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Abstract: A valve-controlled hydraulic cylinder system has the characteristics of uncertainty and
time-variance, and the electro-hydraulic servo unit encounters shock, vibration, and other external
interference when working, which seriously affect the stability of the valve-controlled hydraulic
cylinder system. Therefore, it is necessary to introduce an active disturbance rejection controller
(ADRC) into the electro-hydraulic servo control. However, there are many ADRC parameters, and
it is difficult to set these only with expert experience. Therefore, we propose applying the gray
wolf optimization algorithm (GWO) to the ADRC, to auto-tune the parameters and find the optimal
solution. In addition, the advantages of the GWO in ADRC parameter tuning are proven and
analyzed. The simulation and experimental results showed that the GWO algorithm had a faster
mean time for parameter tuning and the smallest fitness value (integrated time and absolute error),
compared to the particle swarm optimization algorithm and genetic algorithm. Moreover, a valve-
controlled cylinder system, after parameter tuning by the gray wolf optimization algorithm, could
accurately adjust the parameters of the auto-disturbance rejection controller, with a faster response
speed, smaller overshoot, and better anti-disturbance ability.

Keywords: auto-disturbance rejection controller; electro-hydraulic servo control system; gray wolf
optimization algorithm; parameter self-tuning

1. Introduction

Electro-hydraulic servo control systems play an important role in industrial produc-
tion, military, and even aerospace fields. Their steady-state performance and dynamic
performance directly affect the working performance and safety of various devices in the
above-mentioned areas [1–6]. However, in engineering practice, these systems often face
various complex disturbances, such as sudden changes in external forces and changes in
system parameters. These interferences will cause deviations in the actions of the system’s
actuators and affect production [7].

Focusing on the anti-jamming problem of the control system, researchers have per-
formed research on anti-jamming controllers and parameter tuning algorithms. Lijun Wang
linked a single-degree-of-freedom control system with the uncertainties of internal and
external factors, used the extended state observer of ADRC to estimate the total disturbance,
and combined the backstepping method to improve the nonlinear error feedback control
law and improve the tracking of the position signal precision [8]. Chu Zhang’s distur-
bance decoupling controller, based on linear active disturbance rejection control technology,
decomposed the performance requirements of the test acceleration into specifications for
no drag and suspension loops. It solved the problem of designing an auto-disturbance
rejection controller for a high-precision, towed-free satellite with cubic test quality [9].
Mehrnoosh Kamarzarrin proposed an adaptive control method based on sliding mode
control, the coefficients of which were tuned using a combination of the particle swarm

Machines 2022, 10, 599. https://doi.org/10.3390/machines10080599 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10080599
https://doi.org/10.3390/machines10080599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5998-6001
https://orcid.org/0000-0002-0646-3087
https://doi.org/10.3390/machines10080599
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10080599?type=check_update&version=2


Machines 2022, 10, 599 2 of 20

optimization algorithm and a support vector machine. Applying this to the control of
the pitch angle of wind turbines, the anti-interference effect was improved [10]. Mehran
Rahmani proposed a new sliding mode control (NSMC) based on the extended gray wolf
optimization algorithm (EGWO), to control a two-degree-of-freedom manipulator, and
simulations verified that the modified control method had a good robustness against ex-
ternal disturbances [11]. Lakhdar, C. proposed a novel robust power system stabilizer
(PSS) and PSS for an optimal stabilizer (FOPID-PSS). In addition, they used a new meta
heuristic optimization bat algorithm (BA), inspired by echolocation behavior, to improve
the power system stability. Simulation results showed the effectiveness of BA for FOPID-
PSS design [12]. Carrillo-Alarcón, J. C. presented a metaheuristic optimization approach
for parameter estimations in arrhythmia classification from unbalanced data. Simulation
results showed an accuracy of 99.95%, a sensitivity of 99.87%, a precision of 99.89%, and
a specificity of 99.99% [13]. Dahan, F. introduced a hybrid algorithm that combined ant
colony optimization (ACO) and the genetic algorithm (GA) to efficiently compose services
in the cloud. The experimental results on 15 different real datasets showed the effective-
ness of the proposed algorithm for searching for comparable solutions, compared to five
competitors [14]. Omar Rodríguez-Abreo presented the use of equations for the dynamic
response of a step input in a metaheuristic algorithm for the parametric estimation of a
motor model. Tests were carried out with three algorithms (gray wolf optimizer, jaya
algorithm, and cuckoo search algorithm), to prove that the benefits could be extended to
various metaheuristics. The results showed an improvement for all the algorithms used,
achieving the same error as the original method, but with 10 to 50% fewer iterations [15].
With the continuous development of metaheuristic algorithms, their application in engi-
neering is also expanding. In engineering, we often use metaheuristic algorithms to solve
practical problems directly or use metaheuristic algorithm to assist in tuning parameters of
the controller, to solve practical problems indirectly. There is no doubt that both methods
have improved the work efficiency in projects.

