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Abstract: Human–robot interaction (HRI) is a broad research topic, which is defined as understand-

ing, designing, developing, and evaluating the robotic system to be used with or by humans. This 

paper presents a survey on the control, safety, and perspectives for HRI systems. The first part of 

this paper reviews the variable admittance (VA) control for human–robot co-manipulation tasks, 

where the virtual damping, inertia, or both are adjusted. An overview of the published research for 

the VA control approaches, their methods, the accomplished collaborative co-manipulation tasks 

and applications, and the criteria for evaluating them are presented and compared. Then, the per-

formance of various VA controllers is compared and investigated. In the second part, the safety of 

HRI systems is discussed. The various methods for detection of human–robot collisions (model-

based and data-based) are investigated and compared. Furthermore, the criteria, the main aspects, 

and the requirements for the determination of the collision and their thresholds are discussed. The 

performance measure and the effectiveness of each method are analyzed and compared. The third 

and final part of the paper discusses the perspectives, necessity, influences, and expectations of the 

HRI for future robotic systems. 

Keywords: human–robot interaction; robot control; variable admittance control; robot safety; safety 

methods; review 

 

1. Introduction 

Human–robot interaction (HRI) is a fast-growing research field in robotics and seems 

to be most promising for robotics’ future and its effective introduction into more and more 

areas of everyday life. HRI research covers many fields and applications [1,2], which can 

be found in industrial, medical and rehabilitation, agriculture, service, educational envi-

ronments, etc. HRI is used in industrial applications in co-manipulating tasks, picking 

and placing in the lines of production, welding processes, parts’ assembly, and in painting 

[3–7]. Assistive robotics are considered in the highest profile fields of HRI. Robots can 

help people with physical and mental challenges and provide the opportunity for inter-

action as well as therapy [8–11]. In addition, HRI can be found in hospitals and can be 

helpful in fighting against COVID-19 [12]. In an agricultural environment, HRI strategies 

can provide solutions to many complex problems such as providing the security, the 

lower workload, the comfort, and improving the productivity of the process [13]. In ad-

dition, HRI helps in various tasks that include harvesting, seeding, pruning, spraying, 

fertilizing, hauling, weed detection, phenotyping, mowing, and sorting and packing [14–

18]. With an educational environment, the robots can help in classrooms in different pro-

cesses of learning. Furthermore, they can be used to promote education to typical children 

in home and schools [19,20]. The robots can also help the young pupils with empathy and 
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acquiring skills. In addition, HRI can be found in service, home use, mining, households 

management, space exploration, and UAVs [1,2,21,22]. 

For all these real and very different applications, highly efficient HRI must be 

achieved, and this can be attained by considering two main factors. The first one is safety. 

Safety, in HRI systems, is very important because the existence of the operator near the 

robot could lead to possible injuries. Thus, a system depending on collision avoidance or 

detection must be developed and embedded into the robot control. The second main fac-

tor in HRI is the control. Advanced controllers that can adapt themselves must follow the 

collaborator’s intention as well as the environment’s changes. Therefore, this could lead 

to robots being friendly with the humans and the required tasks can be executed easily, 

efficiently, and with robustness. 

The main contribution of this manuscript is discussed as follows. This paper presents 

a survey on the two main and vital factors for HRI: control and safety. This survey is di-

vided into two parts: 

1. In the first part, the VA controller is presented in which the virtual damping, inertia, 

or both are adjusted. The various developed methods, the executed co-manipulation 

tasks and applications, the criteria for evaluation, and the performance are compared 

and investigated.  

The study of this part is crucial and innovative, and its main aim is to give an insight 

into the role of VA control in improving the HRI’s performance. In addition, it gives 

guidelines to researchers for designing and evaluating their own VA control systems. 

2. In the second part, the safety of HRI is reviewed. The model- and data-based methods 

for collision detection, the collision threshold determination, and the effectiveness 

(%) of the methods are analyzed and compared.  

The main purpose of studying this part is revealing the effectiveness, performance 

measure (%), and application of each method. This could be a chance for the future 

enhancement of the performance measure of the developed safety method. 

The content of the methodology followed in this paper is presented in Figure 1. 

 

Figure 1. The content of the presented survey on HRI. 
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The rest of this paper is composed of the following sections: Section 2 presents the 

control methods for HRI, particularly the VA control. The review of the VA control in 

human–robot co-manipulation tasks is investigated. In Section 3, the safety methods of 

HRI are presented and compared, including their effectiveness and errors. Section 4 shows 

some perspectives, expectations, and recommendations of the HRI for future robotic sys-

tems. At the end, Section 5 summarizes the main important points in this manuscript. 

2. Control Methods for HRI 

The robot’s cooperation with the human in industrial, service, co-manipulation, and 

medical applications [23,24] could enhance the effectiveness of both the human and the 

robotic system. Collaborative robots are used for humans’ assistance, and this leads to an 

increase in their capabilities in three issues: the precision, the speed, and the force. Fur-

thermore, the robots can reduce the human operator’s stress or tiredness and therefore 

improve the working conditions. In the cooperation, the human operator contributes in 

the following points: the experience, the knowledge for task executing, the intuition, ease 

of adaptation and learning, and the ease of understanding of the strategies of control 

[25,26]. 

Many robotics applications and varieties of tasks lead to the necessity for developing 

variable parameter controllers for accomplishing the robotic task. The controllers should 

be adjusted depending on the human collaborator’s intention as well as the changes of 

environment (e.g., the payload of the robot). Therefore, friendly robots with humans are 

performed. In this section, we concentrate on compliance control, particularly admittance 

control. The following subsections discuss and review in detail the VA controller in HRI. 

2.1. Compliance Control (Impedance/Admittance) 

Understanding the compliant behavior is not a new problem in robotics. This is rele-

vant when the robot interacts with the environment, particularly if the environment is 

only and partly known. In this subsection, the impedance control and the admittance con-

trol of the robot are presented and discussed. Compliance control (impedance or admit-

tance) [27–29] is always used as a control system so as to implement a dynamic relation-

ship between the robot and human. In admittance control [30], a good position or velocity 

controller (trajectory tracking controller) and an external force sensor should be found. 

The force sensor is not required for the impedance controller when the inertia is not 

shaped. The robot’s dynamic behavior is adjusted by tuning the virtual damping, inertia, 

and stiffness instead of independently controlling whether the position or the force. The 

main important points that compare the impedance and admittance controllers are pre-

sented in Table 1. Furthermore, the concept and the implementation of both controllers is 

shown in Figure 2. 

The advantages and properties of impedance and admittance control can be shown 

in a better way by comparing them with other modes of control such as force control, 

position control, and hybrid control. Table 2 presents this comparison depending on the 

work presented by Song et al. [31]. 

