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Abstract: Many dynamic simulations of a rotor with a journal bearing employ non-linear fluid-film 
lubrication models and calculate the bearing coefficients at each time step. However, calculating 
such a simulation is tedious and computationally expensive. This paper presents a simplified dy-
namic simulation model of a vertical rotor with tilting pad journal bearings under constant and 
variable (transient) rotor spin speed. The dynamics of a four-shoes tilting pad journal bearing are 
predefined using polynomial equations prior to the unbalance response simulations of the rotor-
bearing system. The Navier–Stokes lubrication model is solved numerically, with the bearing coef-
ficients calculated for six different rotor speeds and nine different eccentricity amplitudes. Using a 
MATLAB inbuilt function (poly53), the stiffness and damping coefficients are fitted by a two-dimen-
sional polynomial regression and the model is qualitatively evaluated for goodness-of-fit. The per-
centage relative error (RMSE%) is less than 10%, and the adjusted R-square (𝑅 ) is greater than 
0.99. Prior to the unbalance response simulations, the bearing parameters are defined as a function 
of rotor speed and journal location. The simulation models are validated with an experiment based 
on the displacements of the rotor and the forces acting on the bearings. Similar patterns have been 
observed for both simulated and measured orbits and forces. The resultant response amplitudes 
increase with the rotor speed and unbalanced magnitude. Both simulation and experimental results 
follow a similar trend, and the amplitudes agree with slight deviations. The frequency content of 
the responses from the simulations is similar to those from the experiments. Amplitude peaks, 
which are associated with the unbalance force (1 × Ω) and the number of pads (3 × Ω and 5 × Ω), 
appeared in the responses from both simulations and experiments. Furthermore, the suggested sim-
ulation model is found to be at least three times faster than a classical simulation procedure that 
used FEM to solve the Reynolds equation at each time step. 
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1. Introduction 
Tilting pad journal bearings (TPJBs) are used in many different applications, being 

preferred for their stability and ease of service. Many studies have been carried out on the 
dynamics of TPJBs, with Lund [1], in 1964, the first researcher to present the dynamic 
characteristics of 4 shoes, 5 shoes, 6 shoes, and 12 shoes TPJBs by introducing the so-called 
“pad assembly method”. Over the past 50 years, TPJBs have been investigated both theo-
retically and experimentally, and research by Nicholas et al. [2], Jones et al. [3], and Keith 
[4] was among the earlier work to study the effect of various TPJB parameters on the dy-
namic bearing coefficients. Other researchers, such as Lund et al. [5,6] and Someya [7], 
made a remarkable contribution to journal bearing design and presented the eight stiff-
ness and damping coefficients of different types of journal bearings (including TPJBs), 
which are still being used today as a design guideline for many journal bearings. Besides, 
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their scientific work and findings contributed to the advancement of modern theoretical 
models. Recent theoretical studies dealing with the dynamics of both fixed geometry and 
TPJBs use advanced modeling by taking into account many different factors. These in-
clude mechanical deformation [8–10], thermal effect [8,11,12], pad flexibility [13–15], and 
pivots flexibility [16–18]. Dimond et al. [19] carried out an extensive review of the devel-
opment of TPJB analysis. The paper reviewed the earlier research into thermohydrody-
namic (THD), thermoelastohydrodynamic (TEHD), and bulk-flow analyses. Besides, the 
development of synchronous and non-synchronous bearing models was discussed. The 
excitation frequency effect on the stiffness and damping coefficients of TPJBs has been a 
long-standing discussion topic for many years. Several researchers [20–22] have investi-
gated the issue and described their findings based on theoretical and/or experimental re-
sults.  

