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Abstract: Four-axis machine tools with two rotary axes are widely used in the machining of complex
parts. However, due to an irregular kinematic relationship and non-linear kinematic function with
geometric error, it is difficult to analyze the influence the geometry error of each axis has and to
compensate for such a geometry error. In this study, an influence analysis method of geometric
error based on the homogeneous coordinate transformation matrix and a compensation method was
developed, using the Newton iterative method. Geometric errors are characterized by a homogeneous
coordinate transformation matrix in the proposed method, and an error matrix is integrated into the
kinematic model of the four-axis machine tool as a means of studying the influence the geometric
error of each axis has on the tool path. Based on the kinematic model of the four-axis machine tool
considering the geometric error, a comprehensive geometric error compensation calculation model
based on the Newton iteration was then constructed for calculating the tool path as a means of
compensating for the geometric error. Ultimately, the four-axis machine tool with a curve tool path
for an off-axis optical lens was chosen for verification of the proposed method. The results showed
that the proposed method can significantly improve the machining accuracy.

Keywords: geometric error; error compensation; homogeneous coordinate transformation matrix;
Newton iteration; four-axis machining tools

1. Introduction

Multi-axis CNC machine tools have high efficiency and exhibit excellent performance.
They are widely used in manufacturing, particularly for complex surface machining tasks,
and have become a crucial part of modern manufacturing equipment [1,2]. Machining
accuracy is essential for the evaluation of machine tool performance. It is affected by
geometry, heat, motion, stiffness, vibration, and several other factors. Wu et al. [3] proposed
a robust design method for optimizing the static accuracy of a vertical machining center
to make the machining accuracy meet design requirements. Niu et al. [4] provided a
new analysis method for evaluating machining accuracy reliability based on the nonlinear
correlation between errors. Li et al. [5] overviewed the thermal error modeling methods
that had been researched and applied in the past ten years. Geometric error is a factor that
has a significant impact on machining accuracy and accounts for approximately 40% of all
errors. To improve the accuracy of error recognition, Wei et al. [6] provided an overview
of the current research algorithms. Lin et al. [7] provided a geometric error modeling
method for five-axis CNC machine tools based on the differential transformation method.
Geng et al. [8] summarized state-of-the-art research in the calibration of geometric errors of
ultra-precision machine tools (UPMTs). Compared to the mature method for traditional
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precision machine tools, the increasing use of UPMTs has shown different characteristics in
error modeling, measurement, and compensation. In an attempt to improve the machining
accuracy of machine tools, several scholars have conducted extensive in-depth research
and proposed a variety of effective methods. These methods can be divided into two
categories: error prevention methods and error compensation methods. Error prevention
methods involve the improvement of the machining and assembly accuracy of machine
tool parts [9]. They have great limitations and are quite expensive in economic terms. Error
compensation methods offset the original error with an artificially created error as a means
of improving machining accuracy. Error compensation mainly includes error detection,
error source analysis, accurate error model establishment, error compensation, and effect
evaluation. The earliest error compensation technology was used for calculating the relative
offset between the actual detection point and the ideal point on the coordinate measuring
machine by using rigid body kinematics and small angle assumption [10].

Geometric error modeling and the analysis of machine tools have attracted significant
attention and development. Geometric error modeling methods have been developed
from a variety of perspectives and include the triangular geometry method [11], rigid body
kinematics [12], Denavit–Hardenberg (D–H) method [13], error matrix method [14], and
quadratic analysis method [15]. Ding et al. [15] proposed an inverse kinematic method
that could compensate for geometric errors. A cutting experiment on a compensated five-
axis machine tool was conducted to provide validation of the feasibility of the method.
Ding et al. [16] suggested a computational method for geometric error definition and mod-
eling for the reconfigurable machine tool. A coding method for machine components
was also presented for automatic error definition and modeling. Maeng et al. [17] used
an on-machine measurement method for identifying the geometric errors of rotary axis
and tool setting, with previous approaches not having considered errors induced in tool
setting. A simulation was conducted as a means of checking the sensitivity of the method,
and the model was validated in the experiments. Niu et al. [18] designed a novel Global
Sensitivity Analysis (GSA) method and established a spatial error model for analyzing the
local influence geometric error had on machining accuracy. Improvement measures were
ultimately proposed for verifying the correctness of the method, taking a machining center
as an example. Manikandan et al. [19] proposed a mathematical model for the estimation
of geometric errors during the turning of a thin-walled hollow cylinder. They believed the
study would provide precautionary measures for the more effective and reliable control
of dimensional and geometric errors. Fan et al. [20] modeled calculation analysis for a
certain type of CNC internal cylindrical compound grinding machine in order to clarify the
degree of influence each error parameter had on grinding accuracy. Li et al. [21] developed
a precise “ball-column” device for measuring the geometric error of the two rotary axes of
the five-axis machine tool. The results showed that the accuracy of the developed error mea-
surement device reached 91.8%, and the measuring time was 30–40 min. Zhong et al. [22]
developed a volumetric error model that was based on screw theory, and the identification
method for the squareness errors was designed based on the theory considering a three-axis
horizontal machine tool. Song et al. [23] presented a high-efficient calculation method for
sensitive position-dependent geometric error identification for the five-axis machine tool. In
this paper, a series of points in the machining area were selected to compare the machining
errors before and after error compensation, and the results show that this method was
accurate.