The dynamic relationship between the applied forces or torques by the human oper-

ator to the robot end-effector and its displacement or velocity is presented using the fol-

lowing equation [27–29], 

𝑭 = 𝑴𝒅 𝑽̇𝒂 + 𝑪𝒅 𝑽𝒂 (1) 
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Table 1. Comparison between admittance controller and impedance controller of the robot. 

Parameter 
Compliance Control 

Admittance Controller Impedance Controller 

Use 

It is used with HRI in which there is no interac-

tion between the robot and the stiff environ-

ment.  

The main aim of the methodology of impedance 

control is modulating the manipulator’s mechani-

cal impedance [28]. 

Inputs and Out-

puts 

It maps the applied forces into robot motion, as 

shown in Figure 2a. 

The motion is the input, whereas the output is the 

force as shown in Figure 2b [30,32]. 

Rendering 

1- It can render only the virtual stiff surfaces, 

whereas it cannot render the low inertia.  

2- It is negatively affected during the dynamic 

interaction with the real stiff surfaces (con-

strained motion) [33–35].  

1- It can render low inertia, whereas it cannot ren-

der the virtual stiff surfaces.  

2- It is negatively affected during the dynamic in-

teraction with the low inertia (free motion) [35]. 

Control 

1- It is the impedance control based on position 

[36]. 

2- The position or velocity controller is used to 

control the robot and the desired compliant be-

havior is understood by the outer control loop. 

1- The force-based impedance control is used. 

2- It is not only the controlled manipulator is re-

quired, but also the controller itself should have 

the impedance causality. 

Representation  

  

 

Figure 2. The concept or the implementation of the admittance and impedance controller (a) Ad-

mittance Control and (b) Impedance Control. 

where, 𝑽𝒂 ∈ ℝ6 and 𝑽̇𝒂 ∈ ℝ6 represent the velocity and the acceleration, respectively, in 

the directions of the Cartesian coordinate system, 𝑴𝒅  ∈ ℝ6×6 is defined as the positive 

definite matrix that represent the virtual inertia. 𝑪𝒅 ∈ ℝ6×6 is defined as the positive def-

inite matrix that represent the virtual damping. 𝑭 ∈ ℝ6 is the vector of the applied forces 

and torques by the human. The term 𝑲 is the virtual spring and is usually omitted from 

Equation (1). Dealing with the virtual stiffness is out of scope of this paper. 

Equation (1) can be rewritten in the general form as follows: 
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For a relatively specific case where the inertia and damping matrices are decoupled 

with respect to the world coordinates, Equation (2) is written in the following form: 
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 (3) 

where, 𝑚𝑥, 𝑚𝑦, and 𝑚𝑧 represent the virtual inertia parameter of the admittance control 

in directions of Cartesian coordinate system during the linear motion, whereas 𝐼𝑥, 𝐼𝑦 , and 

𝐼𝑧 represent the virtual inertia during the rotation. Additionally, 𝑐𝑥, 𝑐𝑦, and 𝑐𝑧 represent 

the virtual damping during the linear motion, whereas 𝑐𝑟𝑥 , 𝑐𝑟𝑦 , and 𝑐𝑟𝑧  represent the 

virtual damping during the rotation. 

Table 2. Comparison between the different schemes of control. This comparison is done based on 

ref. [31]. 

Schemes of Con-

trol 

Work 

Space 

Measured 

Variables 

Appropriate 

Applied 

Situations 

Control 

Aims 

Position Control Task space Position 
Free 

motion 

Desired 

position 

Force Control Task space Contact Force 
Constrained 

motion 

Desired 

contact force 

Hybrid Control 

Position 

subspace 
Position 

All motion kinds  

Desired 

position 

Force 

subspace 

Contact 

Force 

Desired 

contact force 

Impedance/ 

Admittance Con-

trol 

Task space 
Position, 

Contact Force 
All motion kinds  

Impedance/ 

Admittance 

In this paper, the admittance controller is reviewed, particularly the VA controller in 

co-manipulation tasks, where either the virtual inertia 𝑚 or the virtual damping 𝑐 or both 

of them are adjusted for facilitating the robot’s cooperation with the human, as presented 

in Figure 3. 
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Figure 3. The VA control system for facilitating the human–robot co-manipulating task. 

2.2. Methods for VA Control System in Co-Manipulation Tasks 

In this subsection, the developed methods for the VA controller are presented 

whether the virtual damping parameter or the virtual inertia parameter is only adjusted, 

or both are adjusted simultaneously. 

Parameters of VA controllers are adjusted based on different techniques such as hu-

man intention, passivity-preserving strategy, transmitted power from human to robot, 

and data-based approaches such as fuzzy logic, neural network, trajectory prediction, and 

online and fast Fourier transform (FFT) of measured forces [6,37–50]. These classifications 

are presented in Figure 4. 

 

Figure 4. The classifications of the used techniques for developing VA control whether adjusting 

the damping only, the inertia only, or both the damping and inertia. 

Inference of human intention was the basis of the following works. Duchaine and 

Gosselin [37] improved the intuitivity of humans considering only the adjustment of the 

virtual damping. They developed their VA control using the time derivative of the applied 

force, and after that it was used for inferring the human’s intentions. Lecours et al. [46] 

developed a VA control in which both the virtual damping and the virtual inertia were 

adapted. Their controller was implemented using the human intentions’ inference and by 

considering the desired operator’s velocity and acceleration. The drawbacks of the above 

two approaches are the necessity for numerical differentiations that make noisy signals, 

which in turn require filtering that causes delays. In [41], Topini et al. implemented a VA 

control where both the virtual inertia and the virtual damping were adapted online to the 
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motion intention of the user. Their system followed the same approach presented with 

Lecours et al. [46]. However, the field of application was different. In addition, the desired 

reference force or the source of such a force reference value were not provided by Lecours 

et al. [46]. 

The strategy of passivity-preserving was used to adapt the parameters of robot ad-

mittance control. TSUMUGIWA et al. [45] presented a method to adjust both virtual 

damping and inertia considering the passivity index and an ultimate value of the applied 

force by human. In their strategy, the passivity index was used for identifying the process 

of working from other processes, viz energy transferring between human and robot dur-

ing the collaboration. In a case where the passivity index was a positive value and this 

value exceeded a defined threshold, the human provided the robot with the energy for 

executing the collaboration’s task. This passivity index was also used to detect the whole 

human’s working process. After that, the ultimate applied force value was used to divide 

the whole working process into four parts. Then, proper characteristics of admittance con-

trol were applied to each part. A passivity-preserving strategy was also proposed by C. T. 

Landi et al. in [48], where they adjusted the virtual inertia parameter of the admittance 

control for removing the oscillations with high frequency and restoring the desired model 

of interaction. Furthermore, the virtual damping parameter was adjusted based on a con-

stant damping to inertia ratio for preserving a similar system dynamics after the adjust-

ment, which has more intuitivity for humans [46]. 