It can be seen that the above research conducted in-depth discussions on the tuning
methods of a controller and its parameters, and applied this to various working sys-
tems to resist the influence of interference and achieved certain results. However, the
research on the ADRC and parameter tuning of electro-hydraulic servo systems is not
comprehensive [16–18]. Therefore, this paper used an auto-disturbance rejection controller
to control an electro-hydraulic servo system, and used the gray wolf optimization algorithm
to adjust the parameters of the controller, so that the system could minimize the action
error caused by interference.

2. Modeling of an Electro-Hydraulic Servo System

The hydraulic cylinder in this study used a double-acting symmetrical cylinder to
weaken the influence of nonlinear factors [19]. Assuming that the bulk elastic modulus and
temperature of the oil remain unchanged, the pressure in the closed cavity of the hydraulic
actuator is equal everywhere, and the internal and external leakage are laminar flow. The
natural frequency of the system is lowest when the piston rod is in the neutral position.
Based on this position, the basic formula of the valve-controlled cylinder mathematical
model can be deduced, as follows:

Qv = KqXv − KcPL (1)

QL = ApsXp + CipPL +
Vt

4βe
sPL (2)

ApPL = mts2Xp + BpsXp + KXp (3)

In this formula, Kq is the flow gain coefficient; Xv is the displacement of the spool,
the unit is m; Kc is the flow and pressure coefficient; PL is the system output pressure, the
unit is MPa; QL is the load flow in m3/s; Ap is the effective area of the actuator, the unit is
m2; Xpmax is the maximum stroke of the cylinder, the unit is mm; Cip is the comprehensive
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leakage coefficient of the actuator, the unit is m5/N·m; βe is the effective volume modulus,
the unit is N/m2; and Bp is the hydraulic cylinder. For an effective viscous damping
coefficient, the unit is N·m/s; Vt is the equivalent volume of the oil chamber, the unit is m3;
and K is the equivalent spring stiffness of the hydraulic cylinder, the unit is N/m. Combine
the above three formulas to obtain:

Xp =

Kq
Ap

Xv − Kce
A2

p

(
1 + Vt

4βeKce
s
)

FL

mtVt
4βe A2

p
s3 +

(
mtKce

A2
p

+ BVt
4βe A2

p

)
s2 +

(
1 + BKce

A2
p

+ KdVt
4βe A2

p

)
s + KKce

A2
P

(4)

In this formula, Kce is the pressure coefficient of the total flow of the system, Kce = Kc + Ctp,
the unit is m5/N·m.

In general, the equivalent viscous damping coefficient Bp is very small and can be
ignored. Due to:  Kce

√
Kmt

A2
P

(
1 + K

Kh

)
2

� 1 (5)

Therefore, the relevant non-linear influence factors can be ignored, so the system
formulas can be simplified. According to Formula (4), the transfer function of the valve-
controlled cylinder can be obtained:

GL(s) =
Xp(s)
Q0(s)

=

1
Ap

s
[

s2

ω2
h
+ 2ξh

ωh
s + 1

] (6)

In this formula, ωh is the natural frequency of hydraulic pressure, in rad/s; ξh is the
damping ratio of hydraulic pressure; Kh is the spring stiffness of hydraulic pressure, in N/m.

And:

Kh =
4βe A2

p

V
(7)

ωh =

√
4βe A2

p

mtVt
(8)

ξh =
Kce

Ap

√
βemt

Vt
+

BpVt

4βe Ap

√
Vt

βemt
(9)

The servo valve in this article uses the second-order oscillation link to discuss, and the
transfer function is:

Gsv(s) =
Q0(s)
I(s)

=
Ksv

s2

ω2
sv
+ 2ξsv

ωsv
s + 1

(10)

In this formula, Q0(s) is the no-load flow of the valve, in L/min; Ksv is the flow gain
coefficient of the valve; ωsv is the natural frequency of the valve, in Hz; and ξsv is the
damping ratio of the valve.

The frequency response of the servo amplifier is relatively high, and the simplified
expression is as follows:

Ga(s) =
∆I(s)
Ue(s)

= Ka (11)

In this formula, Ue(s) is the deviation voltage signal, the unit is V; ∆I(s) is the output
current signal, the unit is A; and Ka is the voltage-current proportional coefficient.

According to the principle of a displacement sensor, the transfer function is derived as:

Gf(s) =
Uf(s)
X(s)

= Kf (12)
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Using the above formula, the structure diagram of the position control model is shown
in Figure 1

1 
 

 
 
 

 

Figure 1. Structure diagram of the position control model.

From the above figure, the open-loop transfer function of the system can be obtained,
as shown in Formula (13).