In rotordynamics, a reliable fluid film-bearing model estimation is important for the 
accuracy of the predicted dynamics of a system. In the advanced bearing models, the fluid 
film lubrication model, which is represented by Reynolds or Navier–Stokes equations, is 
solved numerically. Many numerical computations employ nonlinear lubrication models 
to calculate the dynamic coefficients of the journal bearing in both horizontal and vertical 
installations [23–26]. This means the fluid film-bearing model has to be solved at each time 
step simultaneously with the rotor-bearing system simulations. White et al. [27] and Cha 
et al. [25] calculated the nonlinear bearing forces by solving the Reynolds equation at each 
time step. This is, however, a time-consuming and computationally expensive process. 
Many attempts have been made by researchers to simplify and improve the computation 
efficiency of the simulation procedure. Perez et al. [28] used a simplified analytical bearing 
force expression to model the dynamics of a vertical rotor with hydrodynamic journal 
bearing. This approach has previously been presented by Yu Huang et al. [29] to estimate 
the instability threshold speed of cylindrical journal bearings. Nässelqvist et al. [30] sug-
gested a method to make the computation faster by predefining the bearing coefficients 
with polynomials as a function of journal eccentricity. Childs et al. [31] and Tschoepe et 
al. [32] investigated and compared the performance of the TPJBs in the load-on-pad (LOP) 
and load-between-pad (LBP) configurations. Nässelqvist et al. [30] approximated bearing 
coefficients using sinusoidal equations over the range of journal radial positions. Synne-
gård et al. [33] and Benti et al. [34] described how the TPJBs can excite the system and 
cause vibration at certain frequencies due to the number of pads. 

The present work proposes a simplified and computationally efficient model for cal-
culating the dynamic response simulation of a rotor with journal bearings. It is an exten-
sion of the previous study [30] that used one-dimensional polynomial equations to repre-
sent the bearing coefficients as a function of journal eccentricity. One drawback of the 
previous model is that it does not take into account the speed-dependency of the bearing 
characteristics, and the polynomial equations apply only to a particular rotor speed. If the 
rotor speed changes, the polynomial equations have to be recalculated. For this reason, 
the method is limited and impractical for response simulations under variable speed. In 
the proposed model, however, the bearing coefficients are represented by two-dimen-
sional polynomial equations as a function of journal center location and rotor speed. The 
bearing model is general and can be used for a wide range of applications. One limitation 
of the proposed model is the preliminary computational effort required to develop the 
bearing models.  

In this paper, the dynamic response of a rigid rotor supported by two four-shoe TPJBs 
was studied. No static radial load was considered, and the bearings were subjected to a 
dynamic load due to a rotating unbalance. The proposed dynamic model was evaluated 
in terms of accuracy and computational time efficiency. Validation of the model was made 
by comparing the trajectory of the journal center and bearing reaction forces with the cor-
responding experimental results. Furthermore, the computational efficiency of the model 
(in terms of simulation time) was compared with a classical simulation model that simul-
taneously computed the fluid film lubrication model at each time step.  
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2. Experiment 
2.1. Rotor Rig Description 

An experimental test was carried out with a rotor rig installed vertically, as shown in 
Figure 1. A symmetric steel rotor was supported by two identical four-shoe TPJBs at the 
top and bottom end of the rotor. Each bearing was attached to the structure of the rotor 
rig via a bracket. The stiffness of the bracket was estimated to be 500 MN/m [35]. As shown 
in Figure 2, the bearings and brackets were connected in series. The rotor was suspended 
vertically and driven by an electric motor. A slender stinger was used to link the electric 
motor to the rotor and provided support only in the axial direction. It was attached to two 
jaw couplings at both ends to minimize the transfer of torque due to misalignments. An 
unbalanced mass was attached to the rotor at a distance of 70 mm from the axis of the 
rotor. The rotor and the brackets were intentionally designed to be stiffer than the bearings 
in order to be able to investigate the dynamics of the bearings. 

