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Abstract: The exoskeleton is often regarded as a tool for rehabilitation and assistance of human
movement. The control schemes were conventionally implemented by developing accurate physical
and kinematic models, which often lack robustness to external variational disturbing forces. This
paper presents a virtual neuromuscular control for robotic ankle exoskeleton standing balance. The
robustness of the proposed method was improved by applying a specific virtual neuromuscular model
to estimate the desired ankle torques for ankle exoskeleton standing balance control. In specialty,
the proposed control method has two key components, including musculoskeletal mechanics and
neural control. A simple version of the ankle exoskeleton was designed, and three sets of comparative
experiments were carried out. The experimentation results demonstrated that the proposed virtual
neuromuscular control could effectively reduce the wearer’s lower limb muscle activation, and
improve the robustness of the different external disturbances.

Keywords: ankle exoskeleton; virtual neuromuscular model; muscle activation; standing balance

1. Introduction

As a kind of equipment worn on the outside of human limbs, a powered exoskeleton
can realize human–computer cooperation, and is often considered as a tool in rehabilita-
tion [1] and assistance of human movement [2]. Most powered exoskeletons are designed to
assist the wearer in performing their daily living activities and enhance their mobility [3,4],
whilst only a small number of studies focus on rehabilitation. The rehabilitation devices
are used for rehabilitation training, in an effect to enhance patients’ capabilities affected by
neuromuscular injury [5].

Standing balance training is one of the effective means to help patients restore muscular
movement function, which is the indispensable process towards the walking ability training
stage [6]. The ankle plays an important role in human standing balance control. The ankle
exoskeleton can support people who suffer from ankle injuries to keep standing balance,
and to train them to restore the ankle function [7]. While the ankle exoskeleton works, it
often suffers various external disturbances from the unstructured working environments.
One of the main issues of the current ankle exoskeleton to achieve standing balance control
is the insufficiency of human–robot interaction [8]. Ankle exoskeleton balance controllers
should be used to support restoring balance only when necessary.

The control method of ankle exoskeletons standing balance is normally hierarchical,
with a high-level controller estimating the behavior-related desired joint torques and the
lower-level controller performing the torque control [9]. The high-level controller plays the
most important role in the ankle exoskeleton’s work, and the majority of the research on the
control of exoskeletons is usually based on time [10,11], joint angle [12], and electromyo-
graphic measurements [13,14]. That is, the high-level controller calculates desired torque
as a function of time, joint angle, and electromyographic measurements. These approaches
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both require a predefined ankle exoskeleton dynamic model. Due to the complex dynamics
and nonlinearities of the environment–robots interaction, accurately predefined dynamics
models are required to become a challenge [15]. Through a long period of evolution, human
beings have rapid response-ability and a strong adaptive ability to flexible movement in
unstructured working environments. Although the human nervous system is not fully
understood, various neuromuscular models have been proposed to explain the human
locomotion control mechanisms [16]. For instance, it has been demonstrated that the nat-
ural central nervous system of humans includes two prime structures: the spinal cord
and the brain. The muscle stretch reflex as a fast muscle contraction mechanism involves
an afferent signal into the spinal cord [17,18], and a feedback law based on the center of
mass can be used to simulate brain control. The corresponding biomimetic controller has
been developed for leg prostheses [16]. They demonstrate the stability and adaptability for
moderate disturbances. However, the existing biomimetic controllers have not shown the
robustness for ankle exoskeleton upright balance control.

This paper proposes virtual neuromuscular control for robotic ankle exoskeleton
standing balance control to address the aforementioned challenges. In the proposed
standing balance control strategy, a virtual neuromuscular model plays a key role, which
was used to estimate the desired ankle torque for the ankle exoskeleton standing balance
control. In particular, the virtual neuromuscular system was constituted by a virtual muscle
activation model and a virtual muscle mechanical model. Then, the proposed upright
balance control strategy was applied to a simple version of a robotic ankle exoskeleton
standing on a moving vehicle for system verification. The experimental results show the
power of the proposed control system for ankle exoskeleton upright standing balance in
improving the robustness. The main contributions of this work are threefold: (1) developing
a virtual neuromuscular model, (2) proposing a virtual neuromuscular control for robotic
ankle exoskeleton standing balance, and (3) applying the proposed control method to a
simple version of the robotic ankle exoskeleton for method verification.