According to the transmitted power from human to robot, Sidiropoulos et al. [40] 

proposed a VA control for adapting the virtual damping taking into account the minimi-

zation of the energy provided by the human allowing the subject to control the task. 

Data-based methods like fuzzy logic and neural networks were also developed. 

Fuzzy logic-based methods were proposed by the following research works. Z. Du et al. 

[43] developed a hybrid VA model based on a learning of type fuzzy Sarsa (λ), considering 

the rotational movement about a single axis, for obtaining intuitive and natural interaction 

along the pose adjustment of minimal invasive surgery manipulators. Dimeas and 

Aspragathos [44] proposed a method in which the process of human-like decision making 

was combined with an adaptation fuzzy inference algorithm. The measured robot velocity 

and the applied human force were the inputs to their method, whereas the online adjusted 

virtual damping parameter was the output. Their fuzzy inference system was adapted 

using the fuzzy model reference learning controller. The minimum jerk trajectory model 

was the basis of this learning, and the expert knowledge must be found for the intuitive 

collaboration. 

Neural networks (NNs) were also used for adapting the parameters of robot admit-

tance control systems. In [6,49,50], Sharkawy et al. proposed a multi-layer feedforward 

neural network (MLFFNN) that online trained for adjusting only the virtual damping pa-

rameter or only the virtual inertia parameter of the admittance control. The training oc-

curred depending on the error backpropagation algorithm and considering an error rep-

resenting the difference between the actual robot’s velocity and the desired minimum jerk 

trajectory velocity. In [38], both the virtual damping and inertia were adjusted online and 

simultaneously by the use of Jordan recurrent NNs. The network was indirectly trained 

by the real-time recurrent learning considering the error between the actual robot’s veloc-

ity and the desired minimum jerk trajectory velocity. In these approaches, the need to 

expert knowledge for the intuitive collaboration was not found and this is desirable. In 

[39], a method was developed to allow the robot for interacting with the unknown envi-

ronment. An observer in the robot joint space was employed for estimating the interaction 

torque. The admittance control was adopted for regulating the dynamic behavior at the 

point of interaction during the robot’s collaboration with the unknown environment. A 

controller based on radial basis function (RBF) was implemented for guaranteeing the tra-

jectory tracking. The cost function was defined for achieving the performance of interac-

tion of the torque regulation and the tracking of trajectory. Additionally, it was minimized 

by the admittance model’s adaptation. 
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Based on a trajectory prediction of the human hand motion, Wang et al. [42] proposed 

a VA control in HRI. In their approach, the robot end-effector’s trajectory under the guid-

ance of the human operator was used to train offline a long- and short-term memory NN 

(LSTM-NN). After that, the trajectory predictors were used in VA control for predicting 

online the trajectory as well as the movement direction of the robot’s end-effector. The 

developed VA controller adjusted the virtual damping to reduce its value in the moving 

direction. 

Another data-based method was developed in [47]. In [47], Okunev et al. used an 

online fast Fourier transform (FFT) of the forces, which were measured using a mounted 

sensor at the robot’s end-effector. Their method was used for detecting the oscillations 

and for dynamically adapting the virtual damping and inertia for attenuating the oscilla-

tions and improving the experience of haptic interaction of the cooperating human. In 

addition, they developed a machine-learning method to include the human preferences 

into the control design. The method was depending on the study of users and their eval-

uation. 

The robotic tasks used by these researchers during the development and the evalua-

tion their VA controller are discussed in the next subsection. 

2.3. Accomplished Co-Manipulation Tasks with VA Control 

During the development and the evaluation of the VA control, different tasks were 

proposed and accomplished by the researchers. These tasks are classified into two main 

categories as follows: 

(1) The collaborative co-manipulation tasks in which the human effort and oscillations 

should be reduced. These types of tasks are the main interest of this paper and are 

discussed in this subsection. 

(2) The rehabilitations tasks in which the robot should apply high force and assist the 

human, or in other cases the robot should leave the patient to act alone. These types 

of tasks are out of scope of this paper. 

The classifications of the collaborative co-manipulation tasks are presented in Figure 

5. 

 

Figure 5. The robotic tasks accomplished during the development and the evaluation of the VA 

control that appeared in the literature. 

Collaborative co-manipulation tasks, such as pick and place task, point-to-point 

movement, drawing task, and manipulating of large objects, were proposed with the fol-

lowing research works. Duchaine and Gosselin [37] designed their VA control system for 

the collaborative pick and place task as well as the drawing task. With Lecours et al. [46], 

the drawing task as well as giving an impulse for the assisting device were their accom-

plished tasks to develop and evaluate the variable controller. In [45], TSUMUGIWA et al. 
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executed the point-to-point movement as the desired task for developing and evaluating 

their VA controller. The task achieved by Sidiropoulos et al. [40] to develop and evaluate 

their VA control system was the manipulating of large objects with high inertia. 

The rotational movement of a joint of a minimally invasive surgical manipulator be-

tween two targets in a single direction was used as the proposed task with Z. Du et al. 

[43]. In [44], Dimeas and Aspragathos developed their VA control system for a point to 

point movement along a single direction of the Cartesian robot workspace. Their VA con-

trol was evaluated using different movements; short, medium, and long distances. 

Sharkawy et al. [6,38,49,50] developed and designed their VA control system for a point-

to-point movement along a single direction of the Cartesian robot workspace. In addition, 

their VA control was evaluated using different movements; short, medium, and long dis-

tances. In [50], the VA control was evaluated by mounting a load or an object of 1 kg to 

the robot’s end-effector for simulating the transferring process of an object from a place to 

another guided by the human. The motion was also along straight-line segment (short, 

medium, and long distances). Furthermore, the VA control was tested and investigated 

along different axis of motion and along straight-line segment. Wang et al. [42] developed 

their VA control for simulating an experiment in which the robot was operated for grind-

ing the prosthesis implantation plane. The selected task path was an N-shaped path cov-

ering the plane. 

A rehabilitation task was proposed by Topini et al. [41]. They designed a hand exo-

skeleton system for interfacing with the VA control for achieving virtual reality-based re-

habilitation tasks. The tasks used in their work were free motion and grasping virtual 

spherical object. However, rehabilitation tasks are out of the scope of this paper. 

Although different tasks were used with the researchers, other realistic tasks and ap-

plications are recommended to be investigated and applied, such as curved and complex 

motions. Furthermore, the tasks in real (industrial, medical, agriculture, etc.) environ-

ments can be achieved. 

