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Abstract: The contact form of the orbiting scroll and Oldham’s coupling plays an important role in
improving the operation stability of the scroll compressor. In this study, the kinematic simulation
of key moving parts such as the orbiting scroll and Oldham’s coupling was carried out under the
condition of low speed, and the reason for the impact between Oldham’s coupling and the orbiting
scroll was revealed. Results showed that the clearance between the moving pairs causes the orbiting
scroll to have a slight rotation tendency and causes the impact between Oldham’s coupling and
the orbiting scroll. The angular velocity of the orbiting scroll in the x-axis direction can effectively
characterize this impact. The impact of the Oldham’s coupling convex key on the mainframe keyway
is more severe than that on the keyway of the orbiting scroll. By optimizing the structure of the
convex key of Oldham’s coupling, the contact form between Oldham’s coupling and the orbiting
scroll is improved, and the starting acceleration of the orbiting scroll is reduced by 53%, which greatly
improved the working stability of the scroll compressor.

Keywords: scroll compressor; kinematic characteristics; Oldham’s coupling

1. Introduction

The scroll compressor is a kind of displacement air compressor, and compared with the
traditional piston compressor, the scroll compressor has fewer parts and higher reliability.
Without the constraint of complex parts, the scroll compressor eliminates the violent colli-
sion between the valve plate and the compressed high-pressure gas, which means it has the
characteristics of low vibration, low noise, and high efficiency [1–3]. It is therefore widely
used in air conditioning refrigeration, engine supercharging, and other fields [4–6]. The
core components of the scroll compressor are composed of the fixed scroll and the orbiting
scroll, which carry out suction, compression, and exhaust work through the meshing of
each other, and input or output mechanical power through the crankshaft. The profile
characteristics and motion features of the orbiting scroll directly affect the performance
of the scroll compressor [7,8]. During the operation of the scroll compressor, the orbiting
scroll moves horizontally around the fixed scroll, and its meshing position changes with the
change in the crankshaft angle. In order to ensure the working performance and stability
of the scroll compressor, it is necessary to conduct a simulation study on the kinematic
characteristics of the orbiting scroll.

Virtual prototype simulation is an effective method to analyze the motion feature of
mechanical systems [9,10]. Researchers previously carried out a simulation study on the
motion process of the scroll compressor, whereby Qiang et al. [11] studied the dynamic
characteristics of the orbiting scroll by using a self-established dynamic model of the scroll
compressor and predicted the volumetric efficiency and compression efficiency of the
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scroll mechanism. Feng [12] studied the dynamic performance of the scroll compressor
based on theoretical methods and calculated the gas force and torque of the moving parts.
Considering the gas force, centrifugal force, bearing force, and contact force, Kim [13]
carried out four degrees of freedom dynamic analysis of the axle neck supported by the
journal of the scroll compressor, and the correctness of the analysis results was verified
by comparing them with the commercial program. Hiwata [14] studied the dynamic
characteristics of the CO2 refrigerant scroll compressor and found that the contact force
between the fixed scroll and the orbiting scroll is related to the changes in motor speed,
pressure, and temperature in the working chamber. Ahn [15,16] studied the dynamic
characteristics of the orbiting scroll and the crankshaft considering the gas force on the
orbiting scroll and analyzed the lubrication characteristics of the radial bearing supporting
the crankshaft in the scroll compressor. Msk [17] established a dynamic model of the thrust
bearing of the scroll compressor but did not consider the impact of the collision between
the keyway of the orbiting scroll and the key of Oldham’s coupling on the orbiting scroll
and the thrust bearing.

