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Abstract: In a high-precision servo system, the nonlinear friction link is the key factor affecting the 

system performance. Reasonable solving of the friction link in servo systems has become a focus of 

current research. This paper summarizes the friction nonlinearity that affects the control perfor-

mance of servo systems. First, the characteristics of friction are summarized, and the advantages 

and disadvantages of typical friction models in recent years are analyzed. Subsequently, existing 

friction model parameter identification methods are introduced and evaluated. On this basis, the 

development level of the friction nonlinear control strategy is analyzed from three aspects: friction 

model-based control, friction model-free control, and compound control. Finally, the objective ad-

vantages and disadvantages of the existing technology are summarized, and the future develop-

ment direction of the friction model and selection reference for the nonlinear friction control strategy 

are comprehensively discussed. 
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1. Introduction 

Friction is a complex nonlinear physical phenomenon originating from the contact 

interfaces of relatively moving objects. For centuries, the phenomenon of friction has at-

tracted many scholars to conduct in-depth research and discussions [1]. It is evident that 

friction properties exhibit two aspects. On the one hand, people use friction for practical 

engineering applications, such as car brakes, tires, clutches, and gripping actions of ro-

botic arms [2]. However, for high-precision servo systems, the existence of friction non-

linearity significantly affects system performance and control accuracy. 

In high-precision electro–hydraulic servo systems, friction nonlinearity is common 

[3], and has a significant influence on the dynamic and static performance of the servo 

system. In addition, factors such as the viscosity and compressibility of the hydraulic oil, 

machining accuracy of the servo cylinder, and temperature of the hydraulic oil affect the 

motion performance of the servo system. Compared with these factors, the influence of 

mechanical friction is greater, which is an obstacle to improving the performance of the 

system. The influence of the friction link on the dynamic performance of the system is 

mainly manifested as crawling jitter in the low-speed stage, which produces a zero dead 

zone [4]. The influence on the static performance of the system is manifested as a static 

difference phenomenon or steady-state limit cycle oscillation phenomenon. In severe 

cases, the wear of mechanical parts is aggravated, and nonlinear effects such as vibration 

and noise are generated, which affect the stability of the system and shorten the service 

life of machinery. In addition, friction increases the temperature of the machine, resulting 

in a reduction in the mechanical strength of the parts and may even cause thermal defor-

mation, fatigue, and wear, thereby disrupting the normal operation of the machine [5]. 
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Similarly, with the rapid development of industry, the requirements for electro–hydraulic 

servo systems are increasing. Reducing friction, reducing the adverse effects of friction, 

and improving the dynamic and static performance of electro–hydraulic servo systems 

have become the focus of current research. 

A suitable friction model is not only conducive to correctly understanding the mech-

anism of friction and effectively predicting the development trend of friction motion [6], 

but also plays a key role in analyzing system reliability, controlling motion, and compen-

sating for overshoot. The form and magnitude of the frictional force depend on the phys-

ical structure and properties of the two surfaces in contact, pressure between the surfaces, 

relative speed, lubrication, and a series of other factors [7]. A nonlinear relationship exists 

between these parameters that is difficult to quantify. Establishing accurate mathematical 

models to describe the friction phenomena has long been an important topic in the fields 

of tribology, mechanical engineering, and control. Currently, friction control strategies are 

primarily divided into compensation controls based on friction models and friction 

model-free controls. Establishing an accurate system friction model and formulating the 

corresponding friction control strategy are currently the focus of some scholars. 

The remainder of this paper is organized as follows. Section 2 elaborates the causes 

and effects of nonlinear friction. Section 3 provides a brief overview of the friction model 

and its identification strategy. Section 4 reviews nonlinear friction control strategies, that 

are mainly divided into friction model-based control, friction model-free control, and 

composite control. Section 5 discusses the key technologies of friction nonlinearity in de-

tail, and provides ideas and research directions for future friction models and control 

strategies. The full text of this paper is summarized in Section 6. 

2. Friction Characteristics 

2.1. Causes of Friction 

After a long period of research, it has been found that friction is a relatively complex 

phenomenon with many types and very different characteristics. When there is relative 

motion between the two contact surfaces, a friction force is generated between the contact 

surfaces, and the magnitude of the friction force is related to the characteristics of the con-

tact surfaces. Because the contact surface of an object cannot be absolutely smooth, the 

friction characteristic is the contact of some tiny points protruding from the surface, which 

are called bulges [8], as shown in Figure 1. 

Bulge
Contact surface A

Contact surface B

 

Figure 1. Microgram of contact surface sketch. 

In general, friction is a nonlinear time-varying physical quantity that is affected by 

many factors, and its characteristics can be divided into static and dynamic [9]. Coulomb 

friction, static friction, and the Stribeck effect are static characteristics, whereas dynamic 

characteristics include pre-slip displacement and friction hysteresis. 

2.2. Static Characteristics of Friction 

Stribeck [10,11] found that many frictions have static properties, as shown in Figure 

2. By summarizing the observed friction phenomena, the friction characteristics were de-

scribed as Stribeck curves. When the contact surface moves from rest to start, the friction 
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as a function of velocity can be divided into four stages: static friction, boundary lubrica-

tion, partial fluid lubrication, and full fluid lubrication. 

Ⅰ. 

Ⅱ. 

Ⅲ. Ⅳ .
Ⅰ. Ⅱ. 

Ⅲ. Ⅳ .

Velocity

Friction
Boundary Lubrication

Mixed Lubrication Fluid Lubrication

 

Figure 2. Stribeck curve diagram: (Ⅰ) Static friction; (Ⅱ) Boundary lubrication; (Ⅲ) Partial fluid lubrica-
tion; (Ⅳ) Full fluid lubrication 

In the first stage, static friction is independent of velocity and can be identified as 

being generated by elastic deformation, which, from a control point of view, leads to in-

creased static friction. At this time, the object is subjected to force but does not produce 

relative motion. Because the contact surface is deformed, the frictional force on the object 

at this time is equal to the external force, and the direction is the opposite. In the second 

stage, the relative speed of motion between the contacting surfaces is so low that a liquid 

film cannot be established between them, and the frictional force is caused by the shearing 

effect between the solids. Meanwhile, the frictional force significantly interferes with the 

motion response of the system, such as the low-speed crawling phenomenon. In the third 

stage, relative motion causes a liquid film to form between the contact surfaces. However, 

because of normal pressure, part of the lubricating liquid is squeezed out of the contact 

surfaces. Therefore, there are still some areas of solid contact, and the friction force de-

creases as the speed increases. In the fourth stage, the liquid film is fully formed and there 

are no longer areas of solid contact, therefore, the friction force decreases; however, with 

an increase in the relative motion speed, the effect of viscous friction becomes increasingly 

obvious, which becomes the main factor affecting the performance of the system. 