2.4. Performance’s Comparison of VA Controllers in Co-Manipulation Tasks 

In this section, the achieved performance of the developed VA controllers is com-

pared. For this purpose, we concentrate on the number of subjects and the criteria used to 

evaluate the developed VA control system as well as the effectiveness and the improve-

ments that were obtained by the VA control. The main used criteria for evaluation of the 

developed VA control included the following terms: 

(1) The required effort for performing the task. 

(2) The needed time for executing the task. 

(3) The oscillations and the number of overshoots. 

(4) The achieved accuracy. 

(5) The accumulated jerk. 

(6) The opposition of the robot to human forces. 

The VA control system developed by Duchaine and Gosselin [37] was evaluated in 

terms of the needed time for accomplishing the drawing task and the number of over-

shoots. Their VA control system was compared with a constant admittance control by help 

of 6 subjects. By their VA control, the task was achieved rapidly with a smaller overshoots’ 

number. In addition, the time was improved/reduced by 18.23% compared with the con-

stant admittance controller. The required effort for performing the task and the accuracy 

were not compared, and the results from a provided questionnaire were not included. The 

VA control by Lecours et al. [46] was compared with a low constant admittance controller 

and high constant admittance controller using the task completion time and the maze 

overshoots as the main criteria and by the help of six subjects. In the case of performing a 

drawing task, with their VA controller, it was easy to perform acceleration and fine move-

ments. The needed time for achieving the task was a with the one given by the low con-

stant admittance controller, and 20% lower than the time required by the high constant 
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admittance controller. The overshoot distance provided by their VA controller was as with 

the one obtained by the high constant admittance controller. In addition, it was five times 

lower than the obtained one by the low constant admittance control. With the impulse 

test, their VA controller performed high desired velocity and acceleration, which were 

similar to the ones obtained by the low constant admittance controller. However, their VA 

control had less ability for performing fine movements. Furthermore, the velocity decayed 

more rapidly. This happened because of the higher acceleration result of the VA control 

law. In both tasks (drawing and impulse), the evaluation of the required human effort was 

not considered, and subjective results by giving a questionnaire to the participants were 

missing. In [41], Topini et al. evaluated their developed VA control with the help of a 

single trained healthy subject. The results showed that their developed VA control had 

promising performance while following the free motion of the user. In addition, it was 

quite suited to rehabilitation applications because of the smooth behavior at low operating 

frequencies. Statistics about the accuracy, required effort, and completion time were miss-

ing. In addition, using only one subject for evaluating the system is not fair or enough. 

The VA control developed by TSUMUGIWA et al. [45] was compared with a conventional 

VA control and with an invariable admittance control by the participation of 10 subjects. 

These systems were compared in terms of the overshoots and re-increasing of the applied 

force along the positioning section. It was found that with their developed VA controller, 

there was no re-increasing in the applied force, no overshoot along the positioning section, 

and the cooperation was performed smoothly. An overshoot of the applied human force 

appeared at the positioning section end when the invariable admittance control was used. 

Re-increasing the applied force was necessary at the beginning of the positioning section 

when the conventional VA control was used. The generalization and effectiveness ability 

of their VA controller was not tested and investigated using different movements. In ad-

dition, the comparison did not include the accuracy of each controller and the task com-

pletion time. The percentage of the improvement of their developed VA control was not 

calculated. The given questionnaire to the subjects was about the manipulability only. 

However, the evaluation of the feeling of the required human effort and the feeling of the 

oscillation was not included. The VA control developed by C. T. Landi et al. in [48] was 

evaluated using only a questionnaire. A questionnaire was given to 26 subjects divided 

into two groups, the first group with 12 users and the other one with 14 users, for the 

usability evaluation of the system by the use of system usability scale (SUS) [51]. The SUS 

score was 81.66% for the first group, and it was 82.88% for the second group. In general, 

this score was high. 

Sidiropoulos et al. in [40] evaluated their VA control with the help of 10 subjects and 

based on only the two main criteria: the transmitted energy from human to robot, which 

represents the required human effort, and transmitted energy by robot to human, which 

represents the opposition of the robot to the forces of the human. Their results proved that 

their VA control reduced the human effort by approximately 33% to 46% compared with 

high constant admittance controller. In addition, their VA controller was compared with 

the VA control presented in [52], where the virtual damping was tuned depending on the 

velocity norm. The results proved that their VA controller has the better efficiency com-

pared with the VA control based on velocity norm [52]. In addition, the later VA control 

reduced the human effort by 32%. Indications about the achieved accuracy and task com-

pletion time were missing. Furthermore, the subjective results from a questionnaire were 

not included. 

In [43], the VA controller presented by Z. Du et al. was compared by three different 

systems, low constant admittance controller, high constant admittance controller, and VA 

controller based on the torque/force by the participation of 8 subjects. The comparison 

was in terms of the accuracy, the energy/effort, and the accumulated jerk. Their VA con-

troller achieved better accuracy than the low constant admittance controller. In addition, 

the mean of the maximum distance after the remove of the interaction torque was de-

creased by 90.3%. The applied human effort was reduced and improved by 44.3% relative 
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to the high constant admittance control. The smoothness of the cooperation was signifi-

cantly improved by their variable controller compared with the VA controller based on 

the torque. Furthermore, the mean of the accumulated jerk in the episode was reduced 

and improved by 31.4% relative to the VA controller based on the torque. However, the 

needed time for executing the desired movement was not compared. From the question-

naire given to the subjects, the preferred results were obtained by their VA control system 

using the main criteria for comparison; the sense of being in control and the naturalness 

of the motion. The questionnaire did not give any indication about the human required 

effort feeling during the movement, the vibration and oscillations, and which system the 

participants prefer. In [44], Dimeas and Aspragathos developed a fuzzy inference system 

(FIS) for VA controller. Their trained FIS was compared with the untrained, manually 

tuned FIS along different movements (short, medium, and long distances) by help of 12 

subjects. The comparison included the required human effort and the required time to 

complete the movement. In short distance, it was found that 1% improvement/reduction 

in the effort with the trained FIS and this improvement/reduction increases to 7% for the 

medium distance and finally to 13% for the long distance. The mean completion time in 

case of the trained FIS is lower compared with the untrained system by 12%. However, 

the oscillations and the accuracy were not included in the comparison. In addition, it is 

not a practical way to compare a trained system with untrained one since logically the 

trained one will achieve the good performance. The comparison with a constant/fixed ad-

mittance controller was not also included. The given results from the provided question-

naire to the participants proved that the trained FIS was the preferred system compared 

with the untrained FIS. The feeling of the human effort during the movement, the accu-

racy, and the oscillations were not considered in the provided questionnaire. 

In [49], Sharkawy et al. developed a VA controller based on the trained NN system. 