G(s) =
KaKsvKf

Ap

s
[

s2

ω2
h
+ 2ξh

ωh
s + 1

][
s2

ω2
sv
+ 2ξsvs

ωsv
+ 1
] (13)

The closed-loop transfer function for this system is shown in Formula (14).

Φ(s) =
G(s)

1 + G(s)H(s)
(14)

Therefore, the sensitivity of the feedback system with respect to G(s) is shown in
Formula (15).

SG(s) =
∂Φ(s)
∂G(s)

·G(s)
Φ(s)

=
1

1 + G(s)H(s)
< 1 (15)

It is shown that the closed-loop system has some suppression ability for the effects
caused by the uptake when the uptake acts on the links of the forward channel surrounded
by the feedback loop.

3. Design of Auto-Disturbance Rejection Controller Based on Grey Wolf Algorithm

The gray wolf algorithm belongs to the metaheuristic algorithms. A metaheuristic
algorithm is a modification of a heuristic algorithm, which is the product of combining a
randomized algorithm with a local search algorithm. The heuristic algorithm is an intuitive
or empirically constructed algorithm. The difference between a heuristic algorithm and a
metaheuristic algorithm is the presence or absence of a random factor [20]. For the same
problem, given an input, the steps of the algorithm are fixed and the output is therefore fixed,
and the result remains the same for multiple operations. Therefore, heuristic algorithms
do not necessarily guarantee the feasibility and optimality of the resulting solution, and in
most cases do not even indicate the degree of approximation between the resulting solution
and the optimal solution. A metaheuristic algorithm includes random factors, and these
random factors also make the algorithm have some probability of going beyond the local
optimal solution to obtain the global optimal solution. Therefore, a metaheuristic algorithm
has some advantages in parameter rectification [21].

The unique feature of GWO is that the hierarchy in the wolf pack makes a small group
of gray wolves have absolute say, which makes the algorithm have strong convergence
performance; it has few parameters, it is easy to implement, and it does not contain specific
search parameters [22]. Therefore, GWO is suitable for application in parameter rectification
of ADRC.
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3.1. Grey Wolf Optimization Algorithm

The gray wolf optimization algorithm is an intelligent algorithm based on the preda-
tion of gray wolves. Similar to other intelligent algorithms, the prey represents the optimal
solution, and the position of each gray wolf represents a possible solution. In the process
of searching for the optimal solution, gray wolves are ranked according to their degree of
fitness function value. The gray wolf individuals with the best fitness function value are
named α wolves, followed by β wolves, and then δ wolves. The rest are ω wolves, and
α, β, and δ wolves are closer to the potential position of the prey. The hierarchy of gray
wolves plays an important role in the process of predation, the gray wolves are led by α
wolves to surround their prey, β wolves and δ wolves attack the prey, and ω wolves assist
in attacking the prey to completion, and finally capture the prey [23].

The mathematical model of the gray wolf optimization algorithm consists of the
following parts [24]:

Surround prey:
D =

∣∣C · Xp(t)− X(t)
∣∣ (16)

X(t + 1) = Xp(t)− A · D (17)

Formula (16) represents the distance between the gray wolf individual and its prey,
and Formula (17) is the position update formula of the gray wolf. Among them, t is the
current iterative algebra, A and C are coefficient vectors, and Xp and X are the position
vector of the prey and the position vector of the gray wolf, respectively. The calculation
formulas of A and C are as follows:

A = 2a · r1 − a (18)

C = 2 · r2 (19)

Among them, a is the convergence factor. As the number of iterations decreases
linearly from 2 to 0, the modulus of r1 and r2 takes a random number between 0 and 1.

Track hunting: 
Dα = |C1 · Xα − X|
Dβ = |C2 · Xβ − X|
Dδ = |C3 · Xδ − X|

(20)

Among them, Dα, Dβ, and Dδ represent the distance between α, β, and δ and
other individuals, respectively; C1, C2, and C3 are random vectors; X is the current gray
wolf position. 

X1 = Xα − A1 · (Dα)
X2 = Xβ − A2 · (Dβ)
X3 = Xδ − A3 · (Dδ)

(21)

X(t + 1) =
X1 + X2 + X3

3
(22)

Formula (21) defines the step length and direction ofω individuals in the wolf pack
toward α, β, and δ, respectively, and Formula (22) defines the final position ofω.

Attack the prey:
When the prey stops moving, the gray wolf completes the hunting process by attacking.

In order to simulate approaching prey, the value of a is gradually reduced, so the fluctuation
range of A is also reduced. In other words, in the iterative process, when the value of a
linearly decreases from 2 to 0, the corresponding value of A also changes in the interval
(−a, a). As shown in Figure 2, when the value of A is within the interval, the next position
of the gray wolf can be anywhere between its current position and the position of its prey.
When |A| < 1, the wolves attack their prey (falling into a local optimum). When |A| > 1, the
gray wolf is separated from its prey, hoping to find a more suitable prey (globally optimal).
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Figure 2. Attack and hunt for prey: (a) wolves attack their prey; (b) gray wolf separated from prey.