The displacement of the rotor at each bearing was measured by four 4 mm inductive 
proximity displacement sensors (Contrinex DW-AD-509-M8) mounted on the bearing 
housing. The sensors were calibrated on-site for specific target material, which is steel in 
this case. Furthermore, a full Wheatstone bridge strain gauge (Kyowa KFG-5-350-D16-
11L3M2S) was mounted on each bracket to measure the bearing reaction forces. Similarly, 
the sensors were calibrated on-site both directly (shunt calibration) and indirectly (by ap-
plying a known force). Angular speed of the rotor was measured by an optical sensor with 
about ±1 rpm accuracy. All sensors were calibrated on-site by certified calibration equip-
ment. A universal MX840 amplifier of HBM Quantum data acquisition system and Cat-
man data acquisition software were used for measurement. The technical specification of 
the rotor rig is given in Table 1, and a further description is available in [35].  

 
Figure 1. Rotor rig. 
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Figure 2. Schematic representation of the rotor rig. All dimensions are given in mm. 

Table 1. Technical specification of the rotor rig. 

Descriptions Values 
Rotor diameter (mm) 49.84 

Rotor length (mm) 500 
Disk diameter (mm) 100 
Disk thickness (mm) 168 
Direction of rotation Counterclockwise 

The stiffness of the bracket (MN/m) 500 
Rotor mass (kg) 24.74 

2.2. Bearing Description 
The TPJBs had four identical pads (with rocker pivots), located at 0°, 90°, 180°, and 

270° from the x-axis. Each pad was made of a 1 mm thick layer of white metal (babbitt) 
lining and backed with a 7 mm thick layer of steel. Figure 3 and Table 2 show the sche-
matic representation and a detailed specification of the four-shoe TPJB, respectively. The 
parameters were chosen so that the Sommerfeld number of the bearings resembles those 
in hydropower generators. The bearings were supplied with 0.01 MPa lubricant (Q6 Han-
del oil) and operated under fully flooded lubrication conditions. During each test, the inlet 
and outlet lubrication temperatures were measured by PT100 thermocouples (with ±0.5 
°C accuracy). The temperature sensors were installed right before and after the upper and 
lower TPJBs. As shown in Figure 4, the inlet and outlet average temperature measure-
ments are plotted as a function of rotor speed.  
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Table 2. Technical specification of the four-shoes TPJB. 

 Descriptions Values 
Bearing Geometry Number of pads 4 
 Journal diameter (mm) 49.84 
 Pad length (mm) 20 
 Pad angle (degree) 72 
 Angular pivot position (degree) 0°, 90°, 180°, and 270° 
 Radial bearing clearance (mm) 0.13 
 Radial pad clearance (mm) 0.159 
 Pad pivot offset ratio (-) 0.6 
 Preload ratio (-) 0.18 
 Pad thickness (mm) 8 
Material Bearing surface material (Babbitt)  
 Thickness (mm) 1 
 Density (kg/m3) 7280 
 Base pad material (Steel)  
 Thickness (mm) 7 
 Density (kg/m3) 7850 
Lubricant Q6 Handel oil  
 Oil supply pressure (MPa) 0.01 

 Average inlet and outlet lubrication tem-
perature (°C) See Figure 4 

 Viscosity at 40 °C (mPa·s) 27.64 
 Viscosity at 100 °C (mPa·s) 6.493 
 Density (kg/m3) 872 

 
Figure 3. Schematic representation of the four-shoes TPJB. The global and local coordinates are 
given in the x-y and ξ-η directions, respectively. 
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Figure 4. The measured inlet (Tin) and outlet (Tout) average temperatures of the lubricant are plotted 
as a function of the rotor speed. 