Prior to the implementation of error compensation, calculating the error compensation
value is of great importance. Commonly used methods are the iterative method and
differential method. The iterative method has been widely studied due to its high accuracy
and adaptability. Tang et al. [24] compensated the geometric errors for the accurate worm
grinding of spur face gears in order to solve the problem of the cutter rotation angle
error not being compensated for in previous compensation methods. They validated the
proposed method by using theoretical calculation and practical machining. Ding et al. [25]
focused on the identification of the geometric errors for three-axis machine tools, as this is
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beneficial for the efficiency and precision of the remanufacturing process. Liang et al. [26]
provided a novel compensation method that combined both position and posture errors of
the tool center point of an RLLLR five-axis machine tool. As a side note, the RLLLR five-axis
machine tool is constructed by two rotatory axes and three linear axes; the kinematic chain
from workpiece coordinate system to the tool coordinate system is the rotatory axis, the
linear axis, the linear axis, the linear axis, and the rotatory axis successively. Moreover
geometric accuracy improvements were enabled by the proposed method. Zha et al. [27]
provided a geometric error measurement and compensation method by using a laser
tracer for the machining tool, and a complex workpiece was machined that could verify
compensating accuracy. Nagayama et al. [28] proposed a deterministic process flow, and
geometric error was compensated for before machining, using the proposed method. The
results found the form error following compensation to be improved. Lu et al. [29] found
an effective way to identify the dominant errors and perform targeted compensation. The
models were applied in a real-time compensation system, and the results show that the
proposed method could help figure out the most dominant errors and reduce ~90% of the
total error. Zhang et al. [30] designed a multi-sensor system consisting of a touch-trigger
probe and a laser displacement sensor for enhancing measurement accuracy and efficiency.
Fujimori et al. [31] discussed numerical error compensation techniques for geometric error
on high-precision machine tools. The error compensation experiments were performed on
a linear machine tool. Lu et al. [32] suggested a software-based method for compensating
volumetric errors and modifying CNC part programs through the application of previously
obtained volumetric error tables to modify the commands. Experiments were conducted,
and the rate of reduction was found to be 77.99% for a tested circular contour and 87.59%
for a tested spiral contour. Luo et al. [33] provided an intelligent model for a vertical
high-speed CNC machine tool spindle by optimizing the temperature measuring points
and using artificial neural network technology.

The independently developed four-axis machine tool was taken as the research object
for this paper. In the traditional five-axis machine tool compensating process, the position
error of tool tip is compensated by the linear axes of the machine tool, and the orientation
error of the cutting tool is compensated for by the rotating axes of the machine tool.
However, for four-axis machine tools with two rotatory axes, it is difficult to analyze
the influence the geometry error of each axis has and to compensate the geometry error,
considering its irregular kinematic relationship compared with the traditional five-axis
machine tools.

Due to the fact that kinematic model of machine tools with geometric error is a complex
highly nonlinear equation, the Newton iterative method is used for solving nonlinear
equations. As the irregular kinematic relationship, the Jacobian matrix is a non-spare
matrix that increases the difficulty of the iteration process. To solve this issue smoothly, the
pseudo-inverse matrix of the Jacobian matrix is used to find the near solution. At the same
time, the theoretical coordinates of each axis that are obtained from the inverse solution of
the theoretical kinematic model are taken as the initial value, and the Jacobian matrix of
the theoretical kinematic model of the machine tool replaces the Jacobian matrix based on
geometric error, thereby reducing calculation difficulty. The four-axis machining platform
with two linear motors and direct drive turntables is used for verifying the comprehensive
error analysis and compensation method, significantly improving machining accuracy. The
rest of this paper is organized as follows: In Section 2, the theoretical kinematic relationship
for four-axis machine tools is provided. The geometric error is modeled in Section 3.
In Section 4, the actual kinematic relationship is established with the geometric errors.
The geometric error is compensated for based on the Newton iteration in Section 5. The
experiment and simulation of error compensation are presented in Section 6, and finally
the paper is concluded in Section 7.