Figure 2 is a schematic diagram of attacking and finding prey.
The process of the gray wolf optimization algorithm is shown in Figure 3:

Figure 3. The optimization flow chart of the gray wolf algorithm.

3.2. Design of the Active Disturbance Rejection Controller

ADRC is a new controller, improved on the basis of a traditional PID. It consists of
three parts: tracking differentiator (TD), extended state observer (ESO), and non-linear
state error feedback (NLSEF). A TD is a new type of differentiator used to track the target
signal obtained, by discretizing and improving the traditional differentiator. Its function
is to extract the differential signal from the input signal, to solve the problem of a large
overshoot in the system, and to rationally arrange the transition process for the system.
ESO eliminates the influence of the total disturbance of the system by estimating and
compensating the internal disturbance and external disturbance of the system, which
reflects the strong anti-interference performance. NLSEF performs a nonlinear combination
of error signals to enhance the dynamic performance of the system [25].
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Figure 4 shows the ADRC structure diagram of the electro-hydraulic servo system. In
the figure, S is the given signal; V1 is the tracking signal of Y; V2 is the differential signal
of V1; Y is the actual output signal; Z1 is the tracking signal of Y; Z2 is the differential
signal of Z1; Z3 is the tracking total disturbance; U0 calculates the control quantity for
the nonlinear control law; and U is the control quantity output by the active disturbance
rejection controller.

Figure 4. ADRC structure diagram.

The algorithm of TD is:
e(k) = v2(k)− v0(k)
v3(k + 1) = v3(k) + h· f han(e(k), v3(k), r, h)
v2(k + 1) = v2(k) + h·v3(k)
v1(k + 1) = v1(k) + h·v2(k)

(23)

The fhan function is:

f han(x1, x2, r, h) = −r· a
2d ·[sign(a + d)− sign(a− d)]−

r·sign(a)·
{

1− 1
2 ·[sign(a + d)− sign(a− d)]

}
a = (a0 + y)·(sign(y + d)− sign(y− d))· 12+
a2·
{

1− 1
2 ·(sign(y + d)− sign(y− d))

}
a2 = a0 + sign(y)·(a1 − d)· 12

a1 =
√

d·(d + 8|y|)
y = x1 + a0
a0 = h·x2
d = r·h2

(24)

In Formula (23) and Formula (24), r is the speed factor, which can change the tracking
speed of the system and is directly proportional to the tracking speed. However, if r is too
large, it will increase the overshoot of the system. Therefore, a smaller r value should be
selected when the tracking speed reaches the system requirements. In the formula, h is the
filter factor that determines the filter effect.

The algorithm of ESO is:
e(k) = z1(k)− y(k)
z1(k + 1) =

∫
b2[z2 − b01 · e(k)]d(k)

z2(k + 1) =
∫

b3[z3 − b02 · f al(e(k), a1, d1)]d(k)
z3(k + 1) =

∫
b4[z4 − b1 · f al(e(k), a2, d2)]d(k)

z4(k + 1) =
∫

b6 · b5 · f al(e(k), a3, d3)d(k)

(25)

The fal function is:

f al(e, a, d) =

{
|e|

d1−a , |e| ≤ d
|e|a · sign(e), |e| > d

(26)
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where b01, b02, b1, b5 are the gains of ESO; d is the bandwidth; d is the bandwidth; a1, a2 are
non-linear factors; and b2, b3, b4, b6 are sampling periods whose values are not necessarily
equal. The values of the three parameters d, a1, and a2 are all 0 to 1.

The algorithm of NLSEF is composed of the fst function. The fst function is:

fst =
{ −δ·a

d , |a| ≤ d
−δ · sign(α), |a| > d

a =

{
x2 +

y
h , |y| ≤ d0

x2 +
a0−d

2 · sign(y), |y| > d0

d = δ · h
d0 = d · h
y = x1 + h · x2
a0 =

√
d2 + 8δ|y|

(27)

In this formula, δ is the speed factor, which can change the tracking speed of the
system and is proportional to the tracking speed. However, if δ is too large, it will increase
the overshoot of the system. Therefore, when the tracking speed reaches the system
requirements, a smaller value of δ should be selected.

3.3. Parameter Tuning Algorithm Design Based on the Gray Wolf Optimization

The gray wolf algorithm was used to adjust the parameters of the auto-disturbance
rejection controller. Its essence is to set and adjust the parameters in each sampling period.
The purpose is to find a set of parameters that can make the auto-disturbance rejection
controller have the best performance. The basic principle of parameter setting is shown in
Figure 5.

Figure 5. Basic principle diagram of parameter setting.