Figure 2 shows the relationship between the friction force and the steady speed, 

which is a static characteristic of friction. Friction does not strictly follow this relationship 

when the speed and external force vary, but has other characteristics. 

2.3. Dynamic Characteristics of Friction 

2.3.1. Pre-Sliding Displacement 

This phenomenon was discovered by Dahl [12] and is shown in Figure 3a. When the 

object is in the static friction stage, although the object does not move, there is a small 

positional deviation owing to the deformation of the contact surface, which is called pre-

displacement [13]. When the external force is removed, the object cannot completely re-

turn to its original position, and a certain residual displacement is retained. 
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Velocity

Friction

 

(a) (b) 

Figure 3. Friction properties: (a) Pre-sliding placement; (b) Friction hysteresis. 

2.3.2. Friction Hysteresis 

Frictional hysteresis [14–16] is also known as a frictional memory. As shown in Figure 

3b, the friction force curves do not coincide when the speed gradually increases or de-

creases. The friction force during deceleration is lower than that during acceleration, form-

ing a hysteresis loop, and the width of the hysteresis loop is proportional to the rate of 

speed change. 

2.3.3. Crawling Phenomenon 

As shown in Figure 4, crawling [17] indicates that when the operating speed of the 

system is lower than a certain critical value, its movement speed pulsates, which is also 

called low-speed jitter or low-speed instability. The essence of the crawling phenomenon 

is that when an object moves at a relatively low speed on a sliding surface, the phenome-

non of alternating stopping and sliding under certain conditions is a type of discontinuous 

vibration. Typically, a slight degree of crawling is a vibration that is imperceptible to the 

eye, whereas a significant crawling is a large jump. The existence of frictional vibration 

destroys the uniformity of system motion, which not only produces impact, but also af-

fects the accuracy of the control system. 

Time

Displacement

Ideal

Actual

 

Figure 4. Crawling phenomenon.  
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2.3.4. Variable Static Friction 

In the static friction range, the magnitude of the friction force is related to the growth 

rate of the external force, and the friction force decreases nonlinearly with increasing 

speed. Rabinowicz [18] determined the relationship between friction and displacement 

before the start of sliding, and found that the maximum friction force that was overcome 

by objects from relative static motion to relative motion was the maximum static friction 

force, as shown in Figure 5a. Johannes et al. [19] pointed out that the maximum static 

friction is not constant, but depends on the application rate of the external force, as shown 

in Figure 5b. 

Displacement

Friction

Maximum static friction

 

External force application rate

Starting resistance

 
(a) (b) 

Figure 5. Friction properties: (a) Maximum static friction force; (b) Variable static friction. 

In addition, owing to the multi-valued, non-linear, negative slope, and other charac-

teristics of the friction force, the servo system may produce unstable motion. The tracking 

accuracy of the speed signal and the position signal is affected, and even top distortion of 

the sinusoidal position signal and low-speed crawling occur. This affects the tracking per-

formance of the servo systems. Therefore, it is necessary to study and control the friction 

characteristics of servo systems. 

3. Friction Model and Its Identification Strategy 

3.1. Friction Model 

Scholars have conducted extensive research on friction models to accurately reflect 

the aforementioned friction characteristics. Currently, research on friction modeling has a 

history of hundreds of years, and dozens of friction models have been proposed. Depend-

ing on whether the friction phenomenon is described by differential equations, friction 

models can be roughly divided into two categories: static and dynamic [20]. 

Static models mainly include the Coulomb friction model [21], viscous friction and 

Coulomb friction model [22], static friction and Coulomb friction and viscous friction 

model [23], Stribeck model [24], and Karnopp model [25]. The static friction model uses a 

mathematical function whose independent variable is the relative velocity to represent the 

friction force, and has the advantages of a simple structure and easy parameter determi-

nation. To a certain extent, it can meet the requirements of control performance. However, 

it lacks the ability to explain the hysteresis effect and dynamic characteristics of friction. 

Dynamic models include the reset integral model [26], Bliman and Sorine model [27], Bris-

tle model [28], LuGre model [29], Dahl model [30], Leuven friction model [31], Hsieh fric-

tion model [32] and Maxwell-slip friction model [33]. The dynamic friction model depicts 

friction as a function of the relative velocity and displacement. It can describe the static 
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and dynamic characteristics of friction. Therefore, the dynamic model can more realisti-

cally describe the interface friction state. 

Usually, only linear friction–viscous friction is considered in the model, whereas non-

linear friction is ignored. However, friction is an important aspect of many high-precision 

servo controls. It causes tracking errors, limits cycles, and crawl, and it affects system dy-

namics more than other nonlinear factors. To compensate for friction effects without high 

gains, a suitable friction model must be built to predict and compensate for friction. At 

the same time, better friction models are required for stability analysis, prediction of limit 

cycles, determination of control gains, and system simulation. Several friction models 

commonly used in the field of servo system control are briefly introduced in Table 1. 

Table 1. Friction model and its description characteristics. 

Friction Model Advantages Disadvantage Descriptive Features 

Classical model 

[21–23] 

It is simple and parameter identification 

is easy. 

Discontinuous, the friction charac-

teristics are not accurately de-

scribed. 

Based on the Coulomb friction 

model, it notes that there is static 

friction and that friction is related to 

speed. 

Stribeck model 

[24] 

Obtains a smooth transition between 

static friction and viscous friction. 

Inability to describe friction dy-

namics. 

A relatively complete description of 

the static characteristics of friction. 

Karnopp model 

[25] 

Embodies viscous damping, Coulomb 

friction, and static friction to avoid 

switching between viscous and sliding 

friction equations of state. 

It is difficult to determine the con-

cept of a zero-speed interval, and it 

cannot reflect the dynamic charac-

teristics. 

A small viscosity interval is con-

structed to reduce the low-speed de-

tection requirements. 

Dahl model [30] 
The pre-slip displacement and friction 

hysteresis are described more accurately. 
The Stribeck effect is not described. 

Partial differential equations are 

used to describe the dynamic fric-

tion process. 

Bristle model 

[28] 

Microscopic description of bump charac-

teristics. 
The number of calculations is large. An integral algorithm is used. 

Bliman–Sorine 

model [27] 

It can describe the Stribeck effect when 

the motion is commutated. 

The Stribeck effect, friction 

memory, and variable static friction 

are not described. 

The two Dahl models with different 

orders work together. 

Time lag model 

[34] 

Demonstrates frictional memory behav-

ior. 

Descriptions of other friction phe-

nomena are missing. 

Fitting of the relative sliding veloci-

ties. 

Reset integral 

model [26] 

The stress of the joint is reflected, and the 

simulation is effective. 
Discontinuous. Additional state variable z. 