3. Numerical Model 
The numerical simulation model consists of two main parts. For the first part (de-

scribed in Section 3.1), the bearing coefficients were numerically calculated using the com-
mercial software package RAPPID [36] for a number of relative eccentricities and rotor 
speeds. The set of the predicted bearing coefficients was then fitted by a two-dimensional 
polynomial regression, and the stiffness and damping coefficient represented by polyno-
mial equations. In the second part of the simulation procedure (described in Section 3.2), 
the equation of motion of the rotor rig was numerically solved using MATLAB software. 
The bearing coefficients were calculated using the polynomial equations derived in the 
first part of the simulation procedure. Note that the two parts were carried out separately. 
The simulation procedure is shown, using a graphical flowchart, in Figure 5a. In addition 
to this, the flowchart of a classical method (Model II) is shown in Figure 5b. The bearing 
forces were calculated by solving the fluid film model and integrating the pressure distri-
bution over the fluid domain at each time step. For simplification, the pressure distribu-
tion of the fluid film lubrication model was calculated by solving Reynolds equation. The 
simulation results from Model II are presented in Section 4.1.3. The computational effi-
ciency of Model II was compared with that of the proposed model (Model I) based on the 
computational time.  
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Figure 5. The flow chart of the (a) Model I: model described in this paper and (b) Model II: classical 
model. 

3.1. Bearing Model 
3.1.1. Bearing Coefficients Using Fluid Film Lubrication Theory 

The linearized stiffness and damping coefficients of the four-shoe TPJB were numer-
ically computed using a commercial software package RAPPID [36] that solves the aver-
aged Navier–Stokes based governing equations, i.e., conservation of mass, momentum, 
and energy. The bearing coefficients were calculated at given eccentricities, assuming no 
whirling of the journal. A quasi-static approximation was applied, and the whirling effect 
was not considered when solving the fluid-film lubrication model. In other words, a jour-
nal’s tangential velocity (V ) was assumed to be dependent only on the spinning speed of 
the journal. For small orbit amplitudes (e), the journal’s tangential velocity due to whirling 
effect can be ignored. For large orbit amplitudes (compared to the radius of the journal), 
however, the velocity component due to the moving journal center cannot be ignored, and 
quasi-static approximation could be inadequate. In this paper, the amplitude of the whirl 
was considerably smaller than the radius of the rotor, and the dynamic effect of the mov-
ing journal center was neglected. Thus, the quasi-static approximation is reasonable. Sim-
ilarly, for large hydropower rotors, the radius ratio (e/R) is even significantly small, and 
the quasi-static approximation can be adequate.  
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All bearing components were assumed to be rigid, and their thermal and mechanical 
deformations were ignored. No friction between the surface of the pads and the bearing 
housing was considered. Besides, the mass properties of the pad were included in the 
dynamic solution that determines the transfer function. The pad tilts from its neutral po-
sition by rolling. This means the pivot contact point translates from its neutral position 
without sliding. In the neutral position, the four pivots were located at 0°, 90°, 180°, and 
270°. Axial grooves between two consecutive pads were continuously fed by the supply 
lubricant and mixed with hot oil carried over from the preceding pad. For all simulations, 
the pressure and temperature of the supplied lubricant were 0.01 MPa and 23 °C, respec-
tively. Table 3 shows the maximum temperature of the lubricant at each pad for different 
rotor speeds and relative eccentricity equal to 0.6. The viscosity of the lubricant was cal-
culated by the program, which uses Vogel’s Law to curve fit the data. The pressure and 
temperature of the lubricant at the side edges of the pads were assumed to be equal to 
0.001 MPa and 23 °C. Besides, cavitation was assumed to occur when the fluid film pres-
sure was less than or equal to 0 Pa.  

Table 3. Maximum lubricant temperature for relative eccentricity equal to 0.6 and different rotor 
speeds. 

