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Abstract: An empathic collaborative robot (cobot) was realized through the transmission of fear 

from a human agent to a robot agent. Such empathy was induced through an electroencephalo-

graphic (EEG) sensor worn by the human agent, thus realizing an empathic safe brain-computer 

interface (BCI). The empathic safe cobot reacts to the fear and in turn transmits it to the human 

agent, forming a social circle of empathy and safety. A first randomized, controlled experiment in-

volved two groups of 50 healthy subjects (100 total subjects) to measure the EEG signal in the pres-

ence or absence of a frightening event. The second randomized, controlled experiment on two 

groups of 50 different healthy subjects (100 total subjects) exposed the subjects to comfortable and 

uncomfortable movements of a collaborative robot (cobot) while the subjects’ EEG signal was ac-

quired. The result was that a spike in the subject’s EEG signal was observed in the presence of un-

comfortable movement. The questionnaires were distributed to the subjects, and confirmed the re-

sults of the EEG signal measurement. In a controlled laboratory setting, all experiments were found 

to be statistically significant. In the first experiment, the peak EEG signal measured just after the 

activating event was greater than the resting EEG signal (p < 10−3). In the second experiment, the 

peak EEG signal measured just after the uncomfortable movement of the cobot was greater than the 

EEG signal measured under conditions of comfortable movement of the cobot (p < 10−3). In conclu-

sion, within the isolated and constrained experimental environment, the results were satisfactory. 

Keywords: empathy; empathic; cobot; robot; EEG; electroencephalographic; BCI;  

brain-computer interface; safe; safety 

 

1. Introduction 

Collaborative robots (cobot) [1] are special robots that can collaborate with humans. 

They were originally intended for industrial applications [2–9], but they have also found 

use in biomedical [10–18], domestic [19–22], and military [23–26] fields. 

Because of the physical proximity of humans and robots, many scientific works in 

the field of mechatronics [27–29] focus on the relationship’s safety [30] and comfort [31]. 

Several authors have evaluated the use of natural interface systems, such as vision [32,33] 

and face recognition and communication [34–37], gestures [38–40], and spoken natural 

language [41–44], to improve the relationship. This process has led to research into incor-

porating the concept of empathy [45] into the human–robot relationship by giving the 

robot the ability to decode the emotional state of the human subject [46]. The results in the 

literature are almost entirely based on the analysis of human facial expressions [47–50], 

sometimes supplemented by gestures and body language [51–53] or by voice modulation 

[54–57]. 
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On the basis of psychological studies, the literature differentiates at least two groups 

of emotions, namely primary and secondary emotions [58]. The category of primary emo-

tions is thought to be intrinsic [58]. Literature says that the main emotions developed dur-

ing phylogeny to help people act quickly and instinctively when danger is near. Primary 

emotions are also thought to be prototype emotion kinds that can be assigned to one-year-

old children [59]. Secondary emotions such as “relief” or “hope” are thought to emerge 

from higher cognitive processes based on the ability to evaluate choices over outcomes 

and expectations. Then, secondary emotions are acquired through social learning pro-

cesses. The adjective “secondary” is used in the literature to allude to “adult” emotions. 

Furthermore, secondary emotions, like main emotions, influence bodily (and facial) man-

ifestations of primary emotions. Different authors listed different primary and secondary 

emotions, i.e., according to Becker et al. [60], the nine primary emotions are: angry, an-

noyed, bored, concentrated, depressed, fearful, happy, sad, surprised. Always according 

to Becker et al. [60], the three secondary emotions are: hope, fears-confirmed, and relief. 

Studies on functional neuroanatomy of emotion of brain show that in the majority of 

investigations, across individual emotions and induction methods, no unique brain region 

was consistently active, implying that no single brain region is routinely activated by all 

emotional tasks [61]. The same meta-analysis article [61] classifies five primary emotions, 

happiness, fear, anger, sadness, and disgust and enumerated the studies in the literature 

that reported the activation of twenty brain regions. Respectively, happiness, fear, anger, 

sadness, and disgust activated 18, 17, 16, 19, and 13 brain regions. So, it might be a good 

idea to use a mathematical relationship based on ElectroEncephaloGraphic (EEG) signals 

and the activation or sequence of activation of multiple brain regions to figure out what 

emotions a person is feeling. 

At first, applications for EEG were developed to help people with disabilities [62] in 

a variety of areas, including substitution of natural verbal and non-verbal communication 

[63–65], the connection with ICT devices [66], and the use of assistive orthoses [67], such 

as mobile systems [68] and robotic manipulators [69], exoskeletons [70], prosthetic limbs 

[71], or grippers [72]. Assisting patients suffering from paralysis [73], amputations [74], 

and dysfunctions of the central nervous system [75] are some of the other uses for EEG-

based prostheses. 

EEG-based brain–computer interface applications have been used also in non-medi-

cal domain, i.e., the entertainment industry [76]. There have been studies conducted in 

non-medical fields, such as the creation of devices to evaluate the level of attentiveness 

[77]. Another topic has been investigated is ways to ensure the overall safety in profes-

sional and daily living activities [78–80]. Applications based on EEG might be used to 

control the operation of intelligent houses [81]. EEG has the potential to be used for a 

variety of non-medical applications, including the empowerment of non-pathological 

subjects’ performances [82]. The use of drones [83] and robot control [84] might also fall 

under the category of applications, along with video games [85] designed to increase a 

person’s ability to concentrate or pay attention. 

Some authors have used EEG technology [86–88] to identify emotions [89–93], but 

this approach does not appear to have been applied to robotics, particularly collaborative 

robotics, to the best of the authors’ knowledge. In general, the EEG signal is used in ro-

botics to identify stressful conditions or decreased concentration [94,95] or to send volun-

tary commands to the robot [96].  

The work proposed in [97] analyzed the EEG signal to discriminate between: interest, 

stress, relaxation, excitement, engagement, long-term excitement, and focus. This ap-

proach may be of interest, for example, in assessing operator stress and ability to concen-

trate in order to reduce one of the risk factors for an accident and recommend a break or 

slowdown in operations, as described in [98]. The work proposed in [99] describes a brain–

computer–interface based on an EEG sensor to command the motion of a virtual robot. 