The rest of the paper is organized as follows. Section 2 details the proposed upright
balance control method for the robotic ankle exoskeleton. Section 3 reports the experimental
condition and results with discussion. The paper is concluded in Section 4, and the possible
further work is pointed out.

2. Proposed Virtual Neuromuscular Control

After a long period of evolution, human beings not only have the ability to respond
quickly, but also have a strong ability to adapt to the complex environment, which benefits
from the perfect human neuromechanical control system. After a long period of evolution,
human beings not only have the ability to respond quickly, but also have a strong ability to
adapt to the complex environment, which benefits from the perfect human neuromechanical
control system. Human neuromuscular control provides the best reference for the study
of ankle exoskeleton upright balance control. The virtual neuromuscular control model is
proposed in this paper, which was used to emulate the human neuromuscular model and
to estimate the desired assistance torque for the ankle exoskeleton. Following an overall
overview of the control systems, the two key components of the control systems, including
the musculoskeletal mechanics and neural control to simulate the human natural central
nervous system, are detailed in this section.

2.1. System Overview

The overall architecture of the proposed virtual neuromuscular control strategy is
illustrated in Figure 1. In particular, the ankle exoskeleton is driven by two virtual muscles
that simulate the effects of the two groups of muscles in the humanoid ankle [19], including
the virtual plantar flexor muscle (PFM) and the virtual dorsiflexor muscle group (DFM).

The data flow in the interconnected closed control loops guarantees the strong robust-
ness of the proposed control approach. The musculoskeletal mechanics include two key
components, including virtual muscle mechanical model and geometry implementation.
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The inputs of the geometry implementation are the ankle angles (θ f oot), which are measured
from the hardware and mapped to virtual measurements required, including the virtual
muscle spindle length (lm), virtual muscle spindle contraction velocity (vm) and virtual
muscle attachment radius (r). The virtual muscle mechanical model is simplified as a
muscle–tendon complex (MTC), and used to generate the corresponding virtual muscle
force (Fm) based on the virtual muscle activation (a) calculated from the neural controller.
The virtual muscle force is passed to the geometry implementation to estimate the desired
assistance torque (τq), which is then passed to the SEA controller to drive the exoskeleton
to perform the desired action.

Moving vehicle

Robotic ankle

Torque actuator Ankle drive model

The hardware
The ankle virtual 

neuromuscular control

Virtual muscle 

activation model

Virtual muscle 

mechanical model

PFM and DFM PFM and DFM
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Figure 1. The overall architecture of the proposed bipedal robots upright balance control strategy.

2.2. Musculoskeletal Mechanics

In this work, the ankle exoskeleton is actuated by two groups of virtual muscles. Both
groups of virtual muscles can be simplified as a muscle–tendon complex (MTC) model,
named virtual muscle mechanical model in this paper. Under the dominance of the neural
controller and virtual muscle state, the virtual muscle mechanical model realizes voluntary
contraction and then generates the virtual muscle force.

2.2.1. Virtual Muscle Mechanical Model

The virtual muscle mechanical model is combined by a contractile element (CE) and
a series elastic element (SEE), as shown in Figure 2, which represents a combination of
humanoid ankle plantar flexor muscle and dorsiflexor muscle. The CE consists of three
components, including a muscle fiber (MF), a high-limit parallel elastic component (HPE),
and a low-limit parallel elastic component (LPE). Whilst the SEE is represented as a non-
linear, unidirectional spring.

The Hill-type MTC

MF

HPE

LPE

CE SEE

Figure 2. The virtual muscle mechanical model.