LuGre model 

[29] 

More complete description of dynamic 

and static characteristics. 
Difficult to identify. 

An amount of bristle deformation z 

is introduced to synthesize the 

Stribeck effect. 

Ensemble model 

[35] 

The dynamic and static characteristics are 

described qualitatively. 

This involves two state-interval 

switching problems, and the struc-

ture is complex. 

Friction-state model switching de-

scription. 

Dynamic correc-

tion model [36] 
Modifies the above model. 

Its applicability is poor, and the 

scope of application is limited. 

The parameters change dynami-

cally. 

Neural network 

model [37] 

Friction model structure and parameter 

identification should be avoided. 

The training is difficult, time-con-

suming, and computationally in-

tensive. 

Neural networks. 

3.2. Friction Model Identification Algorithm 

In general, the dynamic friction model has better continuous characteristics than the 

static friction model, and can better describe the nonlinear behavior of friction. However, 

the more comprehensive the description of the friction behavior, the more parameters and 

the more complex the structure. Consequently, several friction model parameter identifi-

cation strategies have been developed. It is essentially a modeling method, and the main 

principle is to establish a system equivalent to an observation system based on input and 

output observations. In practical applications, a model is selected from a set of models. 
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According to a certain standard, the model can describe the dynamic and static character-

istics of the system observed in the test more accurately. By identifying the parameter data 

with small order of magnitude that are difficult to display in the model, the relevant data 

of the established friction model are corrected so that the simulation is closer to the real 

measurement result, and the operating index of the servo system can be detected more 

accurately. Currently, applied parameter identification methods are classified into classi-

cal and intelligent identification methods. 

In general, the classical friction model parameter identification method has certain 

limitations. For example, the input signal must be high and the input signal must be 

changed over a large range such that the classical system identification method can effec-

tively estimate the model parameters. In addition, classical identification methods are lim-

ited to linear links, whereas intelligent identification methods are used for nonlinear fric-

tion characteristics. 

3.2.1. Classical Identification Methods 

1. Least squares parameter estimation method. 

Classical identification methods mainly use the Lyapunov function method, least 

squares method, and spectral analysis method to identify the friction parameters. The 

least squares parameter estimation method is simple in principle, small in calculation 

amount, fast in convergence speed, easy to implement, and widely used in friction model 

parameter identification. The least squares method, which was generalized by Dempster 

et al. [38] in 1977, is one of the most classical and basic parameter estimation methods. 

This includes batch processing least squares, recursive least squares, forgetting factor re-

cursive least squares, and recursive augmented least squares. 

Considering the problem of complex parameters of the friction model, in [39], a new 

refactored multiple innovation least squares (RMILS) method was constructed by intro-

ducing intermediate step size updates and decomposing innovation updates into sub-in-

novation updates. The inverse problem of the covariance matrix was solved and the recog-

nition performance was improved. Lee et al. [40] proposed a fast parameter identification 

algorithm based on recursive least squares (RLS) for identifying the feed drive mass and 

sliding friction. Data processing was avoided, and a two-step identification technology 

was adopted to improve the identification accuracy and convergence rate. Liang and 

Zhou [41] used the separable least squares (SLS) method to perform nonlinear optimiza-

tion in the servo drive mechanism, which significantly reduced the computational cost, 

did not require any inertial information, and avoided the noise introduced by the acceler-

ation estimation. Simultaneously, these identification methods could be extended to other 

nonlinear mechanical systems to maintain their favorable characteristics. 

2. Parameter estimation method for experimental data 

The experimental data parameter estimation method is significantly different from 

the least squares parameter estimation method. The basic idea is to test the estimated val-

ues of the model parameters according to the specific experimental data until the experi-

mental effect reaches the best state. In [42], a method based on the limit cycle characteris-

tics of a mechanical system during vibration was proposed, and the oscillation amplitude 

was determined by adjusting the controller parameters to determine the static and Cou-

lomb friction coefficients of the system. However, in real systems, friction is strongly non-

linear and varies with many factors such as posture, speed, and temperature. Therefore, 

all friction models deviate from the actual values, which reduces the recognition accuracy. 

Wu et al. [43] proposed an identification method using substrate force sensors, which 

first identified the inertial parameters and then calculated the joint friction value by sub-

tracting the inertial torque from the joint torque, which did not require a priori friction 

model. Yoo et al. [44] used a 90° phase relationship between acceleration and velocity in 

position control. The mechanical parameters were obtained from the integral value of the 
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product of the torque, velocity, and position, and the moment of inertia and friction com-

ponents were fully considered to effectively estimate the moment of inertia, viscous fric-

tion coefficient, and Coulomb friction in the offline state. Simulation and experimental 

results demonstrated that the proposed method was effective, accurate, simple to imple-

ment, and could easily be applied in industry. 

The experimental data parameter estimation method has defects, such as a large 

amount of calculation and a complicated method, but the recognition accuracy is high, 

and it can fit the actual friction characteristics well. 

3.2.2. Intelligent Identification Method 

1. Neural network identification method 

The parameter identification method based on neural networks is more suitable for 

the establishment and control of complex models, and the nonlinear friction model can be 

identified by the method’s characteristics of infinite approximation of nonlinear mapping. 

The self-learning and self-adaptive abilities of neural networks are also very convenient 

for engineering applications. Lu et al. [45] combined direct backpropagation (BP) and neu-

ral dynamic programming (NDP) with particle swarm optimization (PSO), to construct a 

direct BP neural dynamic programming heuristic PSO (NDPSO). In NDPSO, the critic BP 

neural network was trained to balance the Bellman equation, whereas the action BP neural 

network was used to train the inertia weight, cognitive coefficient, and social coefficient 

of the PSO algorithm. The training goal was to make the critic BP neural network output 

close to the goal of final success. The experimental results clearly showed that NDPSO is 

effective in identifying static friction torque parameters in servo control systems and out-

performs SPSO and GA. 

As traditional static friction models cannot uniformly represent all friction situations, 

a backpropagation neural network (BPNN) was proposed to weaken the requirements of 

traditional static friction models. The relative velocities of the interacting surfaces and 

joint loads were typically considered as the inputs to the BPNN, and its output was the 

predicted static friction. Furthermore, to speed up convergence and improve the global 

generalization ability of the BPNN, a genetic algorithm (GA) was used to optimize the 

initial values of weights and thresholds. All training samples followed a reciprocating 

constant velocity experiment with friction under changes in joint speed and load. The ex-

perimental results showed that using the GA to optimize the initial values of the weights 

and thresholds was beneficial for improving the convergence rate and prediction accuracy 

of the network. Compared with the traditional static friction model, the BPNN model had 

higher prediction accuracy and excellent generalization ability [46]. 