When the scroll compressor is running, to achieve the correct meshing of the scroll
and prevent the rotation of the orbiting scroll, it is necessary to set up an anti-rotation
mechanism [18]. Common anti-rotation mechanisms of the scroll compressor include
Oldham’s coupling, the roller [19], and sub-crankshafts; among them, Oldham’s coupling
anti-rotation mechanism has been widely used because of its simple structure, convenient
manufacturing and installation, good reliability, and other characteristics [20]. During
the operation of the scroll compressor, Oldham’s coupling reciprocates along the keyway
of Oldham’s coupling and the mainframe, and its dynamic characteristics have a great
influence on the reliability and durability of the scroll compressor. Bell [21] and Ziviani [22]
developed an open-source modeling platform for a positive displacement compressor,
which can be used to analyze the wear of Oldham’s coupling, thrust bearings, and other
mechanisms, Machekposhti [23] proposed a flexible dynamic transmission mechanism
between parallel rotating shafts based on the rigid body model of Oldham’s coupling,
which corrects the lateral offset between two parallel rotating shafts. Henri [24] analyzed
and verified the dynamic performance of this transmission mechanism. When the scroll
compressor is running, the motion trajectory of Oldham’s coupling is closely related to
the orbiting scroll. In the study of the dynamic characteristics of the scroll compressor, the
motion of the orbiting scroll is often compared with Oldham’s coupling.

In order to explore the operation mechanism of the main moving parts of the scroll
compressor and reduce the impact vibration between the convex key of Oldham’s coupling
and the keyway of the orbiting scroll, by analyzing the motion state and motion law of the
orbiting scroll and Oldham’s coupling, the kinematic characteristics of the main moving
parts of the scroll compressor were deeply explored. The velocity change data of the
orbiting scroll in x- and y-directions derived from Adams were fitted by Matlab; thereby,
the existence of the initial phase angle of the orbiting scroll velocity variation equation was
revealed. The convex key structure of Oldham’s coupling was improved, which greatly
reduces the contact impact between the moving parts of the scroll compressor and improves
the working reliability of the scroll compressor. The results provide a reference for the
optimal design and kinematic behavior prediction of the scroll compressor.

2. Structural Model

When studying the motion characteristics of the scroll compressor during the meshing
process, the crank-slider mechanism can be used to represent the relative motion position
relationship of the orbiting and fixed scrolls during operation. As shown in Figure 1,
point A is on the orbiting scroll at a certain working position and point B is the point
corresponding to point A at the center of the revolution. In Figure 1, the fixed scroll and
the mainframe can be regarded as a fixed part, and the constraint of Oldham’s coupling
is simplified as the constraint of slider 1 and slider 2. When the orbiting scroll and fixed
scroll mesh, there is a definite meshing point A; this position constitutes a virtual constraint,
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and the orbiting scroll can only perform translational motion around the fixed scroll under
the constraint of the slider. The number of active components in this mechanism is 3 and
the number of low-level vices is 4, while the virtual constraints are not substituted into
the calculation. According to the calculation of Formula (1), the degree of freedom of the
mechanism is 1, and the motion characteristics are determined.

F = 3n − 2pl − ph (1)

where F is the degree of freedom, n is the number of moving components, pl is the number
of low pairs, and ph is the number of high pairs.
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Figure 1. Crank-slider mechanism diagram of scroll compressor.

To determine the position coordinates of the orbiting scroll at a certain moment, we
take the orbiting center position (x, y) and a certain meshing position (X, Y) of the orbiting
scroll, and Equation (2) can express its motion position relationship.{

X(ψ, θ) = x(ψ) + Ror cos θ
Y(ψ, θ) = y(ψ) + Ror sin θ

(2)

where θ is the crank angle and ψ is the angle parameter.
For the orbiting scroll, which the scroll profile developed from the base circle, the

position coordinates of its centroid can be calculated by Formulas (3) and (4):

xM = 2rb

[
− cos ϕe + 9

ϕe

3ϕe2 + α2 sin ϕe + 9
α cos ϕe − sin α

3αϕe2 + α3

]
(3)

yM = 2rb

[
− sin ϕe − 9

ϕe

3ϕe2 + α2 cos ϕe − 9
sin α

3αϕe2 + α3

]
(4)