Rotor Spin 
Speed (RPM) 

Temperature (°C) 
Pad 1 Pad 2 Pad 3 Pad 4 

250 26.11 25.91 25.75 26.05 
500 26.32 25.87 25.55 26.1 
1000 27.88 26.76 26.18 27.18 
1500 29.53 27.58 26.89 28.35 
2000 31.23 28.47 27.39 29.26 
2500 34.28 30.32 29.16 31.73 

Six different rotor speeds between 250 rpm and 2500 rpm (250 rpm, 500 rpm, 1000 
rpm… 2500 rpm), and nine different relative eccentricities (0.01, 0.1, 0.2… 0.8) were con-
sidered. For each rotor speed, a relative eccentricity was predefined, and the bearing co-
efficients were calculated for 100 different angular positions of the journal (eccentricity 
angle) between −45° and +45°. In Figures 6 and 7, the grey circles show the stiffness and 
damping coefficients that are calculated using RAPPID for 0.5 relative eccentricity at 1500 
rpm rotor speed. Since the pads were assumed to be identical, the bearing coefficients 
obtained from the computation were periodical. Thus, they could be represented mathe-
matically by sine and cosine functions [15] once the maximum and minimum coefficients 
are known. For a given relative eccentricity (𝜀) and eccentricity angle (𝛼), the direct and 
cross-coupling bearing coefficients can be expressed by Equations (1) and (2),  𝐾 (𝜀, 𝛼, Ω) =  𝐾 (𝜀, Ω) + 𝐾 (𝜀, Ω)2  𝑠𝑖𝑔𝑛 𝐾 (𝜀, Ω) − 𝐾 (𝜀, Ω)2  ∙ 𝛾 (1)

𝐶 (𝜀, 𝛼, Ω) =  𝐶 (𝜀, Ω) + 𝐶 (𝜀, Ω)2 𝑠𝑖𝑔𝑛 𝐶 (𝜀, Ω) − 𝐶 (𝜀, Ω)2  ∙ 𝛾 (2)

where 𝑠𝑖𝑔𝑛 =  +                  𝑖𝑗 =  𝜉𝜉−            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
𝛾 =  𝑐𝑜𝑠 (𝑛𝛼)            𝑖 =  𝑗𝑠𝑖𝑛 (𝑛𝛼)             𝑖 ≠  𝑗   , 𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑑𝑠 

and 𝐾 , 𝐶 , 𝐾 , 𝐶  are the maximum and minimum bearing coefficients ob-
tained from simulation of the fluid film lubrication model at a given relative eccentricity 
(𝜀) and rotor speed (Ω) in the local (i,j → ξ,η) coordinates. 
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Figure 6. The local stiffness coefficients of the bearing at 0.5 of relative eccentricity and 1500 rpm. 
Circles (o) represent the stiffness coefficients calculated by RAPPID, whereas solid lines represent 
the stiffness coefficients calculated according to Equation (1). 

 
Figure 7. The local damping coefficients of the bearing at 0.5 of relative eccentricity and 1500 rpm. 
Circles (o) represent the damping coefficients calculated by RAPPID, whereas solid lines represent 
the damping coefficients calculated according to Equation (2). 

The bearing coefficients (𝐊𝛃 and 𝐂𝛃) are given in the local coordinates and have to 
be transformed to Cartesian coordinates prior to using them in Equation (15). Transfor-
mation of bearing matrixes was performed using Equations (3) and (4), 𝐊𝐁 = 𝐓𝐓𝐊𝛃𝐓 (3)

-50 0 50
[degree]

1.5

2

2.5

3

K
 [N

/m
]

106

-50 0 50
[degree]

-5

0

5

K
 [N

/m
]

105

-50 0 50
[degree]

-5

0

5

K
 [N

/m
]

105

-50 0 50
[degree]

0.5

1

1.5

K
 [N

/m
]

106

-50 0 50
[degree]

0.8

1

1.2

1.4

1.6

C
 [N

s/
m

]

104

-50 0 50
[degree]

-2000

-1000

0

1000

2000

C
 [N

s/
m

]

-50 0 50
[degree]

-2000

-1000

0

1000

2000

C
 [N

s/
m

]

-50 0 50
[degree]

5000

6000

7000

8000

9000

C
 [N

s/
m

]