Their VA controller was included in a comparison with three other constant admittance 

controllers (low, medium, and high). The comparison was carried out using different 

movements (short, medium, and long distances) and by the help of 13 subjects. The main 

criteria for this comparison were the required human effort to move the robot, the needed 

time for the task, and the obtained accuracy at the target point. With their VA control, it 

was found that, in the short distance, the required effort and the needed task time were, 

respectively, improved and reduced by 65.22% and 6.65%, relative to the high constant 

admittance controller. Its accuracy was improved and increased by 5.30% relative to the 

low constant admittance controller. In the medium distance, the required human effort 

and the needed task time were improved and reduced, respectively, by 58.83% and 16.89% 

with reference to the high constant admittance control. The accuracy was improved and 

increased by 4.031% with reference to the low constant admittance control. In the long 

distance, the human effort and the needed time were, respectively, improved and reduced 

by 63.63% and 15.184% with reference to the high constant admittance control, whereas 

the accuracy was improved by 3.86% relative to the low constant admittance controller. 

From the subjective results of the questionnaire given to the subjects, their VA control 

gave high performance in which the required effort was low, and the accuracy was the 

highest. Furthermore, it was the preferred system by the subjects. In [50], the developed 

VA controller was evaluated by the help of 10 subjects. Their VA controller improved and 

reduced the required human effort and the needed task time, respectively, by 58.58% and 

23.86% with reference to the high constant admittance control, in the short straight-line 

segment motion. Furthermore, the accuracy was improved/increased by 5.12% relative to 

the low constant admittance control. In the medium straight-line segment motion, the VA 

controller improved and reduced the required human effort and the needed task time, 

respectively, by 51.474% and 24.30% with reference to the high constant admittance con-

trol. The accuracy was improved and increased by 5.00% with reference to the low con-

stant admittance control. In case of the long straight-line segment motion, the VA control-

ler improved and reduced the human effort and the needed task time, respectively, by 

57.154% and 26.57% with reference to the high constant admittance control. The accuracy 
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was improved and increased by 4.456% with reference to the low constant admittance 

control. The generalization ability of their VA control was checked by mounting a load or 

an object on the robot end-effector to simulate a co-manipulating task. In this case, the VA 

controller improved and reduced the human effort and the needed task time, respectively, 

by 43.235% and 19.76% when short straight-line segment motion was performed and, re-

spectively, by 51.856% and 22.35% when the medium straight-line segment motion was 

used and by 58.658% and 22.892% when long straight-line segment motion was per-

formed, relative to the high constant admittance control. The achieved accuracy with their 

VA controller was improved/increased by 9.678%, 8.576%, and 8.653% when short, me-

dium, and long distance, respectively, were used, relative to the low constant admittance 

control. In [38], the VA control, in which both the virtual damping parameter and inertia 

parameter were adjusted, has the best performance compared with the VA control, where 

only the virtual damping was adjusted, or the VA control in which only the virtual inertia 

parameter was adjusted. The comparison was achieved by using 10 subjects. 

In [42], Wang et al. evaluated their developed VA control by comparing it with a 

constant admittance control considering the operating force and jerk and the trajectory 

error (accuracy) as the main criteria with the help of two subjects. Their VA controllers 

reduced the trajectory errors by 51%, and reduced the operating force by 23%, and re-

duced the operating jerk by 21%. The subjective results from a questionnaire were miss-

ing. In addition, using only two subjects was not enough and not fair. 

In [47], the VA controller presented by Okunev et al. was compared through partici-

pation of 10 subjects with four constant admittance controllers; the first one has high val-

ues, the second one has medium values, the third one has low values and the last one has 

the lowest values. The comparison was executed using a mobile robot that had two 7-DoF 

anthropomorphic arms, which hold an aluminum bar. The subjective results were pre-

sented only from a provided questionnaire to the participants. The results were about the 

heaviness and the oscillations using each controller. By comparing their variable control-

ler with the first constant admittance controller, their variable controller was less heavy 

and more oscillatory. Compared with the second controller, the variable controller was 

approximately in the same level of heaviness with the second controller, which was less 

oscillatory. In comparison with the third constant admittance controller, their variable 

controller was less heavy and oscillatory. By comparing with the fourth constant admit-

tance controller, the fourth controller aborted during the experiments, in which abort 

means that the number of times the built-in robot security system shut down and the 

adaptive controller was less oscillatory. However, the measured results from these com-

parisons were not included, which are more important than the subjective ones. 

The number of subjects used to evaluate the VA control by researchers can be com-

pared. This comparison is presented in Figure 6. As shown in Figure 6, the number of 

subjects used by researchers is in the range between 1 to 13, except one research work 

used 26 subjects to evaluate their VA control system. However, our recommendation is to 

use more and enough subjects (e.g., more than 30) for the evaluation of VA control for 

more realistic statistics and results. 
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Figure 6. The comparison between the number of subjects used to evaluate the developed VA con-

trol. 

From this discussion, it is difficult to compare the performance of all VA control sys-

tems quantitatively because the used criteria and the accomplished tasks with each system 

are different from the others. In addition, the obtained results with some VA control sys-

tems in form of values are missing. However, we present a figure that can compare the 

performance of the closest VA systems to help the reader to see the difference easily. These 

systems are as follows: 

(1) The VA control system based on inference of human intention [37], 

(2) The VA control system depending on transmitted power by human to robot [40], 

(3) The VA control system based on the velocity norm [52], 

(4) The neural network-based system to adjust the damping only [49], 

(5) The neural network-based system to adjust the inertia only [50], and 

(6) The VA control system depending on the trajectory’s prediction of the motion of a 

human hand [42]. 

This comparison is presented in Figure 7. The percentage of the improvement in the 

required human effort and time of all systems is relative to high constant admittance con-

trol. The percentage of the improvement in the achieved accuracy is relative to low con-

stant admittance control. 

The good results obtained from these previous works need further investigation by 

developing new methods for variable admittance control. In addition, as is clear from Fig-

ure 7, using a neural network-based approach is promising in improving the performance 

of the VA control system in a better way. This needs further investigation by applying 

different types of neural networks as well as deep learning-based techniques. 
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Figure 7. The performance’s comparison between some developed VA control systems. The main 

criteria used are the required human effort, needed task time, and the obtained accuracy. 

3. Safety of HRI 

Safety is very crucial and necessary during the collaboration between the robot and 

human in the same area or workspace. This is because the human’s closeness to the robot 

can make possible injuries. Therefore, a safety method or technique must be found on the 

robotic system. Safety is considered as an extensive and crucial research work. Gualtieri 

et al. in [53] classified the recent research works and themes that are very related to the 

safety of HRI. These classifications were adopted after analyzing all related works and 

then categorizing them. These categories are shown in Figure 8. 
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Figure 8. The research contents and themes related to safety and investigated in recent years by 

Gualtieri et al. [53]. 