Servo systems are also affected by other nonlinear factors in actual work. Liao et al. 

[47] constructed a nonlinear servo system with limits, dead zones, and correction coeffi-

cients caused by unknown factors. A neural network was used to identify the linear pa-

rameters, and the nonlinear parameters were determined based on the flow characteristic 

curve. Compared with the linear model without nonlinear factors, the fitting degree of the 

door opening was 98.445%, the power was 96.986%, and the output of the nonlinear model 

was in good agreement with the actual output. When the relative error of the stable result 

was 5% for valve opening and 1.58% for power, the error of the linear model was larger. 

The simulation results of the proposed method showed that the nonlinear factors of high-

power units could not be ignored, and that the nonlinear model of the servo system was 

more accurate. 

Neural networks can be effectively applied to the identification of nonlinear static or 

dynamic systems. There are two types of classical neural networks: multi-layer and recur-

rent. Multi-layer neural networks are mostly used in static nonlinear systems, whereas 

recurrent neural networks are used in dynamic nonlinear feedback systems. In more com-

plex systems, both types of neural network are included. The advantage of the neural net-

work identification method is that there is no need to establish a systematic identification 
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format, and the learning algorithm determines the convergence speed of the identifica-

tion. It can be applied to online identification to solve nonlinear problems of the system. 

2. Metaheuristics 

To solve complex optimization problems that are difficult to solve using traditional 

optimization algorithms, researchers have proposed meta-heuristic algorithms inspired 

by biological and natural physical phenomena. A meta-heuristic algorithm is a type of 

stochastic optimization algorithm that simulates the behavior of social insects or animal 

swarms. Individuals in the algorithm can solve complex problems using simple behavior 

rules. Compared with the traditional optimization method, the swarm intelligence algo-

rithm is independent of the initial value, gradient information, low function requirements, 

and good solution performance. Currently, the most common swarm intelligence algo-

rithms include the ant colony algorithm (ACO) [48], artificial bee colony algorithm (ABC) 

[49], and glowworm swarm optimization (GSO) [50]. With the rise of meta-heuristic algo-

rithms and the improvement in servo system control accuracy in recent years, many schol-

ars have turned to meta-heuristic algorithms to identify friction model parameters. 

Wang and Wang [51] proposed a novel identification method for the LuGre model, 

based on an evolutionary algorithm (EA) and statistical logic. The friction parameters 

were identified using a two-step method, the static parameters were identified using an 

isokinetic experiment, and the dynamic parameters were identified using the pre-slip pro-

cess in the separation experiment. In addition, the asymmetry of the friction in the positive 

and negative rotation directions was considered. EA was used to enhance the optimal 

estimation of the friction parameters, which verified the effectiveness of the proposed 

identification method. As shown in Figure 6, in [52], a friction compensation control strat-

egy based on the differential evolution algorithm was proposed and applied to the posi-

tion control system of a pneumatic finger cylinder. However, this two-step method was 

not used for identification. Finally, the comparison results of this strategy with the tradi-

tional proportional derivative (PD) and friction compensation strategies showed that us-

ing the friction compensation strategy based on the differential evolution algorithm to 

optimize the local parameters could improve the position accuracy of the finger cylinder 

position control system. 
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PID controller
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Gf(s)

Ka ≥0 Kv

m(V0as/RTsk + k2)/(m + n)k1Aa
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m(V0as/RTsk + k2)/(m + n)k1Aa
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xv(s)

Ff(s)

y(s)
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Pb(s)
+

+

+
+

+

+

−

−

−

Identification of the friction parameters

Servo amplifier Proportional 
directional 

control valve

Pneumatic finger eylinder

Optimization of the PD 
controller coefficients

 

Figure 6. Control structure chart of friction identification compensation [52]. 

As shown in Figure 7, Wong and Erkorkmaz [53] captured a series of motion data 

from a computer numerical control (CNC), and completed the rapid identification of a 

stability-constrained system based on a genetic algorithm. Compared with the Lagrangian 

multiplier solution, the GA was successfully used to predict the tracking and contour er-
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rors for different part-programs in a virtual process–planning environment. GA was rec-

ognized faster and improved by 2–3 orders of magnitude, making it more suitable for 

industrial use. 

CNC 
interpolator

xre f

+

−

Control law
Feed drive 

system

Feedback 
measurement

d/dt

FrictionGdist(s)

Gtrack(s)

+
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NC Code

N10 G01X0.0 F12000
N20 X0.258
N30 X-0.790
N40 -2.992···

Virtual drive model

Actual machine tool

−

 

Figure 7. Overview of rapid identification scheme [53]. 

Chen et al. [54] proposed a parameter identification method based on the fireworks 

algorithm (FWA). According to the experimental data of the damper dynamic character-

istics and the simulation data of the Bouc–Wen model, the FWA was used to identify the 

seven parameters of the Bouc–Wen model. Compared with the genetic algorithm (GA), 

differential evolution (DE) algorithm, and particle swarm optimization (PSO) algorithm, 

FWA had the advantages of fast convergence speed, short calculation time, and high sta-

bility in solving high-order parameter identification problems. Under the three types of 

harmonic excitations, the average calculation accuracies of the identified model reached 

88.64%, 90.45%, and 81.28%, respectively, and the dynamic characteristic curve of the 

model was consistent with the experimental results. 

As shown in Table 2, the standard meta-heuristic algorithm is increasingly being ap-

plied to friction parameter identification owing to its superior optimization performance. 

Inevitably, meta-heuristic algorithms have certain limitations such as slow convergence, 

easy precociousness, and falling into local optimal solutions. Many scholars have made 

in-depth improvements in this regard. 

Table 2. Common meta-heuristics. 

Title Advantage Disadvantage Common Areas 

Evolutionary Algo-

rithms (EA) [46,51–

53,60] 

Group and expandability. 
Programming is complex and its parame-

ter dependence is high. 

Neural networks, data min-

ing, parameter estimation, etc. 

Particle Swarm Optimi-

zation (PSO) [45,57] 

Memory, fast search speed, few 

parameters, simple structure, etc. 

The optimization speed is slow, the con-

vergence accuracy is not high, and the op-

timization results fluctuate significantly. 

Function optimization, neural 

network training, stochastic 

optimization problems, etc. 

Artificial Fish Swarm 

Algorithm (AFSA) [56] 

The requirements for the proper-

ties of the objective function and 

parameter settings are low. 

The structure is complex, the optimization 

speed is slow, and the convergence accu-

racy is low. 

Job shop scheduling, function 

optimization. 

Fireworks Algorithm 

(FWA) [54] 

The structure is simple, there are 

few parameters, and the robust-

ness is strong. 

It is easy to mature prematurely, and the 

convergence precision is low. 