The active component of the CE is the MF, which generates a unidirectional muscle
force. The force of MF (FMF) is determined by the virtual muscle fiber length (lm), the
virtual muscle spindle contraction velocity (vm), the virtual muscle activation (a), and the
maximum muscle fibers force (Fmax), which can be expressed as:

FMF(lm, vm, a) = aFmax fl(lm) fv(vm) (1)
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where fl(lm) represents the force–length relationship function, and fv(vm) stands for the
force–velocity relationship function.

The force–length relationship function is a bell-shaped curve and shown in Figure 3a,
which can be defined as [20]:

fl(lm) = exp

[
c
∣∣∣∣ lm − lo

loω

∣∣∣∣3
]

(2)

where lo is the optimum length of the virtual muscle fibers as the virtual muscle provides
the maximum fiber force, ω represents the width of the bell-shaped curve, c denotes the
curve’s magnitude, which is defined as ln(0.05) in this work.

The force–velocity relationship function is the Hill equation and can be represented as
an “S” shaped curve as illustrated in Figure 3b, which is defined by [21]:

fv(vm) =

{
(vmax − vm)/(vmax + Kvm), vm < 0
N + (N − 1) vmax+vm

7.56Kvm−vmax
, vm ≥ 0 (3)

where vmax describes the maximum contractile velocity of the virtual muscle fibers, K
denotes the curvature constant, and N is the dimensionless muscle force that is normalized
by Fmax.

The force of HPE (FH) is not dominated by CNS, only affected by the stretching of the
virtual muscle fibers. The force–length relationship function for HPE is illustrated in the
right side of Figure 3c, and can be expressed as:

FH(lm) =
{

Fmax[lm − lo]/(loω)2, lm > lo
0, otherwise

(4)

Likewise, the force–length relationship function for LPE is also only affected by the
contraction of the virtual muscle fibers. The force–length relationship function for LPE is
illustrated in the left side of Figure 3c, and then can be given by:

FL(lm) =

{
Fmax

[(lm−lo(1−ω))/lo ]
2

(ω/2) , lMF ≤ lo(1 − ω)

0, otherwise
(5)

The force of CE (FCE) can be expressed by:

FCE = FMF(lm · vm, a) + FH(lm)− FL(lm) (6)

0
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1
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0
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 (a)  (b) (c)

Figure 3. Contractiondynamics of the CE. (a) Force–length relationship (Equation (2)). (b) Force–
velocity relationship (Equation (3)). (c) Parallel elastic component force (Equations (4) and (5)).
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Since the CE and SE are series connection, and then the following equation holds:

FCE = FSE = Fm (7)

where the FSE represents the force of the SEE and Fm denotes the force of the groups of
virtual muscles.

2.2.2. Geometry Implementation

The ankle exoskeleton angle is defined as the angle between the foot and the shank
segment as shown in Figure 4. According to this angle, the length of the virtual muscle
fiber can be calculated by:

lm = rρ
(

sin θ f oot − θmax

)
− sin

(
θopt − θmax

)
+ lopt (8)

where r stands for the attachment radius of the virtual muscle, and ρ describes the scaling
factor. lopt is an optimal virtual muscle spindle length, at which it can provide the maximum
muscle force. At the moment, the ankle angle is described by θopt, and θmax is a constant
ankle angle as the maximum virtual muscle moment arm.

For the task of a standing balance control, the variation range of ankle angle is usually
small, subject to sin(θopt − θmax) ≈ θopt − θmax, so the virtual muscle spindle length can be
simply expressed as:

lm = K
(

θ f oot − θmax

)
+ C (9)

where K = rρ is a constant gain, and C = −Ksin(θopt − θmax) + lopt is another constant gain.
The virtual muscle spindle contraction velocity (vm) can be calculated via the time

derivative of virtual muscle spindle length, which can be expressed as:

vm = Kθ̇ f oot (10)

The desired assistance torque is estimated by two groups of virtual muscles, including
PFM and DFM, as shown in the above Figure 4. The virtual muscle force (Fm1, Fm2) can be
calculated using Equation (7), and then acts on the ankle exoskeleton through the moment
arm of the two virtual muscles (rp, rd). The moment arms are determined by the ankle
angle and can be expressed by:

r = rmax cos
(

θ f oot − θmax

)
(11)

where rmax is the maximum joint moment arm, which occurs at the ankle angle max.