All these research exhibited an accuracy limited between the range 80% and 90%. 
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Thus, in this work, we introduce a first novel element in comparison to the literature: 

we use EEG to transfer information about the emotional state of the human subject from 

the human subject to the cobot, thereby promoting the formation of an empathic relation-

ship between human and cobot. We want to focus on the aspect of safety in particular: 

when a human subject perceives danger, he or she feels fear, which causes hyperactivation 

of various brain regions [100] and then produces a rapid reaction to move away from the 

dangerous situation. As a result, monitoring the EEG signal could quickly transfer the fear 

information to the cobot. To be able to use this approach, an initial hypothesis will be 

introduced in this paper, namely that the subject and the robot proceed in their activity 

without interactions with other subjects, so that the human subject’s brain hyperactivation 

can actually be associated with a fear emotion. Fear is the most important and intense 

emotion because it allows the subject to survive [101]; thus, the rationale of this article is 

in favor of the subject’s safety; that is, even if other strong emotions distract the subject 

from interacting with the robot, the robot will interpret them as an emotion of fear in order 

to maintain itself in a safe condition. Fear is transmitted from one subject to another in 

human society through the decoding of facial expressions and nonverbal signals, with the 

receiving subject unaware of the reason for the fear [102]. This evolutionary phenomenon 

serves to shorten the reaction time to danger and protect the entire society and all of its 

members. As a result, the approach proposed in this paper tends to facilitate the transition 

from a collaborative to a social dimension, even for current collaborative robots that be-

come sobots [103]. Following the perception of the fear signal, the robot implements a 

strategy to contain the danger by moving to a safe position; this behavior should be rec-

ognized by human subjects as a nonverbal message of danger, allowing for a rapid trans-

mission of fear from the robot to the human subjects. 

2. Materials and Methods 

Materials consists of two distinct but interconnected systems: an ElectroEncephalo-

Graphic (EEG) system and a collaborative robot. There are two experimental protocols in 

place: one in which decision thresholds are identified and one in which decision thresh-

olds are validated. In the first protocol, we only use the EEG system, whereas in the second 

protocol, we use both systems, EEG and cobot, which are made to communicate with one 

another. 

2.1. EEG Sensor System 

The used EEG system (Figure 1) [104] and consists of a band to which some electrodes 

are attached. The electrodes are connected to an acquisition board, and the band is worn 

around the head of a human subject. The acquisition board receives and partially pro-

cesses the EEG signal before wirelessly transmitting it to a USB dongle connected to a PC.  
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Figure 1. EEG sensor system, where: e indicates electrodes attached to the band, r represents two 

ear electrodes, b is the acquisition board, d is the USB dongle. 

The electrical scheme of the acquisition board is described in Appendix A. 

In the first experimental protocol, the data are saved offline and later reprocessed 

using the following Matlab script, where the first lines on input file configuration are omit-

ted. 

 

... 

%data input 

filename = strcat(path, slash, file); 

fileID = fopen(filename); 

data=textscan(fileID,’%f%f%f%f%f%f%f%f%f%f%f%f%f% 

f%f%f%f%f%f%f%f%f%f%f%q’, ‘Delimiter’, ‘,’,’headerlines’, 5); 

fclose(fileID); 

sample_index = data{1}; 

k=1; 

for i = 2:9 

eeg_data(:,k) = data{i}; %electrodes measures [microV] 

k = k+1; 

end 

reference = data{10}; 

 

%example parameters 

fs= 250; %[Hz] - sampling rate 

Channel = 8; %number of channels 

n = length(sample_index); 

time = data{25}; 

start_time = time(1); 

epoch_start = datetime(start_time); 
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end_time = time(n); 

epoch_end = datetime(end_time); 

elapsed_time = epoch_end - epoch_start; 

elapsed_time = seconds(elapsed_time); %registration duration [s] 

t = linspace(0, elapsed_time, n); 

 

%bandpass filter 

Wp = [3 15]/(fs/2); %pass band 

Ws = [2 20]/(fs/2); %attenuation band 

Rp = 1; %[db] maximum bandwidth loss value 

Rs = 60; %[db] attenuation value 

[N, Wp] = ellipord(Wp,Ws,Rp,Rs); 

[B, A] = ellip(N,Rp,Rs,Wp); 

X = filtfilt(B,A,double(eeg_data)); 

 

%calculation of values at rest and during fright 

std_val = mean(m(fs*4:fs*10)); %resting average [V] between 4–10 s 

[fright_val, i]= max(m(fs*10:length(m))); %maximum after 10 s 

fright_time = i/fs + 10; 

threshold = 100; %fright threshold example 

 

if fright_val - std_val > threshold 

disp(‘frightened’) 

else 

disp(‘unfrightened’) 

end 

 

Instead, in the second experimental protocol, data are processed inline by a ROS (Ro-

bot Operating System) application to develop decision strategies, and a command signal 

is sent to a cobot that interacts with the subject wearing the EEG system. 

2.2. Cobot 

Rethink Robotics’ Sawyer is the adopted cobot (Figure 2). It consists of a 7-degree-of-

freedom robotic arm, a gripping system (tool), a screen (head), a vision system with two 

cameras (one on the end effector and one on the head), and a control system. The arm is 

outfitted with seven servomotors that allow movement in all seven degrees of freedom; it 

has a maximum extension of 1260 mm and a maximum payload of 4 kg. The entire system 

weighs 19 kg.  
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Figure 2. Cobot testbench. 

According to the Denavit and Hartenber notation, the robot can be represented by 

the parameters listed in Table 1. 

Table 1. Saywer robot structure described with DH parameters a, d, α, and θ sequentially from the 

base joint to the gripper joint. 

α θ a d 

−π/2 θ1 8.1 × 10−2 0 

π/2 θ2 0 1.91 × 10−1 

−π/2 θ3 0 3.99 × 10−1 

π/2 θ4 0 −1.683 × 10−1 

−π/2 θ5 0 3.965 × 10−1 

π/2 θ6 0 1.360 × 10−1 

0 θ7 0 1.785 × 10−1 

The robot communicates with a ROS node via a proper driver. The cobot transfers 

information to the ROS node via the driver from encoders that measure the angular posi-

tions at the joints, torque sensors at the joints, and cameras mounted on the cobot itself. 

The ROS node also sends commands to the cobot via the driver based on the required 

function, as well as by processing data from the cobot’s sensors or other sensors (EEG) 

connected to the PC. The ROS application is described in Appendix B. 