3.3.1. Fitness Function

In view of the fact that the parameter tuning of the active disturbance rejection con-
troller can be regarded as a multi-dimensional function optimization problem, the gray
wolf algorithm adopts a real number coding method. If the gray wolf population size is
n, there are 16 parameters of the controller that need to be tuned, so the dimension of the
problem domain is 16. Therefore, the gray wolf population optimized for the parameters of
the ADRC can be represented by an n× 16 matrix. The purpose of ADRC parameter tuning
optimization is to make the overall system deviation of the control system tend to zero,



Machines 2022, 10, 599 9 of 20

while ensuring a lower overshoot and faster response speed. However, when evaluating
the performance of the control system, it is basically impossible to achieve the optimal
performance of all performance indicators at the same time in actual engineering. As each
parameter affects the others, when one of them reaches the optimum, the other different
performance indexes may be reduced as a result. Parameter tuning is performed using the
minimum value of the error output from the Simulink output curve over time. Therefore,
in order to ensure the overall performance of the control system, to obtain satisfactory
dynamic characteristics of the transition process, and to take into account the control ac-
curacy and convergence speed, the integral of the tune multiplied absolute value of the
error (ITAE) criterion was chosen as the fitness function of the self-turbulent controller. As
shown in Formula (28) [26]:

ITAE =
∫ ∞

0
t|e(t)|dt (28)

The e(t) in the formula represents the deviation of the control system.
The evaluation standard is to integrate the product of the absolute value of the system

steady-state error and time, so that the system has a strong stability and short dynamic
response time, and can identify control systems with different parameters. The controlled
system evaluated by this criterion has the characteristics of a small overshoot, is stable and
fast, and can achieve a high level of system performance [27].

3.3.2. Algorithm Implementation

The gray wolf optimization algorithm was used to adjust the 16 parameters of the
ADRC. The main idea is shown in Figure 6.

Figure 6. ADRC control system based on the gray wolf algorithm.

The specific steps are:

1. Initialize the parameters of the GWO algorithm. Set the population size to 16, the
dimension to 5, the maximum number of iterations to 15, and give the value range of
each parameter based on the experience value.

2. Initialize the location information of the GWO algorithm. Randomly initialize the
position information of the artificial gray wolf optimization algorithm (16 parameters
of the auto-disturbance rejection controller to be tuned), and use random initial-
ization for the 16 parameters of the auto-disturbance rejection controller, such as,
r, h, β01, β02, β03, α1, α2, δ1, k1, k2, α3, α4, α5, δ2, δ3, b0 within the range of values. The
mechanism initializes the gray wolf position information in the algorithm. Expressed
as: Xt

i = {xi1(t), xi2(t), · · · , xid(t)}, d = 1, 2, · · · , 16. Among them, i is the i-th gray
wolf in the population, and xid corresponds to an auto-disturbance rejection controller
parameter to be tuned.

3. The Simulink (and AMEsim) program runs. Assign the value to the Simulink module,
run the control system model, calculate the corresponding fitness function value, and
find the global optimal position in the initialization phase.
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4. Iterate the algorithm until the termination condition is met. The population is iterated
according to Formula (14) to Formula (20), to select the optimal fitness value and its
corresponding location information.

5. Whether the stop condition is met: generally, a fixed number of iterations or a fitness
function value reaching a certain accuracy is selected as the stopping condition of
the algorithm.

6. Output the position information corresponding to the optimal fitness value and the
change of the fitness value during the iteration process. This positional information
is the parameter value of r, h, β01, β02, β03, α1, α2, δ1, k1, k2, α3, α4, α5, δ2, δ3, b0 of the
active disturbance rejection controller. The change curve of the optimal fitness value
is the convergence curve of the GWO algorithm.

4. Simulation Analysis
4.1. Simulink Simulation

In order to verify the effect of the gray wolf optimization algorithm on the parameter
tuning of the auto-disturbance rejection controller in the electro-hydraulic servo control
system, this research built a simulation model of the auto-disturbance rejection controller in
Simulink. The hydraulic servo control system was simplified into a linearized mathematical
model and used as a simulation object.

The sampling period of the simulation system was T = 0.001, and the simulation time
in Simulink for each iteration was t = 50 s. The parameters of the algorithm are shown in
Tables 1–3.

Table 1. Parameters in the Gray Wolf Optimization Algorithm.

Algorithm Population Size Number of
Populations

Number of
Iterations Convergence Factor

GWO 16 5 15 2~0

Table 2. Parameters in Particle Swarm Optimization Algorithm.

Algorithm Population Size Number of Populations Number of Iterations Inertia Weight Learning Factor
C1 C2

PSO 16 5 15 1 2 2

Table 3. Parameters in Genetic Algorithms.

Algorithm Population Size Number of Populations Number of Iterations Crossover Probability Mutation Probability

GA 16 5 15 0.8 0.1

Other things being equal, the gray wolf optimization algorithm was compared with
the standard PSO and standard GA (That is, the simple genetic algorithm) [28–33]. The
simulation tests were obtained using the Matlab–Simulink environment.