Considerations and requirements of safety must be followed during the HRI. These 

requirements for integrating the industrial robotic systems are provided with ISO stand-

ards as presented in ref. [54,55]. In ISO, the hazards’ situations are illustrated and the re-

quirements for eliminating or reducing the associated risks with these hazards are also 

presented. In [56], ISO/TS 15,066 assigns the requirements of safety for human–industrial 

robotic systems cooperation. In addition, it supplies the guidance on the operation of the 

collaborative industrial robot based on [54,55]. The quasi-static and transient contact lim-

its are also presented. Yamada et al. [57] investigated safety and determined the tolerance 

limit of the pain. In the design of the control system in HRI, safety must be taken into 

account. Developed systems for the safety of the robot collaboration with humans were 

classified as collision avoidance techniques and collision detections’ techniques. Collision 

avoidance techniques were dependent on sensors to efficiently monitor the environment. 

These methods used depth sensors and vision as presented in ref. [58–60] and color sen-

sors as in ref. [61,62]. These methods are efficient when there are no occlusions or prob-

lems during the detection of the human or the obstacle and the robot. When the sensor is 

very far or very close to the working space, multiple sensors must be placed for monitor-

ing the workspace from multiple directions. Number of sensors was considered by re-

searchers in two cases: the first case used single-sensor variants as presented by ref. 

[63,64], whereas the second case used multi-sensor based techniques as proposed by ref. 

[65,66]. These approaches need modifications in the body of the robot because of the 

installation of the sensors. NNs were also used for the collisions’ avoidance as in [67]. 

Reviewing of the collision avoidance techniques is out of the scope of this paper. The main 

interest of this paper is to review the collision detection methods, which are classified in 

Figure 9. These classifications are reviewed deeply in the following subsections. 
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Figure 9. The classifications of the collision detection techniques used for the safety of HRI’s sys-

tems. 

3.1. Collision Detection Techniques 

For the improvement of system of safety in HRI, the collision detection and reaction 

approaches are necessary and required in case the collision avoidance level fails. Various 

techniques for detecting and identifying the collisions were developed by researchers. The 

classifications of these techniques are either model-based or data-based. These methods 

are presented in the following two subsections. 

3.1.1. Model-Based Methods 

In the model-based approaches, disturbance observer, impedance and admittance 

control, and use of force/torque sensor were taken into account by researchers. Disturb-

ance observer was presented by the following studies. In Haddadin et al.’s approach [68], 

two collision detection systems as well as five reaction strategies were implemented using 

LWR robot and for tasks of cooperation and interaction. The first collision detection sys-

tem needed the generalized momentum, and the second system compared the measured 

joint torque by the estimated torque from the model of the robot. In Cho et al. [69], a col-

lision detection technique was developed as well as three reaction strategies. These reac-

tions’ strategies were (1) the mode of oscillation, (2) the mode of torque-free motion, and 

(3) the mode of forced stop, and they were used in different scenarios of collision. Their 

collision detection system was dependent on the generalized momentum and the signals 

of joint torque sensors. They developed a 7-DOF service robotic manipulator, which was 

used for the execution of the experiments. Jung and his group [70] presented a group of 
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band-width filters in a disturbance observer for detecting the collisions occurring between 

human and robot. The characteristics of the frequency of each part of the manipulator and 

disturbances were investigated and used for detecting the collisions. Pengfei Cao et al. 

[71] presented the model-based sensorless collision detection scheme for HRI. Their 

method was dependent on the torque residual, which was defined as the difference be-

tween the nominal torque and the actual one, using the information of the motor-side. 

Impedance and admittance control were also used for collision detection. In Mori-

naga and Kosuge’s approach [72], a nonlinear impedance controller was developed with 

no need for any external sensor. Their approach was based on the torque error, which was 

defined as the difference between the actual input manipulator torque and the reference 

input torque determined from the dynamic manipulator parameters. In [73], Kim pro-

posed a sensorless admittance control-based method for collision’s detection and reaction 

of collaborative robots. The collision observer was dependent on the forced response of a 

mechanical system. For detecting the collision correctly, a low-pass filter was combined 

with a high-pass filter in a unified fashion. 

Using the external force/torque sensor as a collision detection’s method was pre-

sented by Shujun Lu et al. [74]. In their approach, two six-axis force and torque sensors 

were used. The first one was on the base and the second one was on the wrist. Their 

method was investigated and tested using 1-DOF and 2-DOF manipulators. 

The main problems of such model-based approaches are that they need an explicit 

dynamic robot model, which is sometimes not available or found. In addition, there are 

uncertainties in the dynamic parameters’ identification. 

3.1.2. Data-Based Methods 

Data-based techniques are presented and developed for the human–robot collisions’ 

detections and identifications. These methods use data to train a developed system, and 

after that the trained system is used to estimate and detect the collisions. Systems depend-

ing on fuzzy logic, time series, support vector machine (SVM), and NN were considered. 

In Dimeas et al.’s work [75,76], two methods were developed. The first was dependent on 

fuzzy identification, whereas the second was dependent on time series. Both methods 

were investigated using a 1-DOF manipulator and 2-DOF planar manipulator. Their fuzzy 

systems were developed for estimating the collisions then detecting them, and the inputs 

were the joint position errors, the measured joint torques, and the actual joint velocities. 

One fuzzy system was designed and trained for each joint. Their fuzzy-based method was 

able to quickly and accurately detect the collisions using lower defined threshold values. 

In the case of their time series-based method, the collision torque was estimated using 

only the signals of the measured joint velocity. In addition, the required time for detecting 

the collision was low; however, its defined threshold was higher compared with the fuzzy 

system. Their systems were developed by neglecting the occurring dynamic coupling dur-

ing the joints’ motion. Furthermore, the generalization ability and the effectiveness of their 

methods were not investigated outside of the training range motion and in different con-

ditions. 

Franzel et al. in [77] designed an approach using the knowledge of the demonstrated 

task as well as the resulted offset from human interaction for distinguishing between the 

contact events and the normal execution by the use of a contact event detector. For this 

purpose, they implemented a contact type classifier using SVM, which was trained with 

the specified events. In [78], Cioff et al. used SVM for classifying the contact situations 

happening between human and robot based on time series of the signals of joint load 

torque. The contact situations were classified into two cases: the first one was the intended 

interactions and the second was the accidental collisions. The coarse localization was also 

carried out to identify if the contact on the upper or the lower robot arm. 

In [74], Shujun Lu and his group developed a collision detection method depending 

on the NN’s training. Their method needed a base as well as wrist force and a torque 

sensor, and it was investigated using 1-DOF and 2-DOF manipulators. The inputs of the 
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designed NN were the short history of joints’ angles and the readings from the wrist and 

base force/torque sensors, and the outputs were the collision forces and the positions of 

contact. The results from their method were promising and proved its validity; however, 

two external sensors were needed and investigating its generalization ability and effec-

tiveness was missing outside of the training range motion and in different conditions. 