2.3. Identification of the Decision Threshold 

2.3.1. Participants 

A total of 100 subjects were recruited ranging in age from 19 to 30 years. The subjects 

were divided into two groups, experimental group and control group, for an equal num-

ber of 50 subjects in each group. Subjects completed an informed consent form, as well as 

information and evidence of consent to the processing of personal data. Following that, 

subjects underwent a preliminary screening based on the following inclusion criteria: 

- No cardiovascular disease, which could pose a risk factor during the experiment;  

- The absence of neurological disorders that could change the intensity, shape, and 

latency time of the response signal; 
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- Absence of abnormal eating habits, excessive sports activity, not having over-hy-

drated or exercised shortly before the experiment; particularly to limit changes in 

skin hydration; 

- No creams or other cosmetic or medicinal products applied to the skin in the area 

where the electrodes will be applied, as well as no long hair, to limit changes in the 

contact impedance between the skin and the electrodes; 

- No substance abuse that alters the psychophysical state or general hydration level 

(alcohol, drugs, systemic medications). 

2.3.2. Experimental Protocol 

The experimental observations were carried out in a robotics laboratory while all 

other electrical and electromechanical equipment were turned off. The season was winter 

and the indoor temperature was set at 21 °C with relative humidity in the 40–60% range. 

All cables and measuring equipment were shielded. The computer connected to the meas-

urement system via Bluetooth was placed at the maximum possible distance so as to limit 

possible electrical interference. 

EEG data were collected using active electrodes placed on the scalp at the location(s) 

of interest (Table 2 and Figure 3). The reference was the average ear value. The imped-

ances of all electrodes were kept under 6 kΩ. The sampling rate of the EEG channels was 

500 Hz, while the accelerometer sampling rate was 25 Hz. 

Table 2. Placement of electrodes on the subject according to Figure 3 and respective connections to 

the data acquisition board. 

Electrode Code Electrode Type Board Pin GUI Channel 

FP1 Flat N1P 1 

FP2 Flat N2P 2 

FPZ Flat N3P 3 

TP7 Spikey N4P 4 

TP8 Spikey N5P 5 

P7 Spikey N6P 6 

P8 Spikey N7P 7 

OZ Spikey N8P 8 

A1 Ear clip SRB - 

A2 Ear clip BIAS - 
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Figure 3. Identification of the code and position of electrodes (red circles with red arrows) on the 

subject. 

Using the definitions in Table 2 and the positioning standard in Figure 3 according 

to the 10-10 system using Modified Combinatorial Nomenclature (MCN), the following 

order was used to come up with the steps for putting the electrodes on the patient. 

1. The Velcro strip was put on the person, and a mark was made on the Velcro strip to 

show the standard place to put the spikey electrodes; 

2. The band was removed from the subject, and then all the spikey electrodes were 

mounted in the correct position indicated in the previous step; 

3. The first lobe clip electrode was connected to the correct pin on the board (BIAS); 

4. The second lobe clip electrode was connected into the correct pin of the board (SRB); 

5. The three flat electrodes were connected to the three respective pins of the board 

(N1P, N2P, and N3P).  

6. The five spikey electrodes were connected into the five respective pins of the board 

(N4P, N5P, N6P, N7P and N8P); 

7. The Velcro band with the eight electrodes (three flat and five spikey) was placed on 

the subject; 

8. Finally, it was verified that the position of the electrodes was correct after the assem-

bly had taken place. 

Electrooculogram activity was not recorded because its effect on the EEG signal is 

very small compared to the hyperactivation associated with the fear phenomenon. 

Face-muscular activity was not recorded because the subject was required to main-

tain a relaxed condition, and until the relaxed condition was achieved, data acquisition 

did not begin. To ensure this condition, the subject was asked to raise his or her hand 

slightly when he or she felt ready, and an operator who was able to observe his or her face 

would, subsequently, give a start signal with his or her hand when he or she observed the 
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subject in the relaxed state. The operator observing the subject never checked the macro-

movements of the subject’s face. Had macro-movements of the face been observed, the 

measurement would have been discarded and never repeated on the same subject. 

The data of the subjects were then anonymized using a three-digit numerical code. 

To avoid bias in the analysis stages, the research team member who performed the screen-

ing and anonymization did not participate in the later stages of the study and was also 

kept anonymous to the other members of the research team, aside from the group leader. 

The subject is made to sit in the data collection station, which includes a chair and a 

table to support the device. In order to obtain reliable results, the subject is placed away 

from any nearby electronic devices and facing away from the research group. A member 

of the research team ensures that the electrode band is properly placed on the patient to 

ensure that the sensors and the subject’s head are in constant contact. The test subject is 

instructed to remain calm and relaxed. After the sensors have been tested to make sure 

they work, the Open BCI software records the signal. 

The EEG signal is recorded for approximately 20 s for each subject; after 10 s, a mem-

ber of the research team induces a fear reaction in the subject through the percussion of a 

pair of metal objects in order to detect any changes in the EEG signal. 

Following the experiment, a member of the research team asks the subject if he or she 

was scared in order to confirm the presence of the fear emotion. 

2.4. Randomized-Controlled Trial (RCT) of emphatic collaboration 

2.4.1. Participants 

The sample size for the RCT described in this section could be estimated using the 

research protocol described in Section 2.3; but, as will be noted in results Section 3.1, the 

statistics do not require a large sample. The sample size is chosen to be 100 subjects con-

ventionally to account for the difference between the two experiments; in particular, the 

subject in the protocol described here is exposed to the motion of a cobot while at rest, so 

his or her level of EEG activation may differ from that identified in Section 2.3. A total of 

100 subjects, all of whom are different from those who participated in the previous exper-

imental protocol and range in age from 19 to 30 years, are recruited. The subjects were 

divided into two groups, experimental A group and control group B, for an equal number 

of 50 subjects in each group. The subjects completed an informed consent form, as well as 

information and expressions of consent to the processing of personal data. Following that, 

subjects were subjected to the same screening described in Section 2.3. 

The data of subjects are then anonymized using a three-digit numeric code. To avoid 

bias in the analysis stages, the member of the research team who performed the screening 

and anonymization does not participate in the subsequent stages of the study and is also 

kept anonymous to the other members of the research team, apart from the group leader. 

Subjects are put into one of two groups, A or B, based on a random draw. Group A is the 

intervention group, and Group B is the control group. 