The centroid position of the orbiting scroll affects the accuracy of analyzing the motion
trajectory of the scroll, resulting in a secondary balance error. Therefore, it is necessary to
balance the centroid of the orbiting scroll. The balance of the scroll compressor is divided
into the static balance of the orbiting scroll and the dynamic balance of the rotor system.
The static balance is to return the axis of the centroid of the orbiting scroll to the same axis
of the scroll tooth base circle, as shown in Figure 2a. F is the rotational inertial force, F’ is the
inertial force generated by the rotation of the balance block, and there is a certain distance
between F and F’, which causes the orbiting scroll to tend to overturn. The overturning
moment can only be weakened by a reasonable design and cannot be eliminated. Dynamic
balancing is the return of the centroid of the orbiting scroll to the axis of the centroid of the
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main drive shaft. In this paper, the material removal method is used to reduce the inertia
force generated by the orbiting scroll, solve the space problem of the static balance eccentric
block, and reduce the overturning arm as much as possible.
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Figure 2. Mechanical equilibrium model. (a) Static balance. (b) Dynamic balance.

As shown in Figure 2b, the force balance analysis is carried out based on 1-1. Fa is the
rotating inertial force of the orbiting scroll after static balance, Fb and Fc are the eccentric
rotating inertial forces of the crankshaft, and Fd is the rotational inertia force of the balance
block. The inertial force and inertial moment satisfy the following equations.{

Fc = Fa + Fb + Fd
Fax1 + Fbx2 = Fcx4 + Fdx3

(5)

During the operation of the scroll compressor, the orbiting scroll moves in translation
around the fixed scroll, and its meshing position changes with the change of the crankshaft
rotation angle. The motion characteristics of the orbiting scroll and Oldham’s coupling
directly affect the working condition of the scroll compressor. To ensure the working
performance and stability of the scroll compressor, it is necessary to simulate the kinematic
characteristics of the orbiting scroll. As shown in Figure 3, the scroll compressor can be rea-
sonably simplified without affecting the motion analysis, and its kinematic characteristics
can be studied through Adams.

Machines 2022, 10, x FOR PEER REVIEW 4 of 14 
 

 

same axis of the scroll tooth base circle, as shown in Figure 2a. F is the rotational inertial 
force, F’ is the inertial force generated by the rotation of the balance block, and there is a 
certain distance between F and F’, which causes the orbiting scroll to tend to overturn. 
The overturning moment can only be weakened by a reasonable design and cannot be 
eliminated. Dynamic balancing is the return of the centroid of the orbiting scroll to the 
axis of the centroid of the main drive shaft. In this paper, the material removal method is 
used to reduce the inertia force generated by the orbiting scroll, solve the space problem 
of the static balance eccentric block, and reduce the overturning arm as much as possible. 

  
(a) (b) 

Figure 2. Mechanical equilibrium model. (a) Static balance. (b) Dynamic balance. 

As shown in Figure 2b, the force balance analysis is carried out based on 1-1. Fa is the 
rotating inertial force of the orbiting scroll after static balance, Fb and Fc are the eccentric 
rotating inertial forces of the crankshaft, and Fd is the rotational inertia force of the bal-
ance block. The inertial force and inertial moment satisfy the following equations. 

c a b d

a 1 b 2 c 4 d 3

=
=

F F F F
F x F x F x F x

+ +
 + +

 (5)

During the operation of the scroll compressor, the orbiting scroll moves in transla-
tion around the fixed scroll, and its meshing position changes with the change of the 
crankshaft rotation angle. The motion characteristics of the orbiting scroll and Oldham’s 
coupling directly affect the working condition of the scroll compressor. To ensure the 
working performance and stability of the scroll compressor, it is necessary to simulate the 
kinematic characteristics of the orbiting scroll. As shown in Figure 3, the scroll com-
pressor can be reasonably simplified without affecting the motion analysis, and its kin-
ematic characteristics can be studied through Adams. 