The flowchart is also provided in Figure 1. From the flowchart, we can see that the laser
interferometer is used firstly for detecting and analyzing the position of geometric errors
of the axes of the four-axis machining platform through many experiments. Secondly, the
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multi-body system theory is used for integrating the error matrix into the kinematic model
of the machine tool as a means of studying the influence the geometric error of each axis has
on the tool path. The nonlinear coupling characteristics of the transformation matrix from
the tool coordinate system to workpiece coordinate system can then be analyzed. Finally,
a comprehensive error kinematic model of the four-axis machining platform considering
geometric error is established.
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2. Theoretical Kinematic Relationship for Four-Axis Machine Tools

The structural model of the four-axis machine tool in this paper can be seen in Figure 2a.
It adopts an RTTR configuration with two translation axes (X-axis and Z-axis) and two
rotation axes (B-axis and C-axis). Without the geometric error being considered, two
coordinate systems are added to each moving axis; that is, a base coordinate system is
fixedly connected with the base of the moving axis, and a moving coordinate system is
fixedly connected with the moving part of the moving axis. The direction of the coordinate
axis is consistent with the moving direction of each machine tool axis; that is, the X axis
of all coordinate systems is consistent with the moving direction of the X linear moving
axis. The tool coordinate system is attached to the tool tip of the cutting tool, and the
workpiece coordinate system is made to coincide with the moving parts of the C-axis
coordinate system.

The theoretical kinematic coordinate system model of the four-axis machine tool
structure can be seen in Figure 2b. The sequence of the kinematic chain is from the tool
coordinate system, Tt, to ideal moving coordinate system, Tbi, of the B-axis, and then to
the basic coordinate system, Tbo, of the B-axis, and so on, until we reach the workpiece
coordinate, Tw. The complete kinematic chain without the consideration of geometric error
is as follows:

Tt ⇒ Tbi ⇒ Tbo ⇒ Tzi ⇒ Tzo ⇒ Txo ⇒ Txi ⇒ Tco ⇒ Tci ⇒ Tw (1)

where Tw is the workpiece coordinate system; Tt is the tool coordinate system; Tbo, Tzo, Txo,
and Tco form the basic coordinate system of the B, Z, X, and C axes; and Tbi, Tzi, Txi, and
Tci are the moving coordinate system of the B, Z, X, and C axes.

According to the kinematic structure in Figure 2b and actual measurements taken
in the laboratory, the distance from the tool-tip point to the origin of Tbi along the Y-axis
is d1 = 100 mm; the distance from the tool-tip point to the origin of Tbi along the Z-axis
is L1 = 250 mm; the distance from the origin of Tbo to the origin of Tzi along the Y-axis
is d2 = 100 mm; the distance from the origin of Tzo to the origin of Txo along the Z-axis
is L2 = 360 mm; the distance from the origin of Tzo to the origin of Txo along the Z-axis
is d3 = 50 mm; the distance from the origin of Txi to the origin of Tco along the Y-axis is
d4 = 150 mm; and the distance from the origin of Txi to the origin of Tco along the Z-axis is
L3 = 150 mm.
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Based on the constructed coordinate systems of each axis and the constants between
coordinate systems and motion variables [X, Z, B, C] of each axis, the homogeneous coordi-
nate transformation matrix, wT t, between the tool coordinate system, Tt, and workpiece
coordinate system, Tw, without a geometric error is obtained as follows:

wT t(X, Z, B, C) = wT ci
ciT co(C)coTxi

xiTxo(X)xoTzo
zoTzi(Z)ziTbo

boTbi(B)biT t (2)

where we have the following:

wT ci =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ciT co(C) =


cos(C) sin(C) 0 0
− sin(C) cos(C) 0 0

0 0 1 0
0 0 0 1



coTxi =


1 0 0 0
0 1 0 −d4
0 0 1 −L3
0 0 0 1



xiTxo(X) =


1 0 0 −X
0 1 0 0
0 0 1 0
0 0 0 1



xoTzo =


1 0 0 0
0 1 0 −d3
0 0 1 L2
0 0 0 1


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zoTzi(Z) =


1 0 0 0
0 1 0 0
0 0 1 Z
0 0 0 1



ziTbo =


1 0 0 0
0 1 0 d2
0 0 1 0
0 0 0 1



boTbi(B) =


cos(B) 0 sin(B) 0

0 1 0 0
− sin(B) 0 cos(B) 0

0 0 0 1



biT t =


1 0 0 0
0 1 0 d1
0 0 1 −L1
0 0 0 1


In the tool coordinate system, Tt, the coordinate position vector of the tool-tip point,