Heel

Footθamkle

rp

rd

DFM
PFM

Figure 4. The geometry of ankle exoskeleton with two groups of virtual muscles.

Form this, the desired assistance torque (τq) produced by the two groups of virtual
muscle can be calculated by:
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τq = Fm1rp + Fm2rd (12)

2.3. Neural Controller

The neural controller is used to imitate the human natural central nervous system
(CNS) control mechanism. The function of the neural control is according to the virtual
muscle spindle length information and the position information of the center of mass (CoM)
of the wearer to obtain the virtual muscle activation (a1, a2).

The human natural CNS includes two prime structures: spinal cord and the brain,
which can be regarded as a hierarchical control structure [22]. The brain is usually referred
to as an advanced central nervous system (ACNS), and the spinal cord is often known as
the lower central nervous system (LCNS). Based on neurological research [23], the ACNS
and LCNS work together to maintain human upright balance. The sense organs of ACNS
involve the proprioceptive system, vestibular system, and visual system [24]. The LCNS is
implemented through the muscle stretch reflex in human upright balance control, and the
senses organs are combined by the Golgi tendon organ, and spindle organs.

In order to apply the human natural CNS control mechanism to the ankle exoskeleton
control, the CNS control circuit needs to be simplified to avoid the intervention of complex
signals. The neural controller is proposed to imitate the human natural CNS and directly
obtain virtual muscle activation through the ankle exoskeleton motion signal. The proposed
neural controller is illustrated in Figure 5, which has two control channels in parallel, with
the muscle stretch reflex channel to imitate LCNS and the compensate channel to imitate
ACNS. The two control channels guarantee strong complementarity in producing fast and
accurate actions. The input of the muscle stretch reflex channel is the virtual muscle spindle
length information (lm, vm), subject to a time delay (δ) to simulate the neural transmission
and processing time, and it calculates the muscle activation (al) produced by muscle stretch
reflex channel. The input of the compensate channel is the position of the wearer’s CoM (pc,
pv, pa), subject to a time delay (λ), and the output is the muscle activation (aa) produced by
the compensate channel. From this, the final estimated muscle activation is aggregated the
output of al and aa.

Time delay λ Feedback gains

Time delay δ Muscle reflex gains

Weight wa

Weight wl

aa

al a

Compensate channel

Muscle stretch reflex channel

pc  pv  pa

lm  vm

Figure 5. The framework of virtual muscle activation model.

The muscle stretch reflex is a fast muscle contraction generation mechanism. In this
work, the sensory information of the muscle stretch reflex channel is the virtual muscle
spindle length change and its contraction velocity. The virtual muscle activation produced
by the muscle stretch reflex can be generated using a positive feedback reflex scheme with
signal propagation time delay (δ), which can be computed as:

al(t) = pl lm(t − δ) + dvvm(t − δ) (13)

where pl and dv are the gains for virtual muscle spindle length and its contraction velocity.
Based on the concept of nonlinear parameters in control theory, this paper proposed

nonlinear signal gain in the virtual muscle stretch reflex channel. The concept can be
described as the signal gain increases with the increasing of the virtual muscle spindle
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length or the muscle spindle contraction velocity, and vice versa. The nonlinear signal
gains can be defined as: {

pl(t) = pl0 + Kp(lm − lm0)
dv(t) = dv0 + Kdvm

(14)

where pl0 and dv0 stand for the constant initial gains, and Kp and Kd represent the constant
coefficients, respectively.

According to Equations (9) and (10), the Equation (13) can be re-expressed as:

al = Gl∆θ(t − δ) + Gvθ(t − δ)− θ̇0 (15)

where Gl = plK, Gv = dvK, ∆(t − δ) = θ f oot(t − δ)− θ0, and θ0 is the ankle angle in ankle
exoskeleton standing equilibrium state.