2.4.2. Experimental Protocol 

The subject is made to sit in the data collection station, which includes a chair and 

table to support the device, as well as a collaborative robot in front of the subject. To en-

sure reliable results, the subject is placed away from any nearby electronic devices to 

avoid interference. A member of the research team ensures that the electrode band is cor-

rectly placed on the patient to ensure that sensors and the subject’s head are in constant 

contact. For safety reasons, a member of the research team stays on the subject’s right side 

by holding an emergency button and ensuring that the subject is always behind the edge 

of the table with his or her hands under the table. The subject being tested is instructed to 

remain calm and relaxed. After the correct sensor activity has been checked with the Open 

BCI software, the signal is then recorded. 
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If the subject is assigned to group A, the robot moves at a distance of 800 mm for the 

first 10 s, then moves rapidly toward the subject to a distance of 150 mm and a height of 

400 mm from the table, and finally moves back slowly, closing on itself. The EEG signal is 

measured for a total of 10 s. This rapid movement is sufficient to generate a feeling of fear 

and still provide a sufficient level of safety for the subject. In fact, it is known in the liter-

ature that an intense acoustic stimulus coming from a source near a subject produces a 

stunning effect. The stunning effect is followed by autonomic reflexes such as increased 

heart rate and danger avoidance behaviors. It has been observed in these subjects that the 

autonomic reflex is closely related to the emotion of fear [105]. Therefore, it can be said 

that autonomic reflex and fear occur together in the subject. 

If the subject is in group B, the robot moves for 20 s while staying 800 mm away from 

the subject. During the robot’s work session, the EEG signal is measured according to the 

procedure described in Section 2.3. 

Following the experiment, a member of the research team asks the subject in both 

groups A and B whether he or she was scared to check the manifestation of the emotion 

of fear. This questionnaire serves to confirm the hypothesis in the literature. 

3. Results 

This section is divided into two parts: the first is for the experiment described in Sec-

tion 2.3, in which the subject is subjected to rapid high-intensity sound stimulation; the 

second is for the experiment described in Section 2.4, in which the subject is subjected to 

rapid, close-range movement of a collaborative robot. 

3.1. Results—Identification of the Decision Threshold 

In accordance with the protocol outlined in Section 2.3, 100 subjects were screened 

for enrolment. As shown in Figure 4, five subjects were discarded: one had engaged in 

sports activity just before the test session, one had abused alcohol the night before, two 

had hair that was too long, and two had applied an oily based moisturizer to their face. 

Two more subjects were discarded after the experimental phase because the measurement 

was incomplete, most likely due to the detachment of one or more wires during the ex-

periment. It was better not to repeat the experiment with the same subject so that the ex-

periment would not be biased because he or she would already know what to do. 
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Figure 4. Application of the first protocol. 100 subjects were screened, 5 were not eligible, 2 were 

discarded after the experiment. 

Table 3 summarizes the experiment’s results, emphasizing the significant statistical 

difference between the data composing the rest distribution and the data composing the 

peak distribution. From a statistical standpoint, there is a significant difference between 

the data that comprise the rest distribution and the data that comprise the peak/rest dis-

tribution. 

Table 3. Comparison between rest, peak, and peak to rest ratio distributions of the EEG signal; 

where m is the minimal observed value, M is the maximum observed value, µ  is the mean value, σ 

is the standard deviation, p is the statistical significance for the comparison with the rest distribu-

tion. 

Signal m M µ  σ p 1 

rest 0.0043 7.9100 1.1796 1.6861 - 

peak 53.58 5004.4 1386.95 1362.19 <0.000 

peak/rest 69.06 127,785.2 11,142.21 25,189.99 <0.000 
1 p measures the difference with rest distribution and is computed with Mann–Whitney U test 

with independent samples. m, M, µ , and σ are expressed in mV for the rest and peak distributions; 

whereas they are non-dimensional for the peak/rest distribution. 
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The probability that the mean value of the rest distribution is equal to 53.58 (the min-

imal value of the peak distribution) is computed with the Mann–Whitney U test and pro-

duced a p value < 10−3. According to this result and to results in Table 1, the rest distribu-

tion is always under the minimum value measured for the peak distribution. 

Figures 5 and 6 show comparisons of the probability distributions in Table 3, where 

it can be seen qualitatively, among other things, that the probability distributions are not 

normal, so the choice of the statistical criterion for comparison, the Mann–Whitney U test, 

is easily justified. 

 

Figure 5. Comparison between peak (left) and rest (right) distributions with Mann–Whitney U 

test. 
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Figure 6. Comparison between relative peak (left) and rest (right) distributions with Mann–Whit-

ney U test. 

Similarly, it is possible to measure how much the ratio of rest to peak exceeds a 

threshold value that is less than the minimum observed value obtaining the same result. 

This second analysis, although more accurate, requires a measurement of the rest value 

over a period of time before one can assess whether a peak is present. 

The raw data (Figure 7) acquired from the eight EEG channels listed in Table 2 and 

depicted in Figure 3 illustrate an example of acquisition for a single individual. After 

band-pass filtering that preserves the fundamental signal content, the same obtained data 

are depicted in Figure 8 in the frequency domain and in Figure 9 in the time domain. In 

addition, Figure 10 shows the mean of the data received from the 8 EEG channels already 

mentioned, and this mean is utilized as the primary variable to identify the peak circum-

stances already discussed in this section and according to the technique given in Section 

2.1. 



Machines 2022, 10, 603 14 of 39 
 

 

 

Figure 7. Example of raw data from the three EEG selected channels for a single subject. 

 

Figure 8. Example of raw data from three EEG selected channels for a single subject in the frequency 

domain. 
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Figure 9. Example of band-pass filtered data from the three EEG-selected channels for a single sub-

ject. 

 

Figure 10. Example of mean value from the eight EEG-selected channels for a single subject, used 

to identify the signal peak (red circle). 

3.2. Results—Randomized-Controlled Trial (RCT) of Emphatic Collaboration 

A total of 100 subjects were identified in accordance with the protocol outlined in 

Section 2.4. As shown in Figure 11, two subjects were discarded: one had abused drugs 

the night before, and the other had applied moisturizer to his face. The remaining 98 sub-

jects were divided into two groups of 49 each: experimental group A and control group 

B. 
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Figure 11. Application of the second protocol. 

Table 4 summarizes the experiment’s results, highlighting a statistically significant 

difference between the data composing the rest distribution and the data composing the 

peak distribution in experimental group A (p < 10−3). In experimental group A, there is a 

statistically significant difference between the data composing the rest distribution and 

the data composing the peak/rest distribution (p < 10−3). Finally, there is no statistically 

significant difference (p = 0.287) between the data that comprise group A’s rest distribu-

tion and the data that comprise control group B’s rest distribution. 

Table 4. Comparison between rest, peak, peak to rest ratio distributions in the experimental group 

A and the rest distribution in the control group B of the EEG signal; where m is the minimal ob-

served value, M is the maximum observed value, µ  is the mean value, σ is the standard deviation, 

p is the statistical significance for the comparison with the rest distribution. 