Machines 2022, 10, 556 10 of 34 
 

 

𝐂𝐁 = 𝐓𝐓𝐂𝛃𝐓 (4)

where 𝐓 is a transformation matrix.  𝐓 = 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛼)− 𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)  (5)

3.1.2. Least-Square Approximation and Measures of Fitness 
As discussed in the previous subsection, a total of 36 fluid film simulations were car-

ried out, and the maximum and minimum values of each direct and cross-coupling bear-
ing coefficients extracted. In Figures 8–11, the maximum and minimum values from the 
fluid film simulations are represented by dots. The approximated bearing coefficients are 
modeled using a two-dimensional polynomial equation as shown in Equation (6), 

𝑌 = 𝛽 ∙ 𝜀 ∙ 𝛺  ,   𝑖 + 𝑗 ≤ max (𝑟, 𝑠) (6)

where 𝑌 represents an approximated local bearing coefficient and is defined as a function 
of relative eccentricity (𝜀) and rotor speed (Ω). The degrees of relative eccentricity and 
rotor speed are represented by r and s, respectively. Regression coefficients (𝛽 ) that min-
imize the sum of the square error (L) were estimated by fitting the model using a linear 
least-square method in MATLAB [37]. This means that the derivatives of Equation (7) with 
respect to each polynomial coefficient are approximated to be zero, Equation (8).  

𝐿 = (𝐸𝑟𝑟𝑜𝑟) = 𝑌 − 𝑌  (7)

𝜕𝐿𝜕𝛽 , ,… = −2 𝑌 − 𝑌 ∙ 𝜀 ∙ Ω ≈ 0 (8)

The model was tested for different polynomial orders and the goodness-of-fit of each 
model was evaluated. A percentage relative error (𝑅𝑀𝑆𝐸%) and adjusted R-square (𝑅 ) 
were used for evaluation. The percentage relative error was calculated by dividing the 
absolute error estimation (RMSE) with the root mean square of the response (RMSY) and 
multiplying by 100 [37], Equation (9). A low value indicates a better model. The 𝑅  is 
an extension of the ordinary 𝑅  that indicates how well the fit accounts for the variation 
of data. It accounts for the residual degrees of freedom (𝑁 -p) and does not increase due 
to variables added to the model, which is the case for 𝑅 . The values of 𝑅  can be less 
than or equal to one including negative values, and the fit is better as 𝑅  approaches 
one, 𝑅𝑀𝑆𝐸% = 𝑅𝑀𝑆𝐸𝑅𝑀𝑆𝑌 ∙ 100%  (9)

𝑅 = 1 − 𝑆𝑆𝐸𝑆𝑆𝑇 ∙ 𝑁 − 1𝑁 − 𝑝  (10)

where 𝑁  and p are the number of response values and polynomial coefficients, respec-
tively.  

𝑆𝑆𝐸 = 𝑌 − 𝑌   (11)
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𝑆𝑆𝑇 = (𝑌 − 𝑌 )   (12)

𝑅𝑀𝑆𝐸 =  𝑆𝑆𝐸𝑁 − 𝑝  (13)