The compensate channel is used to reinforce the activation of the virtual muscle to
complement the muscle stretch reflex channel, with overlapping contributions of wearer’s
CoM trajectories horizontal displacement (pc), velocity (pv), acceleration (ac), and a signal-
propagation time delay (λ). The muscle activation produced by compensating channel can
be calculated by:

aa(t) = kp pc(t − λ) + kv pv(t − λ) + ka pa(t − λ) (16)

where kp, kv and ka stand for the compensate channel gain coefficients.
The virtual muscle activation results from the two channels should be aggregated to

produce the total virtual muscle activation. Information aggregation has been well studied,
such as, fuzzy inference [25], neural network, and Bayes estimation [26], among others [27].
In order to avoid involve complex operations, this work takes the simplest variable weight
summation method as the aggregation approach, which can be expressed as:

a(t) =
{

a0 + al(t) t < δ
a0 + wlal(t) + wcaa(t) t ≥ δ

(17)

where a0 is the pre-activation value, and wl and wc are the weights of the two channels,
respectively. The current virtual muscle activation, at any time before δ, is equal to the
pre-activation plus the activation of the muscle stretch reflex channel; at any time after δ,
the current virtual muscle activation is the combination of the pre-activation and the two
channels activation results.

The weights are linearly correlated with the input information of the two channels, and
any reduction of the contribution from one channel will be accompanied by a corresponding
increase in the contribution from the other channel. The input normalization information
of the two channels are expressed as:{

L = lm
max(lm)

V = Vc
max(Vc)

(18)

The weights of the two channels are defined as:{
wl =

L
V+L

wc =
V

V+L
(19)

3. Experimentation

The proposed virtual neuromuscular control method was applied to an ankle exoskele-
ton, and several experiments have been carried out in the lab to test the performance of the
control method.
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3.1. Experiment Condition

A simple version of the ankle exoskeleton was designed and used in this experiment.
The mechanical structure mainly includes the foot brace, shank brace, rotary encoder, glass
wool board and tension senor, as illustrated in Figure 6. The tension senor was specially
designed, which is composed of a displacement sensor and an inner spring. When the
bowed rope is pulled up, the inner spring will be compressed. According to Hooke’s law,
the tension of the bowed rope can be calculated:

Fex = Kx × xs (20)

where Kx represents the spring stiffness which is 10.49 N/mm in this paper, xs is the inner
spring compression distance measured with the displacement sensor. The performance
parameters of the rotary encoder and displacement sensor are shown in Table 1.

Table 1. The performance parameters of the rotary encoder and displacement sensor.

Sensor Accuracy Resolution Measurement Range

Rotary encoder 0.1◦ 360◦/4096 0∼360◦

Displacement sensor ±0.1%FS 0.1 mm 50∼150 mm

To guarantee wearable suitability, the ankle exoskeleton is designed at a similar size to
the human lower limb. The Boden rope is used as the transmission device to separate the
DC motor from the exoskeleton, in order to light the device. The rope tension is measured
by a tension sensor, and the rotation angle is measured by a rotary encoder.

Displacement sensor

Glass wool board

Inner spring

Shank brace

Foot brace

Rotary encoder

Tension sensor

Bowden rope pulls up, Spring compress

Figure 6. Schematic diagram of exoskeleton wearing part.

Five healthy neurologically intact participants (male and female, age 21∼35 years)
with no history of neurologic disorders gave written informed consent and participated in
the study. The participants wear an ankle exoskeleton and stand on the moving vehicle.
The vehicle acceleration and deceleration as the perturbation for the upright balance, and
the vehicle moving process during one experiment is shown in Figure 7. During the
experiment, the surface electromyography (sEmg) from the participants’ Gastrocnemius
(Gas) and Soleus (Sol) were recorded using a sEmg acquisition instrument. In order
to verify the effectiveness of the proposed virtual neuromuscular control method, three
sets of comparative experiments were carried out. In the both three sets of experiment,
four different acceleration were applied to the vehicle: 0.6 m/s2, 0.8 m/s2, 1.0 m/s2 and
1.2 m/s2. Each experiment was repeated five times. The specific experimental scheme are
summarized below:
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武汉理工大学博士学位论文  