Pt, and the tool axis direction, Ot, are constants, and they are generally expressed in the
following way in homogeneous coordinates:

Pt = [0, 0, 0, 1]T, Ot = [0, 0, −1, 0]T (3)

According to the machining process and the surface that is to be machined, the tool
pose vector {Pw, Ow} in the workpiece coordinate system Tw is as follows:

Pw = [x, y, z, 1]T, Ow = [i, j, k, 0]T (4)

Therefore, the axis variables [X, Z, B, C] of the four-axis machine tool should be driven
to ensure that the tool position and vector satisfy designed tool pose vector {Pw, Ow} in Tw:{

Pw = wT t(X, Z, B, C)·Pt

Ow = wT t(X, Z, B, C)·Ot
(5)

Equation (5) is the theoretical kinematic equation for the four-axis machine tools
without consideration of the geometric error. If axis position (X, Z, B, C) is given, the
corresponding tool pose vector {Pw, Ow} in Tw can be calculated. According to the kinematic
relation, the equation has four axis variables, and the three dimensions of tool-path-position-
following requirements should be satisfied. Therefore, the tool axis vector only has one
degree of freedom, and the tool axis should be limited on a determined cone. Equation (5)
is then full rank and has a finite number of solutions.

3. Modeling the Geometric Error

Theoretically, each kinematic pair of machining axis only has one degree of freedom
in the given direction of motion. However, motion is different in the actual state, and
there are motion geometric errors of six degrees of freedom. The error of any kinematic
pair is assumed to not affect other pairs. There are six elements to the motion error of any
motion pair and the movement and rotation relative to the X, Y, and Z axes, which are
the geometric errors of machine tools, mainly include positioning error, straightness error,
rolling angle error, and yaw angle error.

Figure 3 shows the geometric error element in relation to the position. When the
moving part moves along the X-axis direction, there are three translational motion error
components: linear displacement error, δx(x); straightness error in Y direction, δy(x); and
straightness error in Z direction, δz(x). There are also three angular motion error compo-
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nents: rolling angle error, εx(x); pitch angle error, εy(x); and yaw angle error, εz(x), where x,
y, and z represent error motion direction. These errors are only related to the position of the
motion axis and do not relate to the position of other axes. Figure 3b demonstrates that the
rotating pair rotates θ degree around the Z-axis of the rotation axis in coordinate system
O-XYZ. There are six error motion components: radial error along the X-axis, δx(θ); radial
error along the Y-axis, δy(θ); axial error along the Z-axis, δz(θ); the errors of two inclination
angles, εx(θ) and εy(θ); and positioning error, εz(θ).
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Figure 3. Geometric error element in relation to the position. (a) Geometric error element of movement
pair. (b) Geometric error element of rotation pair.

The geometric error of the machine tool is the difference between the actual position
and theoretical position of the moving parts of each moving axis. With the Renishaw
laser interferometer measurement method [34], one lens group is installed on the mobile
platform, and the other is installed on the basic bed. The machine tool controller sends the
position command to the moving axis and the actual position of the moving part of the
axis is measured by the mirror group that is installed on the moving part of the axis. The
geometric error of the moving axis of the machine tool is the difference between actual
position and commanded position.

For analyzing and compensating for the geometric error, combining the measured
geometric error value with the kinematic equation of the four-axis machine tool is necessary.
As the geometric error is the difference between the actual position of moving parts on
the machine tool and the command position (theoretical position), the geometric error can
be characterized by using the homogeneous coordinate transformation matrix. As can
be seen in Figure 4, taking the X-axis as an example, a command coordinate system, Txr,
representing the actual position of the moving parts of each axis is added to each moving
axis, with the exception of the base coordinate system, Txo, and moving coordinate system,
Txi, which represent the theoretical position. The static mirror group of the Renishaw laser
interferometer is generally installed on the reference plane of the moving axis, whereas the
moving mirror group of the Renishaw laser interferometer is installed on the moving part
of the moving axis. Data obtained through the geometric error measurement by Renishaw
laser interferometer is then the relative position relationship between theoretical position,
Txi, of the motion axis and actual position coordinate system, Txr, of the motion axis.