 
Figure 3. Schematic of the scroll compressor. 

  

Figure 3. Schematic of the scroll compressor.

3. Kinematics Analysis of the Orbiting Scroll
3.1. Virtual Prototype Model

Through the Adams View simulation platform, the kinematic simulation analysis of
the scroll compressor can be realized in a visual environment. The scroll compressor power
source is a constant speed output during operation. During the virtual prototype simulation
process, the drive is set at the end of the crankshaft, and the STEP displacement function is
used to control the rotation. To better characterize the working parts’ motion form and the
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working state of the scroll compressor, we set the drive function to −360.0 d*time. When
the scroll compressor is in operation, the orbiting scroll is the driving member, Oldham’s
coupling is the driven member, and Oldham’s coupling has a constraining effect on the
movement trajectory of the orbiting scroll.

Adams Solver uses the IMPACT function to calculate the contact impact force. The
IMPACT function model equals the actual object collision process as a nonlinear spring-
damping model based on the penetration depth. To prevent the discontinuity of the
damping force during the collision process, the STEP function is used to define the damping.
The theoretical calculation formula of the collision model is:

Fn = K·δn + step(δ, 0, 0, dmax, Cmax)·
dδ

dt
(6)

STEP(δ, 0, 0, dmax, Cmax) =


0 δ ≤ 0

Cmax(
δ

dmax
)

2
(3 − 2 δ

dmax
) 0 < δ < dmax

Cmax δ ≥ dmax

(7)

where K is the stiffness coefficient, δ is the penetration depth between the contacting objects,
n is the force index of the collision material, Cmax is the maximum damping coefficient, and
dmax is the penetration boundary depth.

3.2. Analysis of the Orbiting Scroll Motion State

Before the motion simulation, we adjust the crankshaft rotation angle θ, take the
center of the fixed scroll base circle as the origin, and define the coordinate of the orbiting
scroll base circle center (−Ror, 0) while θ = 0◦. Figure 4 shows the relative motion posi-
tions between the orbiting scroll, Oldham’s coupling, and the fixed scroll under different
crankshaft rotation angles. When the crankshaft rotation angle θ is 0◦ and 180◦, Oldham’s
coupling convex keys are in the limited position of the keyway of the orbiting scroll. When
the crankshaft rotation angle θ is 90◦ and 270◦, the convex key of Oldham’s coupling is
in the limited position of the keyway of the mainframe. In the operation process of the
scroll compressor, the crescent-shaped closed cavity formed by the meshing of scroll teeth
is constantly changing, so the process of gas inhalation, compression, and discharge is
carried out at the same time, which is one of the reasons the working efficiency of the scroll
compressor is higher than that of other compressors.
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After the Adams simulation results are processed, the motion track of the orbiting
scroll’s centroid position can be obtained by synthesizing the data of x, y, and z components,
as shown in Figure 5. The synthesis formula of centroid position and velocity component
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is shown in Equation (8), which more intuitively reflects the real change of velocity and
position of the orbiting scroll in space. vmag =

√
v2

x + v2
y + v2

z

lmag =
√

l2
x + l2

y + l2
z

(8)

where vx, vy, and vz represent the velocity components of the centroid in the x, y, and z co-
ordinate axes, respectively, in units of m/s. lx, ly, and lz represent the position components
of the centroid in the x, y, and z coordinate axes, respectively, and the unit is m.
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By analyzing Figure 5 it can be obtained that the z-axis value of the vertical line of
the orbiting scroll centroid projection does not change, indicating that the orbiting scroll
does not have axial movement. According to the matching relation, the absolute motion
of the orbiting scroll is synthesized by the constrained translation of Oldham’s coupling
relative to the mainframe and the constrained translation of the orbiting scroll relative to
Oldham’s coupling. When the orbiting scroll rotates around the center of the mainframe,
the motion equation of its centroid position can be expressed by Formula (9). The radius of
the orbiting scroll’s centroid is 8.43 mm, which is consistent with the design parameters of
the rotary radius.