图中 6-7(a)为期望力矩与实际作用力矩的跟踪对比曲线，图 6-7(b)为力矩跟

踪误差曲线，最大跟踪误差绝对值为 0.12Nm。为了更充分描述力矩跟踪效果，

采用方差占比（VAF）（见 2.8.4）衡量力矩跟踪符合度，根据 VAF 定义可计算得

出力矩跟踪结果的符合度为 98.7%。试验结果表明，转动装置输出作用力矩可以

很好地跟踪期望力矩轨迹。 

6.4 基于踝关节肌肉驱动机制的直立平衡仿生控制试验 

Time(s) 

Acceleration(m/s2) 

Time (s) 

Velocity (m/s) 

−1

−0.1

（a）

（b）

Figure 7. The vehicle moving process. (a) Vehicle acceleration. (b) Vehicle velocity.

Case A: The exoskeleton is not actuated. In order to test the effects of the ankle
exoskeleton on participants’ lower limb muscle activation during the upright balance, the
participants wear the un-actuated ankle exoskeleton.

Case B: The exoskeleton is controlled by the virtual-ankle stiffness control method.
Virtual-ankle stiffness control is the representative control method for ankle exoskeleton
upright balance control, the desired assistance torque (τv) can be expressed as:

τv = Ka(θ f oot − θre f ) (21)

where θ f oot is the actual ankle angle, θre f stands for the ankle reference angle at the equilib-
rium position. The parameter Ka can be calculated as:

Ka =
τmax − τmin

θmax − θmin
× 1

3
(22)

where τmax and τmin indicate the maximum and minimum assistance torque, θmax and θmin
stand for the maximum and minimum ankle angle, respectively.

Case C: The exoskeleton is controlled by the proposed virtual neuromuscular control
method. With reference to the important conclusion of biomedical research on the human
ankle calf muscle [22], which provides the guidance for controller parameters setting, the
virtual muscle mechanical model parameters in the experiment are shown in Table 2, and
the parameters of the neural control are shown in Table 3.

Table 2. The parameters of virtual muscle mechanical model.

Parameters PFM DFM

Fmax (kg) 600 800
vmax (cm/s) 36 48
lopt (cm) 6 4
rmax 4 5
θmax (deg) 80 110
θopt (deg) 110 80
ρ 0.5 0.7
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Table 3. The parameters of neural controller.

Parameters PFM DFM

pl0 0.1 0.1
dv0 0.05 0.05
Gl 3.1 4.2
Gv 0.11 0.16
kp 0.15 0.12
kv 0.08 0.06
ka 0.03 0.04

3.2. Experimentation Results

In the experimentation, the movement of the vehicle breaks the equilibrium state of the
participant. Taking participant 1 and the vehicle acceleration of 0.8 m/s2 as an example, the
activation of Gas muscle and Sol muscle in three case experiments is illustrated in Figure 8.
In this figure, the solid black represents the averaged time courses of muscle activation
measurement results, the grey-shaded regions indicate SD from the mean measurement
results across all five trials in each case experimentation.
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Figure 8. Muscle activation measurement results of participants in three case of experimentation.

In the process of human upright balance control, the activation of Gas muscle and
Sol muscle has obvious fluctuation and a peak. It means that the Gas muscle and Sol
muscle play an important role in the process of human balance control. From this figure, it
can be seen that the peaks of Gas muscle and Sol muscle activation were reduced under
Case B and C experimentation, particularly Case C experimentation. It indicates that the
exoskeleton provides an assist for the balance control in Case B and C experimentation.