Signal m M µ σ p 1 

rest—group A 0.1976 8.853 2.7174 2.3624 - 

peak group A 49.03 3492.3 1578.7 961.44 <10−3 

peak/rest A 33.54 7641.8 1253.0 1526.7 <10−3 

rest—group B 0.5775 8.7525 4.732 2.459 0.287 
1 p measures the difference with rest distribution of the experimental group A and is computed 

with Mann–Whitney U test with independent samples. m, M, µ , and σ are expressed in mV for the 

rest and peak distributions; whereas they are non-dimensional for the peak/rest distribution. 

Figures 12–14 show comparisons of the probability distributions in Table 4, where it 

can be seen qualitatively, among other things, that the probability distributions are not 

normal, so the choice of the statistical criterion for comparison, the Mann–Whitney U test, 

is easily justified. 
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Figure 12. Comparison between Rest distributions in the experimental (left) and control (right) 

groups with Mann–Whitney U test. 

 

Figure 13. Comparison between rest (left) and peak (right) distributions in the experi-

mental group with Mann–Whitney U test. 
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Figure 14. Comparison between rest (left) and relative peak (right) distributions in the experimental 

group with Mann–Whitney U test. 

To determine whether the subjects felt fear, they were given a questionnaire in which 

they were asked to assign a value from zero to ten to the amount of fear they felt during 

the experiment, with zero indicating no fear and ten indicating maximum fear. Table 5 

summarizes the findings, demonstrating that the experimental group’s level of fear is sig-

nificantly higher (p < 10−3) than the control group’s level of fear. 

Table 5. Comparison between the measured fear of the subjects in the experimental group A and in 

the control group B. 

Signal m M µ σ p 1 

group A 6 10 8.5 1.4 - 

group B 0 1 0.6 0.5 <10−3 
1 p measures the difference with rest distribution and is computed with Mann–Whitney U test 

with independent samples. 

Figure 15 shows a comparison of the probability distributions in Table 5. 
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Figure 15. Comparison of the probability distributions of the level of fear declared in the question-

naire in the experimental group (a) and the control group (b). 

4. Discussion 

There are multiple articles in the literature on the recognition of emotional state by 

means of EEG instruments [106]. In particular, the emotion manifested in the observed 

subject can be elicited in several ways, the most popular being: visual-based elicitation 

using images, prepared task, audio-visual elicitation using short film video clips, audio-

based elicitation using music, multiple techniques, imagination techniques/memory re-

call, social interactions. This paper presents two experiments. In the first experiment, emo-

tion is elicited through an auditory stimulus. In the second experiment, there is a task that 

is performed to distract the subject, there is an interaction with a robot that is the source 

of the emotion elicitation. It should be noted that the interaction with the robot takes place 

in the visual field domain, although the phenomenon cannot be limited to a merely visual 

dimension, as the robot enters the subject’s peripersonal field. Therefore, compared to the 

literature, the second experiment has a rather hybrid elicitation technique, but certainly 

tending toward interactivity. 

In the literature [107] there are several methods of feature classification and extrac-

tion, the main ones are: in the frequency domain, in the time domain, in the wavelet do-

main, based on statistical features, using support vector machine, adopting K-nearest 

neighbor, with linear discriminant analysis, using artificial neural network. The algorithm 

proposed in this paper, although it uses filtered data in the frequency domain, is based on 

analysis in the time domain. Probably the class that classification methods that comes 

closest to those proposed in the literature is the one based on statistical features, in that 

the discriminant is the maximum value of the mean of the EEG signals reached in the time 

frame of observation and synchronized with the source of artificial elicitation of emotion. 

At present, there are several types of applications in the literature that can be at-

tributed to a medical and a non-medical macro class. Medical classifications often follow 

the pathology of the subject or the stage of health treatment. Non-medical classifications 
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are often divided into two large families: entertainment and safety. Certainly, the appli-

cation proposed in this paper is non-medical and aimed at safety. 

From the point of view of the hardware used, we distinguish the type of electrodes 

that influences measurement; although the type of electrode is a very random indication, 

because various factors influence the measurement, surely it is more relevant to state the 

contact impedance and in our case it is kept under 6 k. The number of channels ranges 

from 5 channels up to 256 channels and in our case it is 8 channels. 

Some scientific works are based on standard emotion databases. In our case it was 

not possible to use these standard data because we are interested in a source of emotion 

elicitation based on interaction with the robot that is not represented in standard data-

bases. 

The number of emotions that are recognized ranges from 2 to 11. In ours, under an 

example hypothesis that will be expounded later, our model is based on two emotions: 

fear and pleasure. To expose this hypothesis clearly, we introduce Russell’s 2D emotion 

model, denoted by the expression: 

𝑎𝑟𝑜𝑢𝑠𝑎𝑙2 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒2 = 1  

In the two-emotion model, both can reach all values of arousal, that is, between -1 

and +1, while from the perspective of valence, one emotion is considered positive (pleas-

ure) and the other is considered negative (fear). Therefore, both fear and pleasure take 

values in the form between 0 and 1, but fear is only the name of valence when this is 

negative and pleasure is only the name of valence when this is negative. 

Now come the working example hypotheses. The first hypothesis is that the maxi-

mum of fear is always greater than the maximum of pleasure. Since valence measures the 

intensity of emotion, this assumption is reasonable in the industrial work environment, 

where fear of losing one’s life in the face of a dangerous event (valence in modulus of 1) 

may manifest; but it is difficult, if not impossible, for such intense pleasure (valence in 

modulus of 1) to manifest. This also represents a limitation on the type of work, as there 

are rare cases of work that produces intense emotions: think of a performer on stage. The 

second limitation is related to the intense positive or negative emotions that may be 

though produced in a work environment due to non-work causes that may occur unex-

pectedly. This second case, although not contemplated still remains to be considered a 

condition of subsequent danger as it distracts the subject’s attention from his activity, so 

it is right for the cobot to react by interrupting the work activity and producing a safe 

situation. 

There is another previous work [108], which presents the same hypothesis as ours, 

using pleasantness emotion in the case of odor-induced EEG signal measurement. 

Finally, regarding the accuracy of emotion recognition [109], apart from the case 

where valence is measured indiscriminately by the sign taken, the literature presents var-

ious results ranging from 50% to 95%, although most works present accuracies between 

75% and 85%. There are no papers that introduce classification accuracy since they implic-

itly introduce a strong limitation considering the measurement database as universal i.e., 

exactly statistically representative of the actual sample from which it is extracted. In this, 

our work introduces a methodological innovation by using probability distributions re-

constructed from the data and thus being able to assess accuracy as well as precision. 

Moreover, the accuracy results obtained are greater than 99.99%. 