Briquet-Kerestedjian et al. [79] implemented a supervised learning for a NN-based ap-

proach to differentiate the situations of the unintended contact (labeled collisions) from 

the foreseen ones (labeled interactions). In addition, their approach sought to infer which 

of the upper or lower robot arms collided. The classifications’ problem is neglecting the 

external force’s amplitude (collisions), and the classifier cannot be used as a practical and 

real system for this force estimating. In [80–83], Sharkawy and his group proposed and 

designed the multilayer feedforward NN (MLFFNN) to detect collisions between robots 

and humans as well as for identifying which link collided. The generalization and the 

effectiveness for their method were investigated and presented using different conditions. 

Their method succeeded with a very high percentage and the results were promising. The 

MLFFNN presented in [80,81,83] can be applied only for collaborative robots where the 

signals of the joints’ positions and torques sensors are available. The MLFFNN presented 

in [82] can be applied for any robot since it was dependent only on the signals of the joints’ 

positions sensors of the manipulator. In [84], three types of NNs were investigated and 

compared for the human–robot collision detection. These types were as follows: (1) mul-

tilayer feedforward, (2) cascaded forward, and (3) recurrent NNs. The designed NN con-

sidered the manipulator joints’ dynamics and sought to use only the signals of the intrinsic 

joints’ positions sensors of the robotic manipulator to can be validated and applied by any 

robot. The comparison between the three designed NNs were quantitative and qualitative. 

3.2. Collision Threshold 

As discussed above, safety is a crucial factor in HRI, therefore the occurring collisions 

should be detected correctly, and the link that was collided should be identified for 

achieving a safe robot collaboration with human. 

In literature of HRI, the collision threshold was determined considering the following 

factors. The first factor was the safety of human, and the second factor was minimizing 

the false collisions’ detections to perform smooth and continuous HRI. The contact force 

and the joint torque were the basis for determining the collision threshold. The contact 

force was considered by Shujun Lu et al. [74]. In [74], the collision threshold was defined 

as a value that was lower than the contact force parameterizing the unified pain tolerance 

limit of the human, which was studied and investigated in [57]. The joint torque was con-

sidered with Haddadin et al. [68]. In [68], the threshold was defined as 10% of the maxi-

mum nominal robot torque. In [73], a time-varying threshold was proposed. The collision 

threshold was dependent on the modeling error, and it was only updated when the state 

of the collision was OFF for monitoring the pure modeling error, e.g., motion without 

collisions. Otherwise, the collision threshold was increasing with the generated external 

joint torque by the collisions. This definition was based on presented work in [85]. 

In Dimeas et al.’s study [76], their threshold was determined as the maximum of the 

approximation error. This approximation error was the difference between the external 

joint torque obtained by the external force and torque sensor and the estimated torque by 

their developed fuzzy system, in case of a motion without any collision. Morinaga and 

Kosuge [72] defined their collision threshold by depending on the normal distribution 

characteristics. In [80,81], the collision threshold was determined as the maximum of the 

absolute value of the approximation error. This approximation error was the difference 

between the external joint torque obtained from KRC and the estimated external torque 

by the designed NN, in case of a motion without any collision. 

Considering this discussion, the determination of the collision threshold needs more 

investigation and deep study. 
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3.3. Performance Measure and Effectiveness Comparison of the Safety Methods 

In this subsection, the effectiveness and the performance measure of the collision de-

tection methods are discussed and compared. 

The model-based techniques, like the ones presented in [68–73,86], require the ex-

plicit robot dynamic model. This model is not found and available in most of the robots. 

In addition, uncertainties exist in this model. Most of these techniques are developed de-

pending on the signals of the joints’ torque sensors which do not exist in most of the in-

dustrial robotics manipulators. Therefore, these methods are effective exclusively with the 

collaborative robot. The effectiveness and the performance measure (%) of such methods 

are not provided with the researchers. 

Our main concern in this subsection is to compare the effectiveness and the perfor-

mance measure of data-based techniques. In [76], a system for collision detection was pro-

posed using the fuzzy logic and applied with a 2-DOF robotic manipulator. The overall 

efficiency of this fuzzy system in detecting collisions was 72%. The number of the false 

negative collisions using the fuzzy system was 28% and the number of false positive col-

lisions are zero. In [76], a time series-based approach was also proposed for detecting the 

robot’s collisions with the human. The overall efficiency of this approach to detect the 

collisions was 70%. The false negative collisions were 30% and the false positive collisions 

were 11%. 

In [77], the contact classifier based on SVM achieved effectiveness of 92.5% with the 

trained users, whereas this effectiveness was decreased to 84.4% with the novel (un-

trained) users. 

In [82], two NNs structures were designed and trained for the detection of the colli-

sions between human and robot. These architectures were applied for a 2-DOF manipu-

lator. The first architecture (MLFFNN-1) (MLFFNN-1 refers to the multilayer feedforward 

NN architecture that was designed depending on the signals of both the intrinsic joints 

positions and joints torques sensors of the robotic manipulator. MLFFNN-2 refers to the 

multilayer feedforward NN architecture that was designed depending only on the intrin-

sic joints positions sensors of the robotic manipulator.) was developed using the signals 

of both intrinsic joints positions and joints torques sensors. The effectiveness of this archi-

tecture was 82.52%. The number of false negative collisions was 1.136% and the number 

of false positive collisions was 16%. The second architecture (MLFFNN-2) was based on 

only on the intrinsic joints’ position sensors of the robotic manipulator. Thus, this method 

could be applied to any industrial and conventional robot. The effectiveness of this archi-

tecture was 85.73%. The number of false negative collisions was 7.95% and the number of 

false positive collisions was 6.82%. In [83], a multi-layer feedforward NN (MLFFNN-1) 

was implemented and trained for human–robot collision detection. The method was ap-

plied to 3-DOF manipulator, and it was dependent on both the intrinsic joints’ positions 

and joints’ torque sensors of the robotic manipulator. The effectiveness of the trained NN 

was 86.6%. The number of the false negative collisions was 4.7% and the number of the 

false positive collisions was 8.7%. In [84], three types of trained NNs were compared for 

the collisions’ detection between human and robot. These types were as follows: (1) the 

multilayer feedforward (MLFFNN-1 and MLFFNN-2), (2) the cascaded forward (CFNN), 

and (3) the recurrent NNs (RNN). These types of NN were applied to a 1-DOF manipula-

tor. The effectiveness of the MLFFNN-1 was 76%, the number of the resulted false nega-

tive collisions was 16%, and the number of the resulted false positive collisions was 8%. 