Therefore, the transformation matrix, xrTxi, between the theoretical position, Txi, of
the motion axis and actual position coordinate system, Txr, of the motion axis can be
obtained by the measured geometric error, Ex =

[
δxx, δyx, δzx, εxx, εyx, εzx

]
. Firstly, as the

geometric error is small, and ignoring the high-order parts, the transformation matrix, xrTxi,
is constructed as follows:

Ex =
[
δxx, δyx, δzx, εxx, εyx, εzx

]
⇒ xrTxi(X) =


1 −εzx εyx δxx

εzx 1 −εxx δyx
−εyx εxx 1 δzx

0 0 0 1

 (6)
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4. Actual Kinematic Relationship with Geometric Error

Due to the existence of geometric error, the motion of each axis that is solved by using
the theoretical kinematic model causes the machine tool to deviate from the designed tool
position and posture. Therefore, calculating the influence of geometric error on motion
trajectory is necessary. The actual kinematic model of the machine tool that considers
geometric error should be constructed. Firstly, the actual complete kinematic chain that
considers the geometric error is as follows:

Tt ⇒ Tbr ⇒ Tbi ⇒ Tbo ⇒ Tzr ⇒ Tzi ⇒ Tzo ⇒ Txo ⇒ Txi ⇒ Txr ⇒ Tco
⇒ Tci ⇒ Tcr ⇒ Tw.

(7)

Based on the constructed coordinate systems of each axis, constants between coordi-
nate systems and motion variables [X, Z, B, C] of each axis, the homogeneous coordinate
transformation matrix wT t(X, Z, B, C)e between the tool coordinate system, Tt, and work-
piece coordinate system, Tw, without geometric error is obtained as follows:

wT t(X, Z, B, C)e =
wT cr

crT ci(C)ciT co(C)coTxr
xrTxi(X)xiTxo(X)xoTzo

zoTzi(Z)ziTzr(Z)zrTbo
boTbi(B)biTbr(B)brT t (8)

where

wT cr =


1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1



crT ci(C) =


1 −εzc

εzc 1
εyc δxc
−εxc δyc

−εyc εxc
0 0

1 δzc
0 1



ciT co(C) =


cos(C) sin(C)
− sin(C) cos(C)

0 0
0 0

0 0
0 0

1 0
0 1



coTxr =


1 0
0 1

0 0
0 −d4

0 0
0 0

1 −L3
0 1


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xrTxi(X) =


1 −εzx

εzx 1
εyx δxx
−εxx δyx

−εyx εxx
0 0

1 δzx
0 1



xiTxo(X) =


1 0
0 1

0 −X
0 0

0 0
0 0

1 0
0 1



xoTzo =


1 0
0 1

0 0
0 −d3

0 0
0 0

1 L2
0 1



zoTzi(Z) =


1 0
0 1

0 0
0 0

0 0
0 0

1 Z
0 1



ziTzr(Z) =


1 −εzz

εzz 1
εyz δxz
−εxz δyz

−εyz εxz
0 0

1 δzz
0 1



zrTbo =


1 0
0 1

0 0
0 d2

0 0
0 0

1 0
0 1



boTbi(B) =


cos(B) 0

0 1
sin(B) 0

0 0
− sin(B) 0

0 0
cos(B) 0

0 1



biTbr(B) =


1 −εzb

εzb 1
εyb δxb
−εxb δyb

−εyb εxb
0 0

1 δzb
0 1



brT t =


1 0
0 1

0 0
0 d1

0 0
0 0

1 −L1
0 1


The axis variables [X, Z, B, C] of the four-axis machine tool are calculated as follows

when the geometric error is considered:{
Pw = wT t(X, Z, B, C)e·Pt

Ow = wT t(X, Z, B, C)e·Ot
(9)

The influence of the geometric error can then be analyzed by using Equation (9);
as axis position (X, Z, B, C) is given, the corresponding tool-pose vector {Pw, Ow} in Tw
can also be calculated when the geometric error is considered. At the same time, if the
geometric error is obtained and the {Pw, Ow} in the workpiece space are given, the actual
position [X, Z, B, C] of the machine tool can be calculated, and the geometric errors can
be compensated.
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5. Compensate Geometric Error Based on the Newton Iteration

As the geometric error is position-dependent, the actual position [X, Z, B, C] that is
calculated from the kinematic relation when geometric errors are considered is difficult
to obtain. A numerical calculation method based on the Newton iteration method was
designed in this study to obtain the accurate position [X, Z, B, C] from the kinematic relation
with the geometric errors.

