and complete the data collection
and extraction again.

Solve the rotation and translation matrices of the depth camera and 2D LRF coordinate
transformation according to Equation (11).

Take multiple experiments, calculate the average of the calibration results.
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Figure 6. Features of LRF extraction and fitting. (a) Laser observation position. (b) Laser observation
data. (c) 2D point cloud of calibration plate shape features. (d) Feature data of calibration plate fitting.
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Figure 7. Features of depth camera extraction and fitting. (a) Depth camera observation position.
(b) Depth camera point cloud. (c) 3D point cloud of calibration plate features. (d) 3D point cloud
plane fitting of calibration plate.

4.3. Experimental Results and Analysis

In this paper, the baseline of ZED2i camera is used as the ground truth. The LRF is
first calibrated with the left camera frame to obtain R(L:’ and T(L:’, and calibrated with right
camera frame to obtain RE’ and TE’. We then compute the relative pose (baseline) between

100
the binocular cameras and compare it with the ground truth Rg’r =(0 1 0| and Tglr
0 01

=[0 120 0] " from ZED2i Camera parameters. In order to verify the calibration accuracy
and calibration efficiency of the calibration method proposed in this paper, the number of
observation is used as the independent variable. For each independent variable, 10 repeated
experiments were conducted to obtain the mean values of rotation and translation errors
and standard deviation. Based on the experiments, we obtain the relationship between
the result of the mean values and standard deviation, and the number of observations as
shown in Figure 8.
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Figure 8. Rotation and translation errors versus number of observations. (a) Mean and standard
deviation of translational errors. (b) Mean and standard deviation of rotation errors.

As in Figure 8, the mean values of the rotation and translation errors and the standard
deviations of the calibration results gradually decrease as the number of observations
increases. After the number of observations is greater than 6, the average value of the
rotation error is less than 1°. With the increasing number of observations, the average
value of the error gradually tends to be flat. The mean value of the translation error is
obtained as 3.74° of the rotation error and 28.31 mm of translation error under only two
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observation experiments. The experimental data show that the calibration method of this
paper is feasible and achieves high calibration accuracy.

In order to verify the feasibility of this paper’s method, the calibration accuracy of our
method is compared with the more representative methods of current 2D LRF and camera
calibration work. For the methods of Refs. [13] and [23] and the method of this paper, each
method divides the experiments into three groups of 2 observations, 10 observations, and
20 observations, and each group of experiments is conducted 10 times. For each method,
the LRF is first calibrated for both left and right cameras to obtain the corresponding
rotation and translation matrix. Then, the coordinate transformatlon matrlx between the
two cameras is calculated and compared with the ground truths RC and T . The average
of the 10 experimental results is used as the calibration accuracy. The cahbratlon comparison
results are shown in Figure 9. From the experimental results, it is seen that under only two
observations, the method in this paper obtains smaller rotation and translation errors than
the other two methods. Under multiple observation experiments, the method in this paper
achieves the average value of rotation error of 0.68° and the average value of translation
error of 6.67 mm, which is better than the other two methods. Finally, the calibration results

are shown in Table 3, where 8 Pg; is the ground truth of the relative position of the left and
right cameras, and 8 P_.iip is the calibration result of the relative position of the left and
right cameras. fl P, is the designed installation position of the LRF and depth camera,

and (L:Z P_,ip is the calibration result of the relative position of the LRF and camera.

40 2 Observ 2 Observ

10 Observ 10 Obsery

20 Observ 25 200bserv

Mean & Std Error (mm)
[
w B &L B & 8

Mean & Std Error (deg)

=)

P Husng Our Method Kwak Huang Our Method
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Figure 9. Comparison with the methods of Kwak and Huang. (a) Mean of translational errors.
(b) Mean of rotation errors.

Table 3. Calibration results.

Pose X/mm Y/mm Z/mm Yaw/° Pitch/° Roll/°
Py 0 120 0 0 0 0
¢ SP 127 125.75 3.13 0 0 0.11
@ Py 128 60 10 0 0 0
[ Peatib 162.35 72.51 32.58 0 0 0.57

Based on the calibration results, the LRF data are projected into the depth color point
cloud map of the depth camera, and the effects before and after calibration are compared
visually. The effect before calibration is shown in Figure 10a,b. Before calibration, the 2D
lidar point cloud is obscured by the depth point cloud of the camera, and the position of the
laser point cloud is lower than the actual observation position. The effect after calibration
is shown in Figure 10c,d. After calibration, the point cloud data of the depth camera and
the 2D LRF point cloud data basically overlap in the given dimension, which basically
meets the application requirements. Due to the occlusion of the vehicle body model, the tf
coordinates of the reference system in ROS are shown additionally in Figure 11.
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Figure 10. Calibration effect of depth camera and 2D LRF. (a) Front view of before calibration. (b) Top
view before calibration. (c) Front view after calibration. (d) Top view after calibration.

The calibration method in this paper is experimentally verified to be simple and easy
to implement, and the joint calibration of the 2D LRF and depth camera is completed with
high accuracy and efficiency without excessive position and angle observations. Compared
with Ref. [23], there is no complicated feature point extraction and display operation in
the calibration process, and no need to adjust the calibration plate position manually. The
algorithm is designed to adaptively adjust the AGV observation poses. The calibration
method has no restriction on the relative installation position of 2D LRF and depth camera,
and the calibration plate is easy and convenient to make. It greatly simplifies the calibration
process of the 2D LRF and depth camera and improves the calibration efficiency. Compared
with Refs. [13] and [23], the calibration method in this paper has obvious advantages in
calibration accuracy, efficiency and operability.
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Figure 11. Tf coordinate relationship of reference system in ROS.

5. Conclusions

In this paper, we present a novel and simplified calibration method to construct
point-line constraints for 2D LRF and depth camera observation data by using a specific
calibration plate, which effectively achieves the fusion of 2D LRF point cloud data and depth
camera 3D point cloud data. The specific calibration plate proposed in this paper eliminates
the influence of environment, calibration plate fabrication limitation and sensor installation
limitation on calibration. Compared with previous methods, we greatly simplify the
calibration process of depth camera and 2D LRF by automatically adjusting the number of
observations with a defined error threshold. A series of experiments verify that our method
achieves higher accuracy than the compared methods in two observations. Our method is
also extended to the case of multiple observations to reduce noise. The calibration accuracy,
efficiency and operability of the calibration method meet the practical requirements of
mobile robots.
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Abbreviations

The following abbreviations are used in this manuscript:

LRF Laser Range Finder

2D Two-Dimensional

LSQ  Least Square

P3P Perspective Three-Point
AGV  Automated Guided Vehicles
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