The 16 parameters of ADRC were divided into eight groups for k-fold cross-validation,
i.e., k = 8. The cross-validation flow chart is shown in Figure 7.
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Table 4. The k-fold cross-validation results for each algorithm.

Algorithm Average Testing Error

GWO 135.81
PSO 190.32
GA 205.14

According to Table 4, the GWO algorithm with the smallest average test error was
selected as the final parameter rectification algorithm.

The optimization curves of the gray wolf optimization algorithm, particle swarm
optimization algorithm, and genetic algorithm are shown in Figure 8.

Figure 8. Comparison chart of the algorithm optimization curves.

It can be seen from Figure 8 that both the gray wolf algorithm and the particle swarm
algorithm had obvious changes in the fitness function value at the third iteration; the
particle swarm algorithm reached the most optimal fitness function value that it could
achieve after the third iteration; in the 11th iteration of the gray wolf algorithm, the fitness
function value reached the optimal value. However, the optimal value obtained by the
gray wolf algorithm was obviously closer to 0, which was better than the optimal value
of the particle swarm algorithm. It can be seen that the gray wolf algorithm had a better
optimization performance.



Machines 2022, 10, 599 12 of 20

The gray wolf algorithm was used for parameter self-tuning, and the program was
used to apply a better set of controller parameters for the ADRC of the electro-hydraulic
servo system, and the response curve was obtained as shown in the figure below.

On the premise that the controlled object was determined, the gray wolf optimization
algorithm was set up to tune the ADRC controller, and a simulation analysis was carried
out. The input source signal adopted a step signal and sine signal, and the simulation
time was uniformly set to 20 s. The step time of the input step signal was 1 s, the initial
value was 0, the final value was 1, and the sampling time was 0.001 s. The amplitude of the
input sine signal was 1, and the frequency was 1 rad/s. The response curve is shown in
Figures 9 and 10.

Figure 9. Simulink simulation step signal response curve.

Figure 10. Simulink simulated sinusoidal signal response curve.

It can be seen from Figure 9 that the steady-state value of the step response based
on the GWO algorithm was 1, the rise time was about 0.056 s, the peak time was about
0.198 s, the maximum overshoot was 0.28%, and the adjustment time was about 0.0708 s
(∆0.05). The steady-state value of the step response based on the GA algorithm was 1, the
rise time was about 0.0335 s, the peak time was about 0.92 s, the maximum overshoot was
2.45%, and the adjustment time was about 0.041 s (∆0.05). The steady-state value of the
step response based on the PSO algorithm was 0.099 s, the rise time was about 0.096 s, the
peak time was about 0.29 s, the maximum overshoot was about 4%, and the adjustment
time was about 0.115 s (∆0.05).
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It can be seen from Figure 10 that the phase lag of the sinusoidal response based on
the GWO algorithm was about 0.025◦, and the amplitude attenuation was about −0.05%.
Based on the GA algorithm, the sine response phase lag was about 0.04◦, and the amplitude
attenuation was about 0.77%. Based on the PSO algorithm, the sine response phase lag was
about 0.03◦, and the amplitude attenuation was about 0.45%.

It can be seen that the ADRC whose parameters were tuned by the gray wolf algorithm
had a fast response speed and a small overshoot, and its performance was fully utilized.

4.2. AMEsim and Simulink Co-Simulation

In order to further verify the simulation results, avoid errors caused by the mathemati-
cal model, and also to verify the anti-jamming capability of the ADRC after the algorithm
had been tuned, a joint simulation of AMEsim and Simulink was carried out in this paper.

The AMEsim model is shown in Figure 11. This model simplified the hydraulic oil
source, the load, and the industrial control computer.

Figure 11. AMEsim simulation model.

A double rod hydraulic cylinder was used to drive the mass block, to simulate the
actual working conditions. The electric motor drives the oil pump, to pump the hydraulic
oil into the hydraulic cylinder through the electro-hydraulic servo valve. The piston rod
starts to move, pushing the mass block, to produce displacement; the displacement sensor
transmits the detected mass movement status to the Simulink control model, and after
passing through the corresponding controller, it outputs a control signal to control the
electro-hydraulic servo valve.

In order to verify the anti-interference ability of ADRC when there is disturbance in
the outside world, this study added a disturbance signal to the load of the AMEsim model
and made it output continuously in a loop. The interference signal is shown in Figure 12.

Figure 12. AMEsim interference signal.



Machines 2022, 10, 599 14 of 20

After connecting the interface of AMEsim, we needed to open MATLAB from the tools
in AMEsim, connect the interface module to the Simulink model as the target, and use the
algorithm to re-tune the parameters.