The 𝑅𝑀𝑆𝐸% and 𝑅  of ten different models are given in Appendix A. Five differ-
ent degrees of 𝜀  (i = 1… 5) and three degrees of Ω  (j = 1, 2, and 3) were considered. Both 𝑅𝑀𝑆𝐸% and  𝑅  indicate that the accuracy of the fit of each coefficient increased as n 
increased. The polynomial model with n = 5 and m = 3 showed lower values of 𝑅𝑀𝑆𝐸%, 
and 𝑅  values that were close to one. Therefore, poly53 (a MATLAB inbuilt function) 
was chosen as it was relatively the best fit model compared to the other models presented 
in this paper. All values of 𝑅𝑀𝑆𝐸% and  𝑅  of the poly53 fit were <10% and >0.99, re-
spectively. The bearing coefficients were then fitted using poly53 as shown in Figures 8–
11, and the regression coefficients of Equation (14) are given in Appendix B.  𝑌 = 𝛽 + 𝛽 ∙ε+ 𝛽 ∙ Ω +   𝛽 ∙ 𝜀 + 𝛽 ∙ 𝜀 ∙ Ω +  𝛽 ∙ Ω + 𝛽 ∙ 𝜀  +  𝛽21 ∙ 𝜀2 ∙ Ω                   + 𝛽 ∙ 𝜀 ∙ Ω +  𝛽 ∙ Ω +  𝛽 ∙ 𝜀   +  𝛽 ∙ 𝜀 ∙ Ω +  𝛽 ∙ 𝜀 ∙ Ω                    + 𝛽 ∙ 𝜀 ∙ Ω +  𝛽 ∙ 𝜀 +  𝛽 ∙ 𝜀 ∙ Ω +  𝛽 ∙ 𝜀 ∙ Ω  +  𝛽 ∙ 𝜀 ∙ Ω   

(14)

 
Figure 8. The maximum stiffness coefficients in the local coordinates, fitted using MATLAB (poly53). 
The dots represent the results from the fluid film simulations. 
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Figure 9. The minimum stiffness coefficients in the local coordinates, fitted using MATLAB (poly53). 
The dots represent the results from the fluid film simulations. 

 
Figure 10. The maximum damping coefficients in the local coordinates, fitted using MATLAB 
(poly53). The dots represent the results from the fluid film simulations. 
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Figure 11. The minimum damping coefficients in the local coordinates, fitted using MATLAB 
(poly53). The dots represent the results from the fluid film simulations. 

3.2. Rotor Rig Model 
In the second part of the numerical simulation procedure, the unbalance response of 

the rotor rig was simulated. Figure 2 shows the schematic representation of the rotor rig, 
which comprises the rotor and supports. The first natural frequency of the rotor is higher 
than the frequency region of interest, and it is, therefore, modeled as a rigid rotor. The 
numerical model of the rotor rig includes the rotor and two identical supporting struc-
tures, representing a total of eight degrees of freedom (DOF), 𝐪 =  [𝑥  𝑦  𝑥  𝑦  𝑥 𝑦 𝜃 𝜓] . 
In the vector 𝐪, the first four variables are the DOF of the upper and lower supports, 
whereas the last four variables are the DOF of the rotor. Each support is composed of the 
four-shoes TPJB and the bracket.  

The rotor was modeled as a rigid rotor and represented by a mass matrix (M) and 
gyroscopic matrix (G). Equation (15) show the general equation of motion, and it was 
rearranged in the state-space formulation and solved numerically using MATLAB 
(ode15s). The brackets had a direct stiffness of 500 MN/m, represented by 𝐊𝐒. Depending 
on the speed and journal location, the stiffness (𝐊𝐁) and damping (𝐂𝐁) coefficients of the 
bearings varied.  𝐌𝐪 + ϕ𝐆 + 𝐂𝐁 𝐪 + ϕ𝐆 + 𝐊𝐁 + 𝐊𝐒 𝐪 = 𝐟𝐮 (15)

where 𝜙 is the angular speed, 𝜙 is the angular acceleration, 𝐟𝐮 is the unbalance force 
vector. 

𝐟𝐮 = 𝑚 𝑑𝜙 𝑐𝑜𝑠(𝜙) + 𝑚 𝑑𝜙 sin(𝜙)𝑚 𝑑𝜙 𝑠𝑖𝑛(𝜙) − 𝑚 𝑑𝜙 cos(𝜙)00  (16)

For the response simulations under constant rotor spin speed (𝜙 = Ω), the angular 
acceleration is zero (𝜙 = 0). The simulations were carried out for 200 shaft revolutions and 
responses at the beginning of the simulation, which occurred before the rotor reached its 
stable closed-orbit response, were ignored. The unbalance force (𝐟𝐮), which is due to the 
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unbalance mass (𝑚 ) located at a distance d from the axis of the rotor, has a nonlinear 
relationship with the speed of the rotor (𝛺), Equation (16). 