As stated in Section 3.1, when a subject is relaxed, an abrupt sound signal of high 

intensity can be used to produce the occurrence of an artificially induced fear emotion in 

the subject. This can be accomplished simply by using EEG sensors and placing electrodes 

in areas of the encephalon that are not particularly relevant or precise. This property is 

thought to be due to the fact that primary emotions activate various brain regions [61] and 

that, in particular, fear is associated with high EEG signal intensities [110,111], making 

this phenomenon easily measurable, as was later confirmed experimentally. 
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Eye movement, as just mentioned in Section 2, produces a negligible artifact in rela-

tion to the observed phenomenon [112]. There is an accelerometer signal in the measure-

ment system that is used by the board’s internal system for appropriate compensation 

(Figure A9). As previously stated in Section 2, the autonomic response to a sudden, intense 

sound from a source close to the subject is inextricably linked to the emotion of fear [105]. 

As a result, whether we measure one or the other, the important thing for us is that the 

cobot receives information that there is a danger, and this result was obtained. During the 

experimental phase, we realized that the phenomenon observed is so evident that exces-

sive signal processing is not required to highlight the presence of the subject’s perception 

of danger. Artifacts are present in the signal, but their significance is meaningless. This 

observation enables us to accelerate signal processing and quickly send a reaction decision 

to the robot. To avoid danger, it is critical that the reaction be quick. 

The results of the second experiment, conducted with a collaborative robot and de-

scribed in Section 3.2, produced the same result. This second study was performed in an 

especially rigorous manner using an RCT (randomized controlled trial) scheme, preserv-

ing an extremely high level of statistical reliability. It can be seen, for example, that iden-

tifying a discrimination threshold between the relaxation and fear conditions using an 

EEG sensor is always statistically possible. It is important to note, however, a numerical 

detail that is unusual in comparison to the literature: the intensity of the peak signal asso-

ciated with the occurrence of fear is extremely high, much higher than would be expected. 

In fact, some authors report that the presence of strong emotions, such as fear, is associated 

with EEG signal intensities greater than 100 µV [110], while others indicate EEG signal 

intensities greater than 200 µV [111]; in particular, the experiment by Kometer et al. [111] 

identifies an EEG signal intensity of 500 µV in subjects watching scary movies. This phe-

nomenon is most likely associated with the presence of significant artifacts as a result of 

macroscopic and microscopic movements in response to the emotion of fear. As a result, 

the spike appears to be associated with the artifacts rather than the EEG signal itself. In 

this particular case, artifacts should not be discarded or deleted because they always occur 

concurrently with the emotion of fear, serving as an indicator of the discrimination thresh-

old between normal and fearful conditions. It is possible for the artifacts to appear a few 

milliseconds after the fear emotion has occurred in the encephalon, but reaction times to 

a fearful event are extremely limited, so even while maintaining a high EEG threshold, 

the decision can be identified with a delay of a few tens of milliseconds from the occur-

rence of the emotion in the encephalon. As a result, a fear communication channel was 

established between the human subject and the robot. 

After detecting the fear condition, the robot can react and move to a position that 

reduces the chances of colliding with the subject in the work cell. In the experiment de-

scribed in Section 2.4 and the results of which are listed in Section 3.2, the collaborative 

robot closes in on itself, moving away from the area where the human subject is present 

(which is separated from the robot by a work table), reducing its overall moment of inertia 

and stopping, bringing its kinetic energy to zero. An alternative reaction would be to 

switch to a control that only compensates for static actions, so that any dynamic actions 

from the subject would allow the robot to move away quickly and easily, while any static 

actions (including the weight of the robot itself and any objects carried by the gripper) 

would be compensated for. If the human subject is aware of and recognizes the robot’s 

reaction to a dangerous situation, the human subject is also capable of receiving a signal 

equivalent to its fear emotion, this time emanating from the robot toward the human sub-

ject. In the future, it would be interesting to test this phenomenon experimentally, but for 

now, we can assume it as a reasonable working hypothesis. 

As previously stated in Section 1, the phenomenon of fear transmission through the 

members of a subject society, even without knowing the exact cause of the danger but 

only by decoding the attitudes of the frightened subjects, is a property of societies that 

promotes the preservation of those societies and their members. Because it can send and 
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receive fear, the EEG sensor-based empathic cobot becomes a part of society and helps to 

keep it and its members alive. 

One might object that the subject interacting with the cobot is not always in a relaxed 

state and may experience emotions other than fear. There are different possible responses 

to these observations. In the case where the subject has standard conditions other than 

rest, as long as there are no sudden spikes in the EEG signal, i.e., no strong emotions, a 

decision threshold that is relative to the subject and determined by the ratio of standard 

signal to spike signal using only data from that subject can be used; that is, the cobot must 

be aware of the peculiarities of the subject interacting with it and, possibly, know how to 

identify him/her. In the case where the subject exhibits sudden spikes in the EEG signal 

that cannot be associated with the phenomenon of fear, it can be observed that the phe-

nomenon of fear is due to a danger. Thus, identifying the EEG spikes as associated with a 

potential danger allows the effect of these potential dangers to be limited as much as pos-

sible. This approach may reduce the efficiency of the interaction, especially if there are too 

many interruptions that are not related to fear. In the latter case, it would be beneficial to 

introduce additional information via other sensors to differentiate between different emo-

tions. The robot’s response time should be carefully monitored; it should not be increased 

excessively, as this would reduce the safety level of the interaction. 

5. Limitations and Future Developments 

5.1. General Considerations 

This study proposes a new communication model between human and cobot that 

aims to safeguard the safety of the human. 

A human and a cobot arm are connected in the previously illustrated manner, which 

can be summarized as follows: the human has a band of electrodes on his head that record 

electroencephalographic signals of his brain activity; the electrodes are connected via ca-

ble to a sensor; the sensor is connected via Bluetooth to a computer, which in turn is con-

nected via cable to the cobot arm. By means of a simple AI programme in the computer, 

the cobotic arm is able to distinguish, among various electroencephalographic signals, a 

certain brain hyperactivity of the human, decode it as a fear signal, and stop and close in 

on itself upon its detection. 

The reasoning that guided the study was as follows: where the EEG signal indicates 

a certain brain hyperactivity, this must be interpreted by the cobot as fear; if the human 

feels fear, then it means there is danger; if there is danger, the cobot must stop. 

The study is valuable because it maintains the basic direction of cobotics research 

which, since its inception in the 1990s [1] to the present day, has always focused on the 

relationship between human safety and machine performance. In the first decade of the 

2000s, a group of scholars from the University of Southern Denmark, coordinated by E. 