5.1. Newton Iteration Method for Solving Nonlinear Equations

Newton iteration is a method that can be used for solving nonlinear equations by
linearizing the function f (x) locally with the derivative value as the slope. The slope value
is continuously modified through continuous iteration until the solution of f (x) = 0 is found.
For nonlinear equation f (x) = 0, the solution formula [35] is as follows:

xk+1 = xk −
f (xk)

f ′(xk)
, k = 0, 1 . . . (10)

For a group of nonlinear equations, it is as follows:

f1(x1, x2, · · · xn) = 0

f2(x1, x2, · · · xn) = 0
...

fn(x1, x2, · · · xn) = 0

(11)

where f1 f2 · · · fn is the multivariate function of x1, x2, · · · xn. In matrix form, Equation (11)
is represented as F(x) = 0, where x = [x1, x2, · · · xn], x ∈ Rn, and F = [ f1 f2 · · · fn].

The Newton iterative method for solving nonlinear equation groups is extended
as follows:

x(k+1) = x(k) − F′
(

x(k)
)−1

F
(

x(k)
)

, k = 0, 1 . . . (12)

where F′(x) is the Jacobian matrix for F(x):

F′(x) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn

 (13)

When number m of equations f is greater than number n of unknowns xn, i.e., m > n,
Equation (13) of nonlinear equations has no solution, but the generalized inverse matrix
for F′(x) is constructed for finding the solution in the sense of least squares. (To be noted
that, the solution found by this method is the near solution, as the F(x)m×n has no solution
when m > n). The generalized inverse matrix F′(x)+ is as follows:

F′(x)+ =
(

F′(x)TF′(x)
)−1

F′(x)T (14)

5.2. Error Compensation Method Based on the Newton Iteration

Considering the nonlinearity and complexity of the kinematic relation with the geo-
metric error, as shown in Equation (9), the kinematic equation can be solved by a numerical
calculation method that is based on the Newton iteration. Equation (9) is then changed to
the following:

Fe(x) =

{
Pw − wT t(X, Z, B, C)e·Pt = 0

Ow − wT t(X, Z, B, C)e·Ot = 0
(15)
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According to the Newton iterative method for solving a group of nonlinear equations,
the iterative formula is as follows:

x(k+1) = x(k) − Fe
′
(

x(k)
)−1

F
(

x(k)
)

, k = 0, 1 (16)

where Fe
′(x) is the Jacobian matrix for Fe(x). Although the tool axis vector is designed to

ensure that Equation (16) has a finite solution, Equation (16) is non-rank. Jacobian matrix
Fe
′(x) can then be replaced by Fe

′(x)+ according to Equation (14). Jacobian matrix Fe
′(x) is

the 6 × 4 order matrix, as the Pw and Ow are all three-dimensional vectors.
As the position-dependent geometric error is considered in the kinematic equation

as shown in Equation (15), calculating Fe
′(x)+ is difficult because the geometric error has

a non-analytical expression relationship. However, the geometric error is small and can
be ignored compared to the machine tool motion in local differentiation. Therefore, in
Equation (16), Fe

′(x)+ is replaced by the theoretical kinematic relationship F′(x)+ without
consideration of geometric error:

Fe(x) =

{
Pw − wT t(X, Z, B, C)e·Pt = 0

Ow − wT t(X, Z, B, C)e·Ot = 0
(17)

F′(x) = −
{

∂wT t(X,Z,B,C)·Pt
∂X

∂wT t(X,Z,B,C)·Ot
∂X

F′(x)+ =
(

F′(x)TF′(x)
)−1

F′(x)T

At the same time, although the geometric error is considered in Equation (17), the
solution of Equation (17) is close to the solution of Equation (5). Equation (5) has the
analytical-form solution, and this solution can be set as the initial value for the iterative
process of Equation (17) for accelerating the solving process.

6. Experiment and Simulation of Error Compensation

The four-axis machine tool that is shown in Figure 5 is used for studying the influence
of geometric error and the compensation method based on the Newton iteration calculation
method. The machine tool combines with two linear axes and two rotatory axes. The two
linear axes are ABL8000 Series linear motor stage with air bearing developed by Aerotech.
The B-axis is ABRS Series air-bearing rotary stage also developed by Aerotech company.
The C-axis is ultraprecision work-holding spindles (SP150 High performance) developed by
Precitech company. Figure 5a shows the machine tool, while Figure 5b shows the machined
surface workpiece.
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According to the tool path of the machining process and the designed workpiece,
one of the tool paths shown in Figure 6 is selected as the tool path curve of experimental
verification algorithm theory for verifying the influence geometric error has on tool path.
In the figure, the tool-tip point trajectory is represented by the red point, the tool axis vector
is represented by the blue line, and there are 241 tool path points.

Machines 2022, 10, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 6. Tool−tip point trajectory and axis vector. 