S = (−r sin θ)2 + (r cos θ)2 = r2 (9)

where r is the radius of the base circle.
The velocity variation data of the orbiting scroll mass center obtained by ADAMS

were imported into Origin, and the velocity variation rule of the orbiting scroll mass center
was further analyzed by adjusting the numerical range of the ordinate, as shown in Figure 6.
It can be seen from Figure 6 that the orbiting scroll has an acceleration phenomenon during
the start-up phase, and 6 s after starting, the centroid velocity is stably maintained at
approximately 5.295854 × 10−2 m/s; periodic fluctuations occur with time, and the change
period is approximately 1.0 s.
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To further explore the change law of the centroid velocity of the orbiting scroll, the
time-varying curves of the velocity and acceleration components of the orbiting scroll in the
x-axis direction are analyzed. As shown in Figure 7, the speed change curve of the orbiting
scroll in the x-axis direction is sinusoidal, and its acceleration change has a sudden change
value. This is because when the convex key of Oldham’s coupling moves to the limit
position of the keyway of the orbiting scroll, the acceleration change curve of the orbiting
scroll is at its peak value and has a sudden change. At this time, the fastest speed changes.
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Figures 8 and 9 show the change of the angular velocity in the x- and y-directions
of the orbiting scroll within 20 s, respectively. It can be seen from these figures that the
orbiting scroll accelerates during the startup phase, and approximately 6 s after startup,
the angular velocity of the rear centroid in the x-direction is maintained at approximately
5.15180 × 10−15◦/s, and the angular velocity in the y-direction of the centroid is maintained
at approximately 2.88397 × 10−14◦/s. It periodically changes slightly with time, and the
change period is 1.0 s. When the rotation angle is 0◦ and 180◦, the convex key of Oldham’s
coupling is at the limit position of the keyway of the orbiting scroll. At this time, the
acceleration of the orbiting scroll is the largest. The keyway first contacts an edge of the
convex key of Oldham’s coupling and then tightens the stick to the side where the convex
key is stressed, thereby driving Oldham’s coupling to move. When the keyway of the
orbiting scroll just touches the convex key of Oldham’s coupling, the orbiting scroll and
Oldham’s coupling will collide slightly, resulting in an extremely small sudden change in
the angular velocity of the orbiting scroll. The existence of the angular velocity indicates
that the orbiting scroll motion state has extremely small rotational motion and shock
vibration. This is because the fit between the convex key of Oldham’s coupling and the
keyway of the orbiting scroll is a clearance fit, and the angular velocity of the orbiting
scroll in the x- and y-directions shows a sudden change every half-cycle (the convex key of
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Oldham’s coupling is close to the keyway of the orbiting scroll), resulting in the existence
of an initial phase angle in the orbiting scroll velocity fitting equation. Since the value of
the initial phase angle is very small, it can be ignored. Setting a reasonable gap between the
orbiting and fixed scrolls can avoid serious wear caused by their interference. Therefore,
the convex key of Oldham’s coupling and the keyway of the orbiting scroll needs to be set
with a reasonable fitting clearance value. If the fitting clearance is too large, it very easily
causes the collision of the scroll plates.
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3.3. Analysis of the Orbiting Scroll Motion State

In order to explore the motion law of the orbiting scroll more accurately, the velocity
change data of the orbiting scroll in the x-axis and y-axis directions measured by Adams
were extracted and analyzed by Matlab fitting. The fitting formula of Vx is:

f (x) = a· sin(b·x + c) (10)

The fitting formula of Vy is:

f (x) = a· cos(b·x + c) (11)

Table 1 shows the fitting values at different rotation angles, where c is equal to the sum
of the initial position phase angle and the rotation phase angle of the orbiting scroll. The
velocity-fitting equations all have extremely small phase rotation angles. There is a certain
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gap between the key and the keyway, resulting in the orbiting scroll rotating slightly while
performing the translational motion, which also reveals that the orbiting scroll has periodic
angular velocity changes in the x- and y-axis directions.