Ø stergaard [113], focused on the issue of safety and in 2008 realized the UR5 cobot, 

equipped with virtual barriers that are as effective as they are sustainable. 

As valuable as it is, however, this study has its limitations, which should be worked 

on in order to develop its strengths and potential. Our analysis first turns to the three 

logical assumptions underlying the study: 

1. Fear in humans is an emotion capable of more intensely activating brain activity. This 

‘cerebral hyperactivity’ enables fear to be distinguished from other emotions; 

2. Precisely because it is recognizable-distinguishable, fear is precisely detectable by the 

EEG; 

3. If the human feels fear, then there is a real danger that requires the cobot to stop. 

Consider points 1 and 2, whereby fear causes a unique brain hyperactivity in the hu-

man, different from any other emotion, which makes it easily detectable by the EEG. 

Some recent neuroscientific studies, coordinated by Alexander Shackman (Univer-

sity of Maryland) in collaboration with other universities [114], have shown that this is 

not the case at all, leading the scientific community to revise the neurobiological model 
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by which the etiology of anxiety and that of fear were considered different and separate. 

Shackman showed that psychological-behavioral reactions to threats, whether concrete, 

possible, or imaginary, are actually controlled by common neural circuits. According to 

previous scientific literature, fear was controlled by the amygdala, which in the event of 

perceived (or supposed) danger causes the hormones associated with attack and flight to 

be released, and the circulatory, muscular, and intestinal systems to be activated. Anxiety, 

on the other hand, was found to depend on the nucleus of the terminal stria (BNST). 

Studies coordinated by Shackman challenged this difference. One hundred volun-

teers were subjected to a painful shock associated with an unpleasant image and sound, 

with or without warning, and through functional magnetic resonance imaging, brain re-

sponses were observed to determine which areas were activated. Well, the experiment 

found that when subjects perceived a threat, both the neural circuits afferent to the amyg-

dala and the nucleus of the stria terminalis were activated in them. The two structures 

gave statistically indistinguishable responses. The study was therefore able to conclude 

that there is a common neural basis controlling both anxiety and fear. 

It is now clear that if the studies coordinated by Shackman are right, assumptions 1 

and 2 lose their value: one cannot distinguish between fear and anxiety, and who knows 

whether this also applies to other primary emotions. The cobotic arm is therefore exposed 

to the misinterpretation of the electroencephalographic signal. A human subject who is 

particularly anxious, or even just prone to anxiety, would continually generate ambiguous 

signals, because his anxiety-driven brain activity would be neurobiologically identical to 

fear and the cobot would interpret it as fear, hence danger, and would continually stop. 

By not distinguishing anxiety from fear, the cobotic arm would be blocked continuously 

by false alarms. Result: ensuring the safety of the human would kill the performance of 

the machine. 

Such a machine would not only increase production performance, it would actually 

damage it. It could in fact lead to the psychological alteration of the human, who would 

be irritated by the constant interruption of the machine for no reason. In the case of an 

anxious human, the blocking of the machine would feed the anxiety, and the constant 

occurrence of anxiety in the human—interpreted by the cobot as fear—would lead to fur-

ther and continuous stoppage of the cobot. In an endless spiral, anxiety and blockage 

would feed each other in a directly proportional way. Human–cobot interaction would 

spiral into an endless loop. 

In addition, it cannot be ruled out that other brain activities could also be interpreted 

by the machine as fear, since here the cobot does not use any special magnetic resonance 

imaging, but only a simple EEG. In that case, any hyperactivity could lead to an unmoti-

vated blocking of the machine, resulting in performance inhibition and psychological al-

teration of the human. 

First outcome of the analysis: the impossibility of distinguishing fear nullifies the 

fear/danger equation on which this work is based. 

But beyond the hermeneutic difficulties, is the fear-danger equation really valid in 

an absolute sense? Even if the cobot’s interpretation were correct and the human was 

afraid, would that fear signify such danger that the cobot’s arrest was necessary? Here is 

assumption 3. 

5.2. If the Human Feels Fear, It Is Because There Is Some Situation of Real Danger 

Assuming that the machine has correctly registered the feeling of fear: the human 

subject is not anxious, not euphoric, but genuinely frightened. Fear could indicate real 

danger and therefore the stopping of the cobot would be correct. The conditional mode 

has been used because the reasoning here is based on the validity of another equation, 

taking it for granted whereas it is not: granted that the human is really afraid, does this 

fear of his certainly relate to a danger relative to the human–cobot interaction, which 

therefore requires the cobot to be stopped? 
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The study does not ask this question. Yet without the relation between danger and 

the cobot’s work, there is no need for the cobot to stop: if the danger does not concern 

what the cobot is doing with the human, but an external and unrelated situation, why 

should the cobot stop? 

This second problem is undoubtedly inferior to the first, but it is not absent: the fear 

of the human is real and well read by the machine, but it is related to factors that are 

completely external and unrelated to the interaction with the cobot. The outbreak of a 

thunderstorm or the memory of an event or any other event, extrinsic to the human-ma-

chine collaborative relationship, might frighten the human: however, that fear, actually 

experienced and correctly registered by the machine, would not affect the human–cobot 

interactive activity at all and would not require the cobot to stop. But the cobot stops. It 

cannot do anything else, because it cannot distinguish between fear that involves danger 

and fear that does not involve danger. It is not the hermeneutics of fear that does the dam-

age here, but the fear-danger equation, as it is understood in an uncritical, undifferenti-

ated, and indeterminate way. Hence the risk of the cobot getting stuck unnecessarily, 

damaging the human’s performance and psychological state. 

5.3. How to Solve the Problems? 

One possible solution to the problems that emerged could be to enhance the cobot’s 

AI. 

Owing to the increased AI, the cobot would be able to analyze its surroundings and 

obtain useful data to recognize the different nature of events. More importantly, it would 

be able to observe the human’s behavior and obtain valuable additional information on 

his/her nature. It could retrieve that information through natural language as well as 

through biometric facial, sound, and tactile recognition, as well as through temperature 

and heart rate detection and pupil observation. With this data, it could analyze human 

behavior, recognize its reactions, and distinguish its emotions. 

Owing to AI, the cobot would self-learn from the relationship, could make autono-

mous decisions, and react to stimuli in a relevant and effective manner, also owing to 

facial and sound expressions. Its interaction with the human would be much more empa-

thetic. 