According to the theoretical kinematic relationship without the consideration of ge-
ometric error, the theoretical axis position can be calculated based on Equation (5). The 
figures of the axis position series [X, Z, B, C] are then presented as in Figure 7: 

  
(a) (b) 

  
(c) (d) 

Figure 7. Axis position obtained from theoretical kinematic structure: (a) X−axis position, (b) Z−axis 
position, (c) B−axis position, and (d) C−axis position. 

Due to the existence of geometric error, the position of each axis of the four−axis ma-
chine tool obtained by using the theoretical motion model will cause the tool axis vector 
to deviate from the designed tool path. 

6.1. Geometric Error Measurements and Influence of the Position of Geometric Error 

Figure 6. Tool-tip point trajectory and axis vector.

According to the theoretical kinematic relationship without the consideration of ge-
ometric error, the theoretical axis position can be calculated based on Equation (5). The
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position, (c) B-axis position, and (d) C-axis position.

Due to the existence of geometric error, the position of each axis of the four-axis
machine tool obtained by using the theoretical motion model will cause the tool axis vector
to deviate from the designed tool path.
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6.1. Geometric Error Measurements and Influence of the Position of Geometric Error

As Figure 8 shows, the laser interferometer (an XL-80 laser interferometer system of
the Renishaw company which has a lens group for measuring linear displacement, speed,
angle (pitch and torsion), straightness, flatness, perpendicularity, and parallelism [34]) is
used for repeatedly measuring positioning error, straightness error, yaw error, and pitch
error for the X-axis, Z-axis, and B-axis based on Standard ISO 230. Due to laboratory
conditions, the geometric errors of the C-axis are not measured. However, the geometric
errors from other axes are compensated by C-axis. However, the three motion axes are able
to verify the theory that is proposed in this paper.
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To filter out the random errors, the third-order B-spline is used to fit the geometric
error based on the least square. The measured geometric errors and fitted results for the
X-axis can be seen in Figure 9.

The measured geometric errors and fitted results for the Z-axis can be seen in Figure 10.
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Figure 9. Geometric errors for the X-axis. (a) Linear displacement error δxx(x) for the X-axis.
(b) Straightness error in the Y direction δyx(x) for the X-axis. (c) Straightness error in the Z di-
rection δzx(x) for the X-axis. (d) Yaw angle error εz(x) for the X-axis. (e) Pitch angle error εy(x) for the
X-axis.
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δxz(z) for the Z-axis. (d) Yaw angle error εxz(z) for the Z-axis. (e) Pitch angle error εyz(Z) for the
Z-axis.
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The rotation displacement error and fitted results for the B-axis can be seen in Figure 11.
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The fitted geometric error can be used in actual kinematic relation in Equation (15).
To reflect the influence of the geometric error, the axis position P_th = [X, Z, B, C] that is
calculated from the theoretical kinematic relation for the tool path in Figure 7 is used in the
actual kinematic equation with measured geometric error. When the geometric error of the
kinematic relation for the four-axis machine tool is considered, the tool-tip position and
orientation deviate from the designed tool position and orientation if P_th = [X, Z, B, C] is
used for controlling the machine tool.

To quantitatively analyze the influence geometric error has on tool position and
orientation trajectory, the relative position error, E, for tool-tip position and relative angle
error, ε, of tool orientation are constructed.

E = ‖Pe − Pi‖ (18)

ε = arccos(Oe −Oi)

where Pi and Oi are the design tool tip and tool orientation for the tool path, as shown in
Figure 6; Pe and Oe are the tool tip and tool orientation calculated from the theory axis
position; and P_th = [X, Z, B, C] in the actual kinematic relation. The calculated position
error, E, and relative angle error, ε, for the tool path are shown in Figure 12. From the figures,
it can be seen that the tool-tip error is approximately 4 × 10−3 mm, and the deviation in
tool orientation angle compared to the designed one is approximately 3.5 × 10−4 arc sec
with the influence of the geometric error. Although these deviations are relatively small
for ordinary machine tools, there are large deviations caused by geometric errors for the
ultra-precision machine tools that are used in this paper.
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6.2. Calculating the Actual Position Considering Geometric Error

Due to geometric error, the movement of each axis that is obtained from the theoret-
ical kinematic model will cause the tool-tip position and orientation to deviate from the
designed tool axis vector. Therefore, solving the position of each moving axis according
to the actual kinematic model, as shown in Equation (15), of the four-axis machine tool
considering geometric error is necessary.