Topology optimization prob-

lems, reducer, spring prob-

lems, etc. 
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Fruit Fly Optimization 

Algorithm (FOA) [55] 

The process is simple, the control 

parameters are few, and it is easy 

to implement. 

The convergence speed is slow and highly 

dependent on the initial conditions, which 

are not conducive to high-dimensional 

processing. 

Structural engineering design 

optimization problems, wire-

less sensor network layouts, 

etc. 

Flower Pollination Al-

gorithm (FPA) [59] 

Few parameters, is easy to imple-

ment, and has strong global opti-

mization ability. 

The optimization accuracy is low, the con-

vergence speed is slow, and it easily falls 

into local minima. 

Function optimization, text 

clustering, etc. 

Sparrow Search Algo-

rithm (SSA) [58] 

The adjustment parameters are 

small, convergence accuracy is 

high, and robustness is good. 

Poor local search ability. 

Engineering optimization de-

sign problems, multi-classifier 

coefficient optimization, etc. 

Yu et al. [55] constructed an improved Drosophila optimization algorithm (IFFOA) 

by adding an adaptive step-based transfer factor to a three-dimensional search space. The 

convergence rate of the algorithm was improved, local optima were avoided, and the al-

gorithm was applied to the improved LuGre friction model parameter identification. Fi-

nally, experimental measurements of the device displacement, velocity, and shear force 

were used to validate the performance of the proposed model and the IFFOA. Shao et al. 

[56] combined chaos search and a Gaussian mutation operator into a traditional artificial 

fish swarm algorithm and proposed an improved artificial fish swarm algorithm (IAFSA) 

method. The effectiveness of the IAFSA was verified through steady-state response and 

dynamic friction experiments. A comparison of simulations performed at different fre-

quencies and amplitudes showed that the proposed LuGre friction model with accelera-

tion-dependent partial and nonlinear continuous switching functions could accurately 

simulate the dynamic friction characteristics of solenoid-valve actuator systems. The pro-

posed modeling and parameter identification methods were applicable to many other 

high-speed mechanical systems with friction. 

It can be seen from the above literature analysis that the improvement in the identi-

fication strategy is mainly reflected in the combined improvement of the friction model 

and meta-heuristic algorithm, which often has strong pertinence. With the surge in work-

load, some scholars have turned to purely algorithmic improvements to improve the uni-

versality of identification technology. Hung et al. [57] used constrained particle swarm 

optimization (CPSO) to estimate the parameters of a three-mass resonant servo control 

system based on the LuGre friction model to allow machines to operate simultaneously. 

Through parameter estimation and feedforward compensation of the model, the main ef-

fect of current variation in the mechanical system was successfully reflected. Gao et al. 

[58] improved the sparrow search algorithm using a multi-strategy method, optimized 

the local search ability of the algorithm, and applied it to the parameter identification of 

the friction model of the servo system. Chen et al. [59] analyzed the motion trajectory of 

the flower pollination algorithm for the first time, improved the equations of the algorithm 

exploration and utilization stages through the chaotic mapping method and optimal in-

formation-guided search, and proposed an enhanced global flower pollination algorithm 

(GFPA). The experimental results showed that GFPA had a better recognition effect. 

The advantage of the intelligent identification method is that it does not depend on 

the characteristics of the model itself, the identification results can be obtained quickly, 

and good results can be achieved in the application. The classical identification strategy is 

simple in principle, convenient to implement, and fast in convergence. The characteristics 

of each identification strategy are presented in Table 3. In practical engineering, the iden-

tification strategy should be comprehensively selected in combination with the actual 

work requirements.  
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Table 3. Performance comparison of each identification method. 

Identification 

Method 
Accuracy Complexity Linear Nonlinear 

Applicable 

Scope 
Advantages Disadvantages 

Classical method Low High High Low High 

The principle is con-

cise, the number of 

calculations is small, 

the convergence 

speed is fast, and it 

is easy to imple-

ment. 

The requirements for 

the input signal are 

relatively high, and 

the nonlinear system 

identification ability 

is poor. 

Neural networks High Medium High High Medium 

Self-learning and 

self-adaptive abili-

ties. 

There are many sam-

ple requirements, 

and the training time 

is long. 

Metaheuristics High Low High High High 

It is widely used 

and does not de-

pend on the charac-

teristics of the 

model. 

The algorithm is not 

perfect, and there are 

problems, such as 

premature conver-

gence to the local op-

timal solution. 

4. Friction Nonlinear Control Strategy 

Research on friction identification strategy aims to accurately describe the friction 

characteristics of the servo system and establish a friction model that conforms to the 

servo system. Friction is treated as soon as it occurs to avoid its adverse effect on the servo 

system, thereby improving the control accuracy and fast response performance of the 

servo system. However, there are other nonlinearities in actual servo systems. When the 

output flow of the flow servo valve and the input signal cannot form a linear proportional 

relationship, that is, the common saturation and dead zone nonlinearity, it needs to be 

further studied using the control strategy and compensation method. Common basic com-

pensation methods include model-based, model-free, and composite control strategies. 

4.1. Control Strategy Based on Friction Model 

The model-based friction compensation method is essentially feedforward compen-

sation; however, it relies on the accuracy of the friction model and has uncertainties in the 

critical lubrication stage in the low-speed section; therefore, its application is limited. This 

method can be divided into two categories: fixed model and adaptive friction compensa-

tion. 

4.1.1. Fixed Model Compensation 

The fixed model compensation method can be described as follows: first, a friction 

compensation controller with fixed parameters is added to the standard control algorithm 

for fusion, and then the friction parameters are further obtained by offline identification. 

Cong et al. [60] designed an improved Stribeck friction model, based on actual experi-

mental data, and identified its parameters using a genetic algorithm. As shown in Figure 

8, based on the improved model, the inertial stabilization platform and feedforward con-

trol of the velocity stabilization loop in the closed-loop control system were designed to 

avoid chatter and limit cycle problems caused by changes in motion direction and exces-

sive friction compensation. The experimental results showed that the vibration isolation 

performances of the tracking system and carrier turbulent vibration isolation system were 

better than those of the corresponding control system without the proposed nonlinear 

friction model compensation. 
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Figure 8. Open-loop nonlinear system model of velocity [60]. 

Aguilar-Avelar et al. [61] were the first to discuss modeling, identifying, and com-

pensating for the effects of nonlinear friction on flywheel control. A new algorithm for 

stabilizing the pendulum in an upward unstable position and a feedback linearization-

based controller with friction compensation were proposed. The experimental results 

showed that the proposed dynamic model of the asymmetric Coulomb friction compo-

nent better characterized the real experimental platform of the system and yielded better 

stability and control performance with lower power consumption. Li et al. [62] proposed 

an improved Stribeck friction model (SFM) and an optimization algorithm that was con-

sistent with the positioning platform. A compensator based on the friction model and dis-

turbance observer (DOB) was simulated. The simulation results showed that the friction-

model-based compensator (velocity recovery of 10.66%) showed better performance after 

adding perturbation compared with the DOB compensator (velocity recovery of 5.19%). 