The input signal in Simulink remained unchanged, and three algorithms were used to
set the required parameters in the joint simulation. The joint simulation results are shown
in Figures 13 and 14.

Figure 13. Co-simulation step signal response curve.

Figure 14. Co-simulation of sinusoidal signal response curve.

It can be seen from Figure 13 that the steady-state value of the step response based
on the GWO algorithm was 1, the rise time was about 0.21 s, the peak time was about 2 s,
the maximum overshoot was 0.8%, and the adjustment time was about 0.28 s (∆0.05). The
steady-state value of the step response based on the GA algorithm was 1.005, the rise time
was about 0.28 s, the peak time was about 2.1 s, the maximum overshoot was 1.3%, and
the adjustment time was about 0.39 s (∆0.05). The steady-state value of the step response
based on the PSO algorithm was 1.01, the rise time was about 0.14 s, the peak time was
about 0.5 s, the maximum overshoot was about 1.9%, and the adjustment time was about
0.15 s (∆0.05).

It can be seen from Figure 14 that the phase lag of the sinusoidal response based on the
GWO algorithm was about 0.04◦, and the amplitude attenuation was about 0.38%. Based
on the GA algorithm, the sine response phase lag was about 0.06◦, and the amplitude
attenuation was about 0.63%. Based on the PSO algorithm, the sine response phase lag was
about 0.068◦, and the amplitude attenuation was about 1.16%.
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It can be seen that in the presence of an external load and interference, the ADRC
controller, after implementing the gray wolf algorithm tuning parameters, had a fast
response speed and a small overshoot, and its performance was fully utilized.

5. Experimental Verification

In order to be closer to engineering reality, to simulate the response of the electro-
hydraulic servo system to different signals in actual working conditions, and to verify the
results of computer simulations, relevant experimental verifications were required.

The experimental environment of the experimental platform was the xPC (xPC Target
is developed by Math Works) semi-physical simulation environment. Through the RTW
(real-time workshop) in Matlab, combined with Simulink, the system design and hardware
devices were combined to achieve the purpose of real-time control. This system used
the PC with the Matlab software as the host machine, and the target machine was an
industrial computer, and the two communicated via Ethernet. The actuator was a double
rod hydraulic cylinder, which was controlled by an electro-hydraulic servo valve and
equipped with a displacement sensor, a pressure sensor, and a force sensor, to measure
the physical quantities produced in the experiment. The experimental bench equipment is
shown in Figures 15 and 16.

1 
 

 
 
 

 

Figure 15. The physical map of the experimental platform.
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During the experimental verification, it should be noted that since the actuator of the
experimental equipment was a double rod hydraulic cylinder, which was not in the middle
position at the initial state, the hydraulic cylinder first returned to the middle position
before the simulation, and then followed the input signal. In this period of time, the output
signal was inevitably affected by the sudden change of the signal at time 0, which made
the following curve change significantly.

When the input signal was a step signal, in order to avoid the influence of the subse-
quent curve following the step signal when the hydraulic cylinder returns to the neutral
position, the step time was selected as 10 s, the initial value was 0, and the final value was
1. The following curve is shown in Figure 17.

Figure 17. Experimental curve of the step signal.

It can be seen from Figure 17 that the steady-state value of the step response based on
the GWO algorithm was 1, the rise time was about 0.11 s, the peak time was about 0.49 s,
the maximum overshoot was 3.5%, and the adjustment time was about 0.17 s (∆0.05). The
steady-state value of the step response based on the GA algorithm was 1, the rise time was
about 0.106 s, the peak time was about 0.41 s, the maximum overshoot was 6.4%, and the
adjustment time was about 1.22 s (∆0.05). The steady-state value of the step response based
on the PSO algorithm was 0.9961, the rise time was about 0.0587 s, the peak time was about
0.26 s, the maximum overshoot was about 5%, and the adjustment time was about 0.27 s
(∆0.05).

When the input signal was a sinusoidal signal, the amplitude of the input signal was
set to 1, the frequency to 1 rad/s, the sampling time to 0, and the simulation time to 20 s.
The output result is shown in Figure 18.

Figure 18. Experimental curve of the sinusoidal signal.
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It can be seen from Figure 18 that the phase lag of the sinusoidal response based on
the GWO algorithm was about 0.08◦, and the amplitude attenuation was about −1.66%.
Based on the GA algorithm, the sine response phase lag was about 0.1◦ and the amplitude
attenuation was about 6.94%. Based on the PSO algorithm, the phase lag of the sinusoidal
response was about 0.1◦ and the amplitude attenuation was about 6.9%.

In addition, when the hydraulic cylinder returns to the neutral position in the first
three seconds, the maximum amplitude attenuation of the sinusoidal response based on
the GWO algorithm was 28.9%; the maximum amplitude attenuation of the sinusoidal
response based on the GA algorithm was 150.0%; and the maximum amplitude attenuation
of the sinusoidal response based on the PSO algorithm was 90.8%.