For the kinematic model without geometric error being considered, an analytical
solution exists for the inverse kinematic problem. However, the kinematic model that
considers the geometric error is a set of nonlinear equations and no accurate analytical
solution exists. Therefore, to obtain the machining path considering geometric error
compensation, the Newton iteration is used for solving the actual kinematic equation
considering geometric error.

As shown in Equation (15), the actual kinematical equations group

Fe(x) =

{
Pw − wT t(X, Z, B, C)e·Pt = 0

Ow − wT t(X, Z, B, C)e·Ot = 0
has six equations and four unknown variables.

Therefore, the solution regarding least squares can be obtained, but it is not possible to
obtain the exact solution. According to the Newton iterative solution method, the Jacobian
matrix of F (x) must be provided. From the above analysis, it can be seen that the Jacobian
matrix of F (x) must be replaced by the theoretical kinematic transfer matrix. The Jacobian

matrix F′(x) = −
{

∂wT t(X,Z,B,C)·Pt
∂X

∂wT t(X,Z,B,C)·Ot
∂X

of F (x) is a 6 × 4 matrix, and this can be calculated by

using the symbolic function of MATLAB diff (F,’t’). The pseudo-inverse matrix is then

constructed as F′(x)+ =
(

F′(x)TF′(x)
)−1

F′(x)T , and F′(x)+ is a 4 × 6 matrix. The general-
ized inverse Newton iterative solution formula of nonlinear equations is then F(x) = 0 is

x(k+1) = x(k) − F′
(

x(k)
)+

F
(

x(k)
)

, k = 0, 1 . . .
According to the method, the initial value of the iterative process chooses the

P_th = [X, Z, B, C]0 that is calculated from the theoretical kinematic relation, and the it-
eration termination condition is ‖x(k+1)− x(k)‖ ≤ 0. The actual positions that are calculated
by using the kinematic equation that considers the geometric error are then the com-
pensated axis position of the four-axis machine tools for the tool path in the workpiece
space, as can be seen in Figure 6. The compensated axis position profiles are displayed in
Figure 13, and the trajectory of each axis that is calculated by using the theoretical equation
is also provided.

There is a difference between the motion of each axis that is obtained from the kine-
matic equation considering the geometric error and the motion that is obtained from the
theoretical kinematic structure. The difference is the compensation value of each motion
axis considering the geometric error, which can be seen in Figure 14. The range of the
X-axis error compensation values is 3.7 × 10−4~5.52 × 10−4 mm; the range of the Z-axis
error compensation values is 2.29 × 10−3~2.361 × 10−3 mm; the range of the B-axis error
compensation values is −4.79 × 10−6~−3.98 × 10−6 arc sec; and the range of the C-axis
error compensation values is −4.58 × 10−5~−3.47 × 10−5 arc sec.

To verify that the axis position that is obtained by the calculation method based on
the Newton iteration can reduce the influence of geometric error, tool-tip point and tool
orientation were calculated from the actual kinematic model. Deviations from designed
tool-tip position and tool orientation were also obtained. The tool-path deviation for each
sampling point can be seen in Figure 15. Compared to Figure 12, the compensated tool path
that is calculated by the simulation experiment causes the position deviation of tool tip E to
reduce from 4 × 10−3 mm to 8 × 10−6 mm and tool axis vector orientation ε deviation to
reduce from 3.5 × 10−4 arc sec to 2.2 × 10−4 arc sec. The compensated results demonstrate
the effectiveness of the proposed method.
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geometric error. (d) C-axis position considering geometric error.
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7. Conclusions

In this paper, the measured 6-Dof geometric errors that relate to the position of the
machine tool were transformed into a homogeneous coordinate matrix. The geometric
model was integrated into the kinematic equation of the machine tool as a means of
studying the influence on the tool tip and tool-orientation trajectory. As solving the
kinematic model of machine tool based on geometric error is quite difficult, the Newton
iterative method was used. To solve it smoothly, the theoretical coordinates of each axis
that were obtained from the inverse solution of the theoretical kinematic model were used
as the initial value. In addition, the Jacobian matrix of the theoretical kinematic model of
the machine tool replaced the Jacobian matrix that is based on the geometric error, thereby
reducing calculation difficulty. Finally, using the four-axis machine tools developed in the
laboratory and the processed three mirror lens, the influence that the geometric error has
on the target trajectory and the error compensation calculation method based on Newton
iteration were studied. The compensated tool path that was calculated from the simulation
experiment caused the tool-tip position to deviate from 4 × 10−3 mm to 8 × 10−6 mm
and the tool axis vector to deviate from 3.5 × 10−4 arc sec to 2.2 × 10−4 arc sec. The
compensated tool path significantly reduced the relative position error.
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