Table 1. Fitting values under different rotation angles.

Initial Position a b c

θ = 0◦
x 0.05296 6.283 −0.03022
y 0.05296 6.283 −0.03141

θ = 90◦
x 0.05296 6.283 π/2 − 0.03044
y 0.05296 6.283 π/2 − 0.03111

θ = 180◦
x 0.05296 6.283 π − 0.03022
y 0.05296 6.283 π − 0.03141

4. Kinematics Analysis of Oldham’s Coupling
4.1. Motion Simulation Analysis of Oldham’s Coupling

Oldham’s coupling and the orbiting scroll are the main moving parts of the scroll
compressor. To better analyze the kinematic characteristics of the orbiting scroll, it is
necessary to study the motion law of Oldham’s coupling. Figure 10 shows the change curve
of the speed component of Oldham’s coupling in the x- and y-directions. It can be seen
from Figure 10 that the speed change amplitude of Oldham’s coupling in the y-direction is
twice the speed change amplitude in the x-direction, which is also the reason the rotational
angular velocity of the orbiting scroll in the x-direction is an order of magnitude smaller
than the rotational angular velocity in the y-direction.
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Figure 11 shows the time-varying curves of the centroid position, velocity, and accel-
eration of Oldham’s coupling. The motion of the centroid of Oldham’s coupling and the
orbiting scroll is both a simple harmonic motion. During the dynamic analysis, the displace-
ment trajectory of Oldham’s coupling and the displacement trajectory of the orbiting scroll
will be superimposed. It can be seen from the comparison between Figures 6 and 11 that
in the same period, the moving frequency of Oldham’s coupling is approximately twice
that of the orbiting scroll. In one period of the position change of Oldham’s coupling, the
acceleration of its centroid reaches the peak twice, and the two peaks are generated when
Oldham’s coupling is at the same limit position of the mainframe keyway. The changing
trend of the centroid velocity of Oldham’s coupling is opposite to the acceleration, therefore
when the centroid acceleration becomes smaller, the centroid velocity increases, and when
the centroid acceleration is 0, the centroid velocity reaches the peak value. Because of
the clearance fit between the convex key of Oldham’s coupling and the keyway of the
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orbiting scroll, when the scroll compressor is running, the clearance will cause the impact
collision between the convex key and the keyway, which causes the centroid acceleration of
Oldham’s coupling periodically to oscillate. The convex key of Oldham’s coupling extrudes
different planes of the mainframe keyway in the first half period and the second half period,
respectively, resulting in the angular velocity of the orbiting scroll producing a sudden
change every half-cycle, so there is an extremely small initial phase angle in the velocity
change equation of the orbiting scroll.
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4.2. Optimization Analysis of Oldham’s Coupling