In order to better analyze the performance of the two controllers in Case B and C
experimentation, the ankle angle of participants and the output torque of the controller
are recorded and shown in Figure 9. In this figure, the solid black represents the averaged
time courses of recorded results. The grey-shaded regions indicate SD from the mean
measurement results across all five trials in each case experimentation. For the ankle
angle, the counterclockwise swing is defined as the negative direction, on the contrary, the
clockwise swing is defined as the positive direction. According to the amplitude of ankle
angle, the experimentation process can be divided into three stages.

(1) In stage I, the vehicle is stationary, which means there is no external disturbance,
the participant can quickly adjust to the equilibrium state, and the ankle torque does not
change much.
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(2) In stage II, the vehicle applies an instantaneous positive acceleration and then
an instantaneous negative acceleration, and the vehicle eventually becomes stationary.
In this process, the Case B and C experimentation have the same performance. The
participant’s body tilt leans forward first, and then leans backward. The ankle angle
gradually stabilized at around 2.2°. It is important to point out that the peak angles of
Case B and C experimentation are 5.6° and 5.0°, respectively. This means that the proposed
control method showed a better control performance than the virtual-ankle stiffness control
method.

(3) In stage III, the vehicle is stationary, which is similar to state I. The participant
quickly adjusts to the equilibrium position.
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Figure 9. Ankle angle measurement results of participants and the output torque of the controller.

For a better illustration, the root-mean-squared (RMS) of muscle activation was cal-
culated to assess the assisted fitness. The muscle activation RMS values of participants
in the three experiments are shown in Figure 10, with error bars representing standard
deviation. The maximum standard deviation was 0.05, which has less effect on this experi-
ment. According to Case A and Case B experimentation results, the RMS of Gas muscle
and Sol muscle in Case B experimentation were reduced by an average of 20.33%, and
17.29%, respectively. The results indicated that the ankle exoskeleton can effectively as-
sist the participant to resist disturbance upright under the virtual-ankle stiffness control
method. By comparing Case B and Case C experimentation results, the RMS of Gas muscle
and Sol muscle in Case C experimentation were reduced by an average of 3.12%, and
4.78%, respectively. The results showed that the proposed virtual neuromuscular control
method improves the performance of the ankle exoskeleton in the process of assisting the
participant to resist disturbance upright.

To facilitate the evaluation of the robustness of the proposed virtual neuromuscular
control method for different external disturbances, four different acceleration were applied
to the vehicle: 0.6 m/s2, 0.8 m/s2, 1.0 m/s2 and 1.2 m/s2. The muscle activation RMS
value of participant one under different vehicle moving acceleration as shown in Figure 11,
with error bars representing standard deviation. The maximum standard deviation was
0.055, which has less effect on this experiment. From this figure, it is clear that for different
external disturbances, the muscle activation RMS values were different, and the larger the
vehicle acceleration, the the larger the muscle activation RMS. In comparison, both Gas and
Sol muscle activation RMS vale are small under Case C experimentation. This indicates
that the proposed virtual neuromuscular control method improves the robustness of the
ankle exoskeleton for different external disturbances. This is reasonable, as the virtual
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neuromuscular control simulates the muscle function in human activity, and the muscle
has the ability to adapt adjustments for the various working states of the human, which
therefore effectively implemented the robustness support of ankle exoskeleton standing
balance control.
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Figure 10. The muscle activation RMS value of participants under 0.8 m/s2 vehicle acceleration.
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Figure 11. The muscle activation RMS value of participant one under different vehicle moving acceleration.

4. Conclusions

Standing balance control plays a key role in promoting the dynamic balancing perfor-
mance of the ankle exoskeleton. Focusing on improving the control robustness, this paper
presents a virtual neuromuscular control for robotic ankle exoskeleton standing balance,
which was used to calculate the desired ankle torque. In particular, the neuromuscular
model consists of two components, the proposed control method has two key components,
including musculoskeletal mechanics and neural control. The results based on three sets
of comparative experiments demonstrated the efficacy and robustness of the proposed
control method for robotic ankle exoskeleton standing balance. Although the proposed
control method targets the ankle exoskeleton, it is readily applicable to the other robotic
exoskeleton, which remains a piece of future work.
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