In addition, a compensation comparison between Coulomb friction, traditional SFM, and 

modified SFM was performed. The experimental results showed that, compared with the 

Coulomb friction compensation, the following errors of the modified SFM compensation 

at 0.005 m/s and 0.05 m/s speed were increased by 67.67% and 51.63%, respectively. 

The friction model-based control strategy includes a fixed-friction model compensa-

tion term. As the compensation term is a fixed friction model, it does not change during 

the entire control process. Therefore, the requirements for the accuracy of the friction 

model are extremely high; however, the actual system has time, temperature, and other 

factors that affect the friction, and the fixed friction compensation term inevitably has er-

rors. 

Therefore, the method of fixed friction compensation, on the one hand, needs to meet 

the high requirements of the accuracy of the model. However, it needs to be in an actual 

situation where the influence of the environment is extremely low, so that the fixed fric-

tion compensation can have a better effect. 

4.1.2. Adaptive Model Compensation 

The adaptive model compensation method is described as follows. First, a specific 

static or dynamic friction model is selected. Then, the friction parameters are obtained 

through online estimation, and the system continuously adapts to the changes in the fric-

tion parameters to obtain the expected compensation effect. Li et al. [63] proposed an im-

proved nonlinear friction compensation identification method with two degrees of free-

dom to guarantee accurate estimation of the frequency response of the underlying linear 

dynamics in practice. Then, an adaptive robust controller (ARC) with gain adjustment 

rules was synthesized to obtain guaranteed a robust performance in the presence of vari-

ous uncertainties, improving the control performance achievable in practice. 

Sancak and Bayraktaroglu [64] applied a Luenberger-like observer (LLO) and an ex-

tended state observer (ESO) to the experimental study of friction compensation in the 

high-precision tracking control of parallel manipulators. The performance of the proposed 

observer-based friction compensator was compared with that of a model-based compen-

sator in terms of the computational torque control. The experimental results showed that 

the observer-based compensator significantly improved the tracking performance for 

high-speed motions. Among the surveyed observers, the ESO resulted in the smallest 
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RMS error in position tracking. Improvements in position tracking upon velocity reversal 

of individual leg movements were also observed with observer-based compensation. The 

observer error dynamics were exponentially stable, and the convergence speed was arbi-

trarily increased by adjusting the observer gain. 

The adaptive compensation scheme combines the determined controller with online 

model parameter estimation. The parameters of the friction model are obtained via online 

estimation. Online correction is performed according to the uncertainty of parameters un-

der a specific model or the time-varying situation of parameters to solve the changes in 

friction parameters with time, temperature, and system operation. Good performance 

control of the electro–hydraulic servo system is obtained under the condition that the fric-

tion and object model parameters are constantly changing. Therefore, the adaptive model 

compensation is widely used in practical applications. 

4.2. Friction Model-Free Control Strategy 

From the perspective of system and control, there are many non-linear determinants 

of friction, and it is often difficult to establish a dynamic model that can reflect friction 

behavior. For example, in discontinuities near speed zero, flat tops, etc., these effects are 

difficult to predict and, therefore, difficult to counteract using traditional control laws. 

Furthermore, advanced control strategies are used to change the control parameters or 

structures, thereby improving the disturbance-suppression capability of the servo system. 

One part is the mechanical structure used to offset friction, and the other part is the model-

free friction control strategy. 

4.2.1. Mechanical Structure 

The essence of the pulse control method is to compensate for a certain pulse signal in 

the input of the system so that the system can enter the dynamic friction state in advance 

and reduce the loss. In [65], the authors found that saturation occurred when the ratio of 

the two natural frequencies of a system with quadratic nonlinearity was approximately 

2:1 and the system was excited at frequencies close to its higher natural frequency. The 

nonlinear factors can be suppressed by saturating the nonlinearity and paying special at-

tention to the influence of dry friction on the stability boundary. The results showed that 

dry friction tends to shrink the stable region in some parts, but expanded other parts of 

the stable region. Friction, particularly its nonlinear component, could degrade the track-

ing performance of the robot. In the same year, Mei et al. [66] proposed a new nonlinear 

friction compensation method based on Kang’s method, which improved upon the tradi-

tional nonlinear friction compensation method. The enhanced tracking performance was 

verified under the SCARA robotics experimental platform using Windows NT and Ven-

turCom real-time extension module (RTX) environment. Figure 9 shows a control block 

diagram of the nonlinear friction compensation method. 
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PD 1/J* 1/s1/s

B*
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−

−

+

+

−
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Figure 9. Block diagram of an implementation of a controller [66]. 
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Torque feedback control involves installing a sensor of the measured motor output 

on the coupling shaft and forming a loop through feedback to achieve control. To over-

come this problem, Carneiro and de Almeida [67] explored the use of a pneumatic actua-

tion solution, that is, the pneumatic linear peristaltic actuator (PLPA). Experiments 

showed that, contrary to what happens with low-friction actuators, the use of integral 

action does not limit cycles. Furthermore, a zero steady-state control error was obtained 

in the closed-loop step response, suggesting that the proposed method may lead to a low-

cost and simple motion control solution. In contrast to previous studies on this frictional 

active control mode, Benad et al. [68] devoted themselves to a theoretical analysis of slid-

ing friction under the influence of in-plane oscillations perpendicular to the sliding direc-

tion. The effects of the frictional contact stiffness and displacement control system were 

considered in detail. The results showed that the contact stiffness plays a central role for 

small amplitudes, in which case the macroscopic friction coefficient was a function of two 

dimensionless parameters: the dimensionless sliding velocity and dimensionless oscilla-

tion amplitude. 

4.2.2. Model-Free Friction Compensation Methods 

The principle of the model-free friction compensation method is that it regards fric-

tion as an external disturbance and improves the ability of the system to suppress disturb-

ances and friction by changing the control structure or parameters. Compensation meth-

ods include the high-frequency vibration method, high-gain PD/PID control, variable 

structure control, disturbance observer design, impulse control, and robust control. 

He et al. [69] proposed an adaptive robust dead-time compensation controller based 

on a backstepping method for an electro–hydraulic servo system (EHSS) with an un-

known dead band and uncertain system parameters. Treating the variable load as the sum 

of the constant and variable parts, the constant part as one parameter of the system was 

estimated in real time, and the variable part, together with the friction as a disturbance. 