The effectiveness of the MLFFNN-2 was 80%, the number of the false negative collisions 

was 16%, and the number of false positive collisions was 4%. The effectiveness of the 

trained CFNN was 84%, the number of the resulted false negative collisions was 16%, and 

the number of the resulting false positive collisions was zero. The effectiveness of the 

trained RNN was 80%, the number of the false negative collisions was 20%, and the num-

ber of false positive collisions are zero. 

In Lu et al.’s approach [74], a NN was also developed so as to detect the performed 

collisions with the human. The main concern about their approach was the necessity to 
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the two external force sensors: one at the base and another at the wrist. Thus, this in-

creased the cost. The generalization of their trained NN and its performance measure (%) 

were missing/not included. 

In [79], a classifier based on NN was proposed so as to differentiate the situations of 

unintended contact from the foreseen ones. With this approach, the candidates had to 

learn to become used to the responsiveness of the classification to obtain better results. 

Therefore, the results (overall success rate) were improved from (70–72)% with candidates 

without prior experience of the classifier to (85–87)% after adaptation to the classifier. 

Based on the above discussion, Figure 10 is presented to compare some of the data-

based methods for the collision detection using the effectiveness, number of false positive 

and false negative collisions as the main criteria. 

 

Figure 10. The comparison between the performance of collision detection methods for HRI in terms 

of the effectiveness, the false negative collisions, and the false positive collisions. 

From the presented comparison in this subsection, we can deduce that data-based 

methods are promising for improving the safety of HRI. Furthermore, the NNs are also 

considered as excellent methods that have the high effectiveness and performance 

measures in the detection of the collisions that happen between the human and the robot 

during collaboration, considering the properties presented in ref. [87]. However, further 

investigations should be considered for these methods using 7-DOF robots. Additionally, 

other types of NNs and deep learning should also be investigated. Classifiers based on 
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SVM or NNs have high effectiveness and performance measure with the trained users and 

this effectiveness is decreased with the untrained/novel users. This point can be consid-

ered also with the future works with classifier. 

4. Perspectives 

This section presents some perspectives, necessity, influences, and expectations for 

the safety and control of HRI for future robotic systems. From the discussion presented in 

the previous two sections, it is clear that the HRI research work is wide and comprehen-

sive. However, some aspects need to be investigated deeply and bridged with the seg-

mented presented research works. 

In the part of HRI control, some issues should be taken into consideration. The first 

issue, as made clear from the results presented in Subsection 2.4, is that developing VA 

controllers for robotic manipulators depending on the soft computing-based techniques 

are promising and needed in improving the HRI’s performance. Further investigation by 

applying different types of neural networks and deep learning-based techniques is rec-

ommended. The second issue is that, as made clear from the literature, only one paper 

dealt with adjusting only the virtual inertia parameter of the admittance control. The re-

sults from this paper proved that adjusting the inertia only improved the stability of the 

system, minimized the oscillations, and generally improved the performance of HRI. 

Therefore, further investigation for adjusting only the virtual inertia is required and 

needed. The third issue is that developing new VA controllers should avoid large num-

bers of computations and complexity. In addition, these systems should avoid expert 

knowledge for intuitive cooperation. The fourth issue is that the introduced criteria in the 

current paper to evaluate the VA controllers should be taken into consideration while de-

veloping new variable controllers. Furthermore, new criterion can be considered that  an-

alyze the oscillations during the robot motion. The last issue is that more realistic tasks 

should be investigated during development and evaluation of the new VA controllers. 

These tasks can include curved and complex motions and tasks in real (industrial, medi-

cal, agriculture, etc.) environments. Furthermore, the number of subjects used in evaluat-

ing the VA controller should be more than 30 subjects for more real and justified statistics. 

In the part of HRI safety, some issues should also be considered and deeply investi-

gated. The first issue is the effectiveness and the performance measure of the current ap-

proaches for the collisions’ detection (the magnitudes, the directions, the positions, etc.) 

with robots. The human can carry out infinitely different and various cases of collisions 

with the robotic manipulator; effective determination for these collisions is a very im-

portant point in HRI and should be thoroughly and deeply investigated. This could help 

in expanding the current research from the applications of the robotic manufacturing/fac-

tory to other robotic sectors, which is a necessity for the community of robotics. This issue 

is related to the generalization ability of the method under different cases and conditions. 

The collided link determination should also be considered. The second issue is determi-

nation of the collision threshold, which needs more investigations and deep study consid-

ering the presented literature in the current paper. The third issue is that most of current 

approaches are designed based on the joints torques signals and less approaches are de-

signed using the other conventional signals such as the joint position or the current sig-

nals. Therefore, there are great HRI systems that are applied only to the collaborative ro-

bots, which are more expensive, and less systems are applied to the conventional and the 

industrial robots. The fourth issue is that one developed system is preferred and recom-

mended to all joints of the robot and not a system for every joint. This can minimize the 

effort, the time, the complexity, and the computations. The fifth issue is that the classifier, 

whether based on SVM or NN, has high effectiveness with the trained users, but with the 

untrained/novel users its effectiveness is decreasing. Therefore, this issue needs further 

investigations and study. The last issue is that, as made clear from the presented results 

in subsection 3.3, using machine learning-based approaches, particularly the NNs, are 

promising in improving the HRI and effective in detecting the collisions. Therefore, 
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further investigations are recommended for these approached considering 7-DOF robots. 

Furthermore, other different types of NNs and deep learning can be investigated. 

In case of methods which combine both features of safety and control, a gap is found 

in which the cutting-edge research can be applied. Advanced HRI systems can be obtained 

when this merging is implemented depending on AI and algorithms of machine-learning. 

For these systems, the effectiveness and the performance measure in extensive and differ-

ent conditions as well as the applications and the uses of these methods for different ro-

bots can be the key factor of the expected research work. 

5. Conclusions 

In the current paper, a review is presented for VA control systems in co-manipulation 

tasks, safety methods, and perspectives for HRI. In the case of VA control, the different 

techniques for its development, the achieved robotic tasks, the performance’s comparison 

are discussed deeply. The results from this review recommend using soft computing tech-

niques, as they are promising methods in improving HRI’s performance. In addition, 

more realistic tasks and increasing the number of subjects used to evaluate the VA con-

trollers should be considered. In the case of HRI safety, the collision detection methods 

(model-based and data-based), the collision threshold determination, and the comparison 

between the effectiveness of each method, are reviewed. From this review, we deduced 

that the effectiveness of the collision detection methods considering different conditions 

should be considered with the new approaches. The collision threshold determination 

needs more investigation. In addition, the new approach should be applied and used with 

any robot considering only the conventional signals such as the joint position or the cur-

rent signals. Finally, some perspectives and expectations of the safety and control of HRI 

are presented and discussed. 
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