The moving pair formed by the combination of the convex key of Oldham’s coupling
and the keyway of the mainframe and orbiting scroll is low. As shown in Figure 12, due to
the clearance fit between the keyway and the convex key of Oldham’s coupling, there must
be an impact during the contact process. During the start-up stage of the scroll compressor,
the orbiting scroll will show a sudden acceleration. At this time, the convex key of Oldham’s
coupling and the keyway of the orbiting scroll will have a great impact, which will easily
lead to damage to the orbiting scroll. Therefore, it is necessary to optimize the structure
of Oldham’s coupling. As shown in Figure 13, the convex key of Oldham’s coupling was
optimized to a cylindrical structure, the form of the contact pair was changed from a low
pair to a high pair, and the optimized scroll compressor model was analyzed based on the
control variable method, compared with the simulation results before optimization.
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Figure 12. Convex key extrusion mainframe keyway. (a) The convex key of Oldham’s coupling
impacts the lower surface of the keyway of the frame (b) The convex key of Oldham’s coupling
impacts the upper surface of the keyway of the frame.
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The orbiting scroll and the fixed scroll are the core of the scroll compressor, so the
motion state of the orbiting scroll is used as the evaluation criterion. Figure 14 shows the
velocity and acceleration of the orbiting scroll in the x-direction of the prototype model after
structural optimization. Compared with Figure 7, the component velocity of the orbiting
scroll in the x-axis direction has not changed, indicating that the improved Oldham’s
coupling can ensure the operation reliability of the scroll compressor. When the scroll
compressor starts, the acceleration component of the orbiting scroll in the x-direction
is significantly reduced, from 0.07 m/s2 before the improvement to 0.03 m/s2 after the
improvement, a decrease of 53%.
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The magnitude of the rotation amplitude of the orbiting scroll has a very important
influence on the reliable operation of the scroll compressor. To further explore the influence
of the improved model on the rotation of the orbiting scroll, the impact of the orbiting
scroll in the stable stage after 6 s is analyzed, compared with the average values of angular
velocities in the x- and y-directions. As shown in Figure 15, we define the prototype model
before improvement as Group 1 and the improved prototype model as Group 2. In the
stable operation stage of the scroll compressor, the average value of the angular velocity
in the x-direction is significantly smaller than that of Group 1, approximately 50% lower,
while the average angular velocity in the y-direction does not change significantly, which
indicates that the contact state between the Oldham’s coupling convex key and the keyway
of the orbiting scroll greatly affects the angular velocity of the orbiting scroll in the x-axis
direction. Optimized Oldham’s coupling can significantly reduce the contact impact with
the orbiting scroll. When the scroll compressor runs at high speed, it can effectively improve
the working reliability of the orbiting scroll.
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5. Conclusions

In order to explore the influence of the moving pair’s contact form on the kinematic
characteristics of the scroll compressor, the motion characteristics of the orbiting scroll
and Oldham’s coupling were analyzed, and the reasons for the impact between Oldham’s
coupling and the orbiting scroll were revealed. The result shows:

(1) During the operation of the scroll compressor, the moving frequency of Oldham’s
coupling is approximately twice that of the orbiting scroll in the same period, and the
acceleration reaches its peak when Oldham’s coupling moves to the limit position of
the mainframe keyway, so the impact of the convex keys of Oldham’s coupling on
the mainframe keyway is more severe than that of the orbiting scroll keyway. In the
maintenance of the scroll compressor, special attention should be paid to the wear of
the mainframe keyway.

(2) Due to the existence of the motion pair clearance, the orbiting scroll will rotate slightly
while performing the translational motion. When the crankshaft rotation angle reaches
0◦ and 180◦, the acceleration of the orbiting scroll reaches the maximum value, the
convex key of Oldham’s coupling is at the limit position of the keyway of the orbiting
scroll, and the impact of the two causes a sudden change in the angular velocity
of the orbiting scroll in the x- and y-axis directions, which also causes a significant
fluctuation of the centroid velocity of the orbiting scroll every half cycle.

(3) By optimizing the structure of the convex key of Oldham’s coupling and improving
the contact form between Oldham’s coupling and the orbiting scroll, the rotation
angle velocity amplitude of the orbiting scroll in the stable operation stage can be
greatly reduced, and the acceleration mutation phenomenon in the start-up stage of
the orbiting scroll can be effectively alleviated, which causes the scroll compressor
to run more stably and improve its work efficiency, bringing more economic benefits
to the industrial field where the scroll machinery is widely used. In the future, the
impact vibration between the convex key of Oldham’s coupling and the keyway can
be further analyzed through experiments, and the optimization method of the scroll
compressor with a better vibration reduction effect can be sought.
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