Therefore, robust terms in the controller can be used to reject them. Compared with the 

traditional dead-time compensation method, a dead-time compensator was added to the 

EHSS without constructing a dead-time inverse. Combined with the backstepping 

method, an adaptive robust controller (ARC) with dead-time compensation was devel-

oped. An easy-to-use ARC tuning method was proposed after further analysis of the ARC 

structure. The simulation results showed that the method had a good tracking perfor-

mance, all uncertain parameters could be estimated, interference was suppressed, and 

dead zone terms were well estimated and compensated. 

Yue and Li [70] designed an adaptive sliding mode control algorithm based on neural 

network friction compensation for optoelectronic tracking systems under friction and ex-

ternal disturbances. A neural network controller was used to identify nonlinear friction 

and integrate it into an adaptive sliding-mode control system under the Lyapunov frame-

work. Experiments showed that the adaptive sliding mode controller with friction com-

pensation could effectively reduce the influence of nonlinear friction and external disturb-

ances of the optoelectronic tracking system using neural network approximation. Chuei 

and Cao [71] built an extreme learning machine-based hyper-twist repetitive control 

(ELMSTRC) based on an extreme learning machine hyper-twisting algorithm, repetitive 

control, and stable extreme learning machine-based hyper-twist control. Simulations and 

experiments showed that the nonlinear periodic perturbations, parameter uncertainty, 

nonlinear friction, and backlash were well controlled. 

Wang et al. [72] introduced weighting factors to design model-based and model-free 

adaptive friction-compensation controllers. The role of friction in the control process was 

determined according to the weighting factor, and the damping characteristics of friction 

were fully utilized. On the one hand, it compensated for the friction that was detrimental 

to stability, and on the other hand, it utilized beneficial friction to improve the control 

performance. Numerical simulations demonstrated that the robust control problem of ro-

botic manipulator systems with uncertain dynamics was well resolved. In the same year, 
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Lee and Ryu [73] proposed a robust controller design for rotary motion control systems, 

which included a proportional–integral–derivative (PID) controller, disturbance observer, 

and friction compensator. A disturbance observer (DOB) based on simple and effective 

robust control theory enabled rotary motion control systems to be “robust” against iner-

tia/load changes, external torque disturbances, and some frictional forces. The perfor-

mance of the robust DOB-based motion control system was further enhanced by adding 

a friction compensator and was experimentally verified. 

Xu et al. [74] proposed a backstep integral non-singular fast terminal sliding mode 

control method based on an extended state observer for trajectory tracking control of ro-

botic manipulators with LuGre friction. An integral fast terminal sliding surface was in-

troduced to improve the convergence speed and tracking accuracy. An appropriate satu-

ration function was designed for the control input to avoid singularity, and the uncer-

tainty and disturbance were estimated by the extended state observer and compensated 

by the control law to effectively eliminate jitter. The control input of the system was de-

signed using the backstepping method to guarantee global asymptotic stability based on 

the Lyapunov criterion. Compared with other control methods, the simulation results 

demonstrated the effectiveness and superiority of this control scheme. 

Model-free friction compensation treats friction effects as external disturbances and 

provides a new method to solve nonlinear friction problems in servo systems. The core 

control concept is to improve the ability of the system to suppress disturbances. The fric-

tion model was combined with other disturbances, and there was no exact friction model 

compensation. In the control term, the control structure and parameters were changed to 

ensure the accuracy of the system. 

4.3. Composite Control Strategy 

In [75], the authors classified the friction state into three states: the pre-slip state, total 

slip state, and predicted state. The relationships between these three states are shown in 

Figure 10. Comparative trajectory tracking experiments were conducted using an inertial-

stabilized platform simulator for three control schemes: single proportional derivative 

(PD) control, PD based on LuGre model compensation, and PD with a compensator based 

on the proposed model. The experimental results showed that the control scheme based 

on this model had the best tracking performance, which reduced the peak-to-peak (PPV) 

of the tracking error to 0.2 m/rad, which was nearly 50% higher than the PD based on 

LuGre model compensation. Compared with the single PD control, the PPV error was 

reduced by 66.7%. It has been demonstrated that any control model has unique strengths 

and weaknesses. With advancements in science and technology, the requirements for pre-

cision are increasing, and a single control compensation method can no longer meet the 

needs of the researchers. Therefore, researchers have attempted to combine research mod-

els, give play to their advantages, remove the shortcomings of the models, take essence, 

and remove the dross, to form a composite control method.  
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Figure 10. Transition diagram of friction regime [75]. 

A state observer [76] is to estimate the state signal of the system that cannot be di-

rectly measured according to the measurable output signal of the system. The observation 

of friction generally adopts this form. As shown in Figure 11, Han et al. [77] established a 

robust localization-control scheme using a friction parameter observer and a recurrent 

fuzzy neural network based on sliding mode control. The nonlinear dynamic friction was 

fully captured by the friction state observer, and an approximation method of the system 

uncertainty was developed using recursive fuzzy neural network technology to improve 

the positioning accuracy. Simulations and experiments were conducted to verify the per-

formance of the proposed robust control scheme. Meng et al. [78] constructed an adaptive 

robust controller for dynamic friction compensation, based on the LuGre model. Online 

recursive least squares estimation (RLSE) was employed to reduce the degree of parame-

ter uncertainty, and a sliding mode control method was employed to mitigate the effects 

of parameter estimation errors, unmodeled dynamics, and disturbances. An improved 

dual-observer structure was built to ensure the specified transient performance and final 

tracking accuracy of motion tracking. The recursive inference method was used to com-

pensate for the uncertainty of the system model. To resolve the conflict between the slid-

ing-mode control design and adaptive control design, projection mapping was used to 

adjust the RLSE algorithm to maintain parameter estimates within a known bounded con-

vex set. The test results showed that the tracking performance of sinusoidal trajectories 

and smooth square trajectories under different loads and burst disturbances was very 

good, especially when tracking 0.5 Hz sinusoidal trajectories; the maximum tracking error 

was 0.96 mm, and the average tracking error was 0.45 mm. 