It can be seen that the response speed of the ADRC controller after implementing
the gray wolf algorithm tuning parameters was faster, the overshoot was small, and the
maximum amplitude generated when returning to the neutral position was also small.

6. Discussion

The three algorithms were used to adjust the parameters of the ADRC separately, and
a total of ten experiments were carried out. The average of the numerical results obtained
is shown in Table 5.

Table 5. The numerical results corresponding to each algorithm.

Algorithm Parameter Setting Time Fitness Value Number of
Iterations

GWO 64.86 s 3.875 × 10−5 15
PSO 82.77 s 2.15 × 10−4 15
GA 40.25 s 2.55 × 10−3 15

Note:

From the previous simulation curves and experimental curves, it can be understood
that the ADRC with tuned parameters using the GWO algorithm had a better response.
From Table 5, we can see that the parameter setting time of GWO was not the shortest,
but its fitness value was the best among the three algorithms. This result corroborates the
simulation and experimental results. The parameter tuning time of GWO was less because
of its strong convergence performance and having fewer parameters compared to PSO.
In addition, GWO algorithms usually generate or approach the best solution with a high
probability, which allows them to have a small fitness value [34–38]. Genetic algorithms are
based on probabilistic rules, rather than deterministic rules [39–41]. This makes their search
process more flexible and the influence of parameters on the search effect is as small as
possible; therefore, the time spent in the process of parameter adjustment is shorter [42–44].
However, since the genetic algorithm is prone to premature convergence, and also prone
to inaccuracy when performing encoding [45–47], its fitness value was the largest and the
corresponding following curve was not ideal.

The parameters corresponding to the experimental following curves are shown in
Table 6. The parameters obtained by the three algorithms that differed significantly have
been indicated in the table and classified with reference to the results of the output curves.

As can be seen in Table 6, the three algorithms differed in the values of r, δ, b01,
b02, b1, b2, b6. For the ADRC, b01, b02, b1, b0, δ, and hNLSEF are its most important
parameters [48,49]. When the disturbance frequency is low, using larger b01, b02, and
b1 will increase the output jitter. However, as the disturbance frequency increases, the
disturbance can be better suppressed with larger b01, b02, and b1, and no jitter will be
generated [50]. Increasing b0 can reduce the jitter in the output curve. However, increasing
b0 makes the compensation for the disturbance smaller and the effect of suppressing the
disturbance may be discounted [51]. Increasing δ and hNLSEF does not directly compensate
for the effects of perturbations, and blindly increasing δ and hNLSEF can also induce jitter.
However, larger b01, b02, and b1 in combination with larger δ can lead to better control
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results [52]. In addition, the jitter caused by excessive hNLSEF can never be solved by
increasing b01, b02, and b1, but by increasing b0. In all cases, however, increasing b0 makes
the control effect much less effective. This can be overcome by reducing δ, so that the
control effect is not overly lost.

Table 6. The ADRC parameters corresponding to the experimental following curve.

Parameters of ADRC
Algorithm

Parameters of ADRC
Algorithm

GWO PSO GA GWO PSO GA
r 2.44 × 10−4 1 × 10−2 9.87 × 10−2 b01 2.55 × 102 7.94 × 103 4.58 × 103

h 7.53 × 103 3.11 × 103 4.18 × 103 b02 6.48 × 102 3.73 × 103 9.44 × 103

δ 2.65 × 103 2.78 × 102 5.9 × 103 b1 1.69 × 103 7.5 × 103 1.13 × 102

hNLSEF 2.15 × 102 7.47 × 102 3.76 × 102 b5 2.85 × 103 7.53 × 103 8.86 × 103

b0 4.40 × 103 1.67 × 103 2.82 × 103 b2 0.034757 6.21 × 103 0.0242
d1 1.25 × 103 1.16 × 103 2.11 × 103 b3 0.09000 0.0500 0.0376
d2 1.04 × 103 5.4 × 103 5.96 × 103 b4 0.015020 0.0500 0.0566
d3 3.58 × 103 3.61 × 103 1.79 × 103 b6 0.016928 1 × 10−35 0.0372

Note:

7. Conclusions

Three algorithms were used to tune ADRC parameters, and the advantages of the gray
wolf algorithm in ADRC parameter tuning were proven. The engineering applications of
ADRC are promising, and it has applications in several areas of production and life [53].
The future development trend of ADRC is to simplify the algorithm, improve the single-
parameter ADRC algorithm regulation strategy, and improve the control performance and
efficiency [54]. In the future, more new metaheuristics will emerge, or existing algorithms
will be combined to achieve better performance, or metaheuristics will be applied to
more domains to solve their optimization problems [55]. In engineering practice, multiple
algorithms can also be used to solve and analyze the same problem, to discover details that
may have been overlooked [56].
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