The human would then have to learn to decipher the cobot’s language correctly in 

order to interact with it. The interaction between human and cobot would be similar in 

many respects to that between human and social robot. The only difference would be the 

context: personal that of social robots, work that of cobots. Even at work, the interaction 

could be personalized: the cobot could learn the specific anthropological characteristics of 

the subject it works with and conform completely to them in manner and timing. The 

cobot would then be an ideal collaborator for the human, because in addition to safety, it 

would also guarantee the serenity of the working environment. 

6. Conclusions 

An EEG signal was used to connect a human agent and a cobot agent. This link al-

lowed the human agent to transmit a fearful emotion to the cobot agent. Furthermore, the 

cobot’s reaction allowed a message of fear to be transferred from the cobot agent to the 

human agent. The social relationship between the two agents was strengthened by the 

transmission of fear. The experiments revealed an extremely high level of statistical relia-

bility. The experiments were carried out in a controlled environment. In a more compli-

cated setting, there may be strong limitations to how this technique can be used, necessi-

tating the development of more complex strategies than those proposed in this paper. 
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Appendix A. Description of The Acquisition Board 

The electrical scheme of the acquisition board is depicted in Figures A1–A5 [115]. 

 

Figure A1. Acquisition board—part A. 
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Figure A2. Acquisition board—part B. 

 

Figure A3. Acquisition board—part C. 

 

Figure A4. Acquisition board—part D. 
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Figure A5. Acquisition board—part E. 

The acquisition board is powered through an appropriately shielded power supply 

system (Figures A6 and A7) to limit electromagnetic interference [115]. 

 

 

Figure A6. Power supply system—part A: battery connect (left) and voltage inverter (right). 
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Figure A7. Power supply system: first voltage regulator at -2.5 V (up); second voltage regulator at 3 

V (middle); and third voltage regulator at +2.5 V (down). 

The power system is endowed with an automatic shutdown (ASD) relay [115], as 

shown in Figure A8. 

 

Figure A8. Automatic shutdown (ASD) relay. 

The measurement system is equipped with an accelerometer (Figure A9) to acquire 

motion signals and appropriately compensate for any disturbances of kinematic origin in 

the measurement signal [115]. 
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Figure A9. Equipped accelerometer. 

At the heart of the measurement system is the integrated ADS1299 (Figure A10). It is 

an EEG and biopotential measurement analog-to-digital converter with a flexible per-

channel input multiplexer that can be independently linked to internally generated sig-

nals for test, temperature, and lead-off detection. Furthermore, any combination of input 

channels can be used to generate the patient bias output signal [116]. 
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Figure A10. Integrated ADS1299 for EEG conversion and its connections. 

The Bluetooth connection to the PC is provided by an RFDuino RFD22102 module, 

an ultra-small programmable computer, according to the connections shown in Figure 

A11. 
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Figure A11. RFDuino RFD22102 Bluetooth communication module. 

Appendix B. Description of the ROS Application 

As mentioned in Section 2.2, the interaction between human agent and robotic agent 

is realized through an application in the ROS development environment. This application 

(Figure A12) consists of three groups of serially connected nodes. The first group consists 

of a driver interface to the EEG acquisition hardware system and a set of instructions for 

processing EEG signals in order to check whether the threshold associated with the hu-

man agent’s perception of danger has been reached. If so, one of the nodes in the block 

publishes on the topic threshold a True value of exceeding that threshold. Downstream of 

the first group of nodes is an action client type node, which, upon reading the True value 

in the topic threshold, initiates an action command to a subsequent action server type 

node. The action server node incorporates in Figure 13 a number of other nodes that take 

care of the interface with the robot through a dedicated driver. 
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Figure A12. ROS application scheme. 

Real-time control of the robot, on the other hand, is left to the dedicated controller 

and is not coded in the ROS application although it sends signals about the kinematic state 

of the joints to the action server at a constant cadence so that it can process some simple 

decisions based on information that may describe normal or abnormal situations. The ac-

tion client communicates to the action server through two topics: goal and cancel. Goal 

defines the kinematic configuration that the robot must achieve, i.e., complete closure on 

itself, while cancel sends a command to suspend the request indicated in goal. If the robot 

is correctly positioned in the working layout, it is unlikely that a collision with people or 

things will occur in the phase of closing the robot on itself. In fact, nothing should be 

present between the end of the gripper and the base of the robot other than the kinematic 

chain of the robot itself. This consideration makes it possible to state that under normal 

conditions, it is unlikely that the topic cancel will be activated, however, for safety reasons, 

this possibility was provided for. When the goal has been reached, the action server sig-

nals the event by writing to the topic result. In general, the action server sends frequent 

updates of the current kinematic situation by writing to the topic status. In the event that 

an abnormal event occurs, particularly in this application, if the current kinematic config-

uration deviates excessively from the expected kinematic configuration, the action server 

reports this eventuality on the topic feedback. In fact, if the current kinematic configura-

tion is far away from the expected one, it means that a collision with an obstacle may have 

occurred, or damage to the motion system may have occurred, or other unexpected anom-

alies may have occurred. If the action client reads this information on the feedback topic, 

it proceeds to send a signal to the action server by writing to the cancel topic to suspend 

the command previously sent via the goal topic. The state diagrams of the action server 

and action client conform to the ROS standard and are shown in Figure A13 and Figure 

A14, respectively. 
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Figure A13. State diagrams of the action server. 

Specifically, in Figure A13, the various states of the action server are shown and are 

divided into two categories: intermediate states and terminal states. The intermediate 

states are: Pending, Recalling, Activating and Preempting. Terminal states are Rejected, 

Recalled, Preempted, Aborted, and Succeeded. During the execution process of the action 

server, it processes information from the action client, specifically the goal to be executed 

and whether the goal previously sent by the client needs to be deleted. The transition from 

one state to another in the state tree depends on information coming from the client (goal 

and cancel) and on internal server variables (rejected, canceled, accepted, aborted, suc-

ceeded). In fact, the client’s request may be rejected because it fails internal checks and is 

not an acceptable request. If the request is accepted, the server takes action to execute the 

goal. It could be that the action is aborted or preempted for various reasons, bringing the 

server into the respective terminal states. 
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Figure A14. State diagrams of the action client. 

In Figure A14, a diagram of action client states is shown, in which all states are inter-

mediate except the last one (Stop), which defines the end of the process. Two intermediate 

states, Sending goal and Cancelling receive no information from the action serve and es-

sentially represent only an instruction execution that has a rather limited time duration. 

The transition from one state to the other of the action client depends on the information 

received from the action server and the state of the action server itself, which is indicated 

next to the arrows leading from one state to the other of the action client. 
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