Adaptive friction 
parameter observer & β 

+

−

θd

Adaptive 
laws 

RFNN 
controller

Sliding 
surface

Nonlinear friction 
servo system

Compensation controller

Bound estimation 
algorithm

Rotary encoder

+

+

+

θ

s

s

s

s

ur

urfnn

Wi

Tfn + Us

θ

 

Figure 11. Block diagram of the proposed control system [77]. 
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Wu and Yue [79] synthesized a continuously differentiable nonlinear friction model 

of an electro–optic gyro-stabilized platform system by modifying the traditional piecewise 

continuous LuGre model and combining it with an adaptive robust controller to reduce 

the influence of measurement noise. Furthermore, the proposed controller theoretically 

guaranteed asymptotic output-tracking performance even in the presence of modeling 

uncertainty, thereby achieving the expected high control performance. Jiang et al. [80] 

considered the dynamic friction compensation problem of a networked Lagrangian sys-

tem, designed a synchronous controller with better performance, and introduced the Lu-

Gre friction model to obtain an accurate description of friction. A tracking control algo-

rithm for some uncertain parameters was provided, the control algorithm for some pa-

rameters had a lower computational complexity, and the control algorithm for uncertain 

parameters had the ability to adapt to changes by learning the tracking error. Both the 

control algorithms can achieve fast synchronization, and the simulation showed the effec-

tiveness of the proposed tracking algorithm. 

To eliminate the adverse effects of friction torque on the SbW system, Luo et al. [81] 

proposed an observer-based adaptive interval type two fuzzy logic system controller, as 

shown in Figure 12. First, the front wheel angular velocity was estimated by the observer, 

thereby reducing the sensitivity of the system to measurement noise, hardware cost, and 

structural complexity. The friction torque was then identified using an interval type two 

fuzzy logic system (IT2 FLS). Finally, an adaptive interval type two fuzzy logic system 

controller was proposed to achieve good tracking performance. The tracking error was 

guaranteed to asymptotically converge to zero using Lyapunov stability theory. Numeri-

cal simulations and hardware-in-the-loop (HIL) experiments verified the effectiveness 

and superiority of the proposed friction modeling method and control strategy. 

Adaptive controller

δd +

₋ 

Compensation term

Adaptive laws

Adaptive lawObserver

 

δf

e

γ 

Θ1

Θ2

ΘM

KM

...
...

...

...

IT2 FLS

Parametric observation

∏

∏

∏

SbW system

 

Figure 12. Observer-based adaptive interval type two fuzzy logic system controller [81]. 

When friction compensation is performed on an electro–hydraulic servo system, in 

general, to avoid unnecessary high gain, a single control compensation scheme should not 

be used [82,83]. Instead, various compensation methods should be integrated according 

to the specific conditions of the system to form a composite compensation control method, 

which is the development trend in friction and compensation research in electromechan-

ical servo systems. 

5. Discussion 

5.1. Discussion of Friction Models 

In comparison, the static friction model has a simple structure and easy parameter 

identification, but cannot describe the dynamic characteristics of friction; the dynamic fric-

tion model can describe the friction phenomenon comprehensively, but its structure is 

relatively complex and the parameter identification is difficult. Different mechanical sys-

tems require different degrees of difficulty for friction models, which are related to the 
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essential characteristics of their respective problems. The accuracy of the friction model 

should be high when the sensitivity of the solution is significantly affected by the friction 

model. By contrast, a simple model was selected. At present, there are still some deficien-

cies in the research on friction modeling and the application of friction models, and further 

work should be carried out in the following aspects: 

(1) The establishment of the friction model should not simply describe the friction phe-

nomenon but should be combined with the dynamic equation of the actual servo sys-

tem, to comprehensively model it. A coupling relationship exists between the system 

and friction models. An unsuitable friction model may prevent the correct achieve-

ment of the expected behavior of the system dynamics model, and similarly, an un-

suitable system dynamics model may limit the accuracy of the friction model; 

(2) When establishing a friction model, the software and hardware conditions for pa-

rameter identification should be considered, and the difficulty and practicability of 

friction parameter identification should be comprehensively considered. For a com-

plex friction model, even if the friction phenomenon is described comprehensively, 

it is difficult to achieve parameter identification, which is undesirable, and a compro-

mise solution should be chosen between practicability and complexity; 

(3) Most current verification methods for the accuracy of friction models are based on 

ideal conditions. However, the purpose of friction modeling is to apply the research 

results to practical mechanical systems to solve problems in their design, analysis, 

and control. Therefore, the applicability and feasibility of the friction model under 

the actual operating conditions must be verified. 

5.2. Discussion on Friction Control Strategy 

As friction compensation occupies a key position in the design of high-precision and 

high-performance servo systems, it has become a research hotspot for servo system con-

trol strategies. As shown in Table 4, the friction compensation for the servo system has 

different purposes, according to the different control requirements of the servo system. 

Table 4. Purpose of friction compensation. 

System Characteristics Friction Effect Compensation Purpose 

Bidirectional operation [84] Discontinuity of speed zero Eliminate movement discontinuities 

One-way, low-speed operation [85] Crawling phenomenon Eliminate crawling 

One-way, high-speed operation [86] Large following error Reduce/eliminate following error 

Overall, regardless of the control strategy used, it is necessary to enable the servo 

system to achieve the corresponding performance index. Therefore, it is necessary to select 

the corresponding control strategy according to the performance index. If the performance 

index has high-accuracy requirements, sometimes a single control strategy cannot satisfy 

the requirements of the performance index. In particular, for a servo system with a rela-

tively complex system, it is necessary to combine multiple control strategies to solve a 

situation in which a single control strategy does not satisfy the requirements. A summary 

of the friction-control strategy analysis is presented in Table 5. 

Table 5. Comprehensive analysis of friction control strategies. 

Control Strategy Accuracy Complexity 
Applicabil-

ity 
Advantages Disadvantages 

Control based 

on friction 

model 

Fixed model com-

pensation 
Low High High 

Simple structure and 

convenient design. 
Over-reliance on the accuracy of 

the friction model. Adaptive model 

compensation 
Medium High High 

Achieve online pa-

rameter correction, 

etc. 
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Friction 

model-free 

control 

Mechanical structure High Low Low 
High control accu-

racy. 

The implementation cost is high, 

and the structure is complex. 

Model-free friction 

compensation 
Medium Medium High 

The servo system has 

strong anti-interfer-

ence ability. 

It is necessary to consider nonlinear 

factors comprehensively. 

Composite control High Medium Medium 

Superior control per-

formance, good sta-

bility. 

It is necessary to coordinate the 

coupling relationship between con-

trollers. 

6. Conclusions 

Friction exists widely in electro–hydraulic servo systems and has a significant influ-

ence on the power mechanism of an electro–hydraulic servo system. To improve the ac-

curacy of the power mechanism of the electro–hydraulic servo system, it is necessary to 

focus on the influence of friction on it. This study reviews the friction nonlinearity of servo 

systems, including the friction characteristics, friction model, friction model identification 

strategy, and friction nonlinear control strategy. The published friction model control 

strategies can be classified into three types: friction model-based, friction model-free, and 

composite controls. On this basis, the research direction of the friction model was pro-

posed, and the advantages and limitations of the friction nonlinear control strategy were 

analyzed to provide ideas and solutions to the problem of poor performance of the servo 

system owing to nonlinear friction factors. 
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