Unlike the response simulations under constant rotor spin speed, the angular veloc-
ity of the rotor (𝜙) in the transient response simulations changes linearly with time. Three 
different unbalance magnitudes and three different angular acceleration rates were con-
sidered. In the simulations, the ramp-up of the rotor speed started from 250 rpm and lin-
early increased to 2500 rpm. Low-speed operations (<250 rpm) were not considered in the 
simulation as the bearings operated at low eccentricities and displayed strong nonlinear-
ity. 

4. Results 
4.1. Responses under Constant Rotor Spin Speed 
4.1.1. Orbits and Bearing Reaction Forces 

The simulated shaft displacements and bearing reaction forces were investigated and 
compared with the experiments. Both the upper and lower four-shoe TPJBs were ana-
lyzed. Figure 12 shows the responses from the simulation and experimental results for an 
unbalance magnitude of 5.9 × 10−3 kg·m and 500 rpm, 1500 rpm, and 2500 rpm rotor 
speeds. All the response measurements have been filtered with a fourth-order Butter-
worth bandpass filter, using lower and upper cut-off frequencies of 3 Hz and 10 × Ω, re-
spectively. The responses from the original measurements, so the unfiltered data (UF), 
have been plotted together with the responses of the filtered data (F) and the simulation 
results (S). Besides, the average values of the filtered data, denoted by Fm, are shown in 
the same figure. The simulation results (S) represent the displacement and force responses 
calculated for 200 shaft revolutions. However, the results from the beginning of the sim-
ulations, before they reached stable closed orbits, have been excluded from the analysis. 

The shapes of the simulated orbits and forces are similar to those from the experi-
ments. Both the orbits and forces are square-shaped since the bearing coefficients vary 
depending on the position of the shaft. The stiffness and damping coefficients are rela-
tively larger when the journal is located on pads, resulting in lower shaft displacement 
and larger bearing forces. The orbits and bearing forces for 1.7 × 10−3 kg·m and 3.8 × 10−3 
kg·m are shown in Appendix C. Similarly, the shapes of the orbits and forces are square, 
though they are not as amplified as the orbits for larger unbalance magnitudes. At lower 
unbalance magnitudes and rotor speeds, the amplitudes of the displacements and bearing 
forces are relatively lower, and the orbits and forces are round. 
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Figure 12. Orbits and bearing forces for the upper and lower bearings with 5.9 × 10−3 kg·m unbalance 
magnitude and at 500 rpm, 1500 rpm and 2500 rpm: UF: unfiltered measurement signal; F: filtered 
measurement signal by a band pass filter; Fm: the average value of the filtered measurement signal; 
S: simulation. 

4.1.2. Resultant Displacements and Forces 
The resultant displacements ( 𝑒 + 𝑒 ) and forces ( 𝐹 + 𝐹 ) were calculated for 

both simulations (S) and experiments (Fm). Figures 13 and 14 show the summary of the 
results for different unbalance magnitudes and rotor speeds. Data points were fitted in 
MATLAB using piecewise cubic interpolation for visualization. An amplitude peak close 
to 1000 rpm was observed in the measurements due to the structural resonance of the 
Plexiglas shield. This amplitude peak did not exist in the simulations. The results of the 
simulations and experiments show similar trends, and the amplitude of the responses in-
creases with the unbalance magnitude and rotor speed. For both upper and lower bear-
ings, the maximum resultant displacements and forces from the numerical simulations 
were 90.8 μm (𝜀 = 0.69) and 360.3 N. Similarly, in the experiments, the shaft was displaced 



Machines 2022, 10, 556 16 of 34 
 

 

by a maximum of 89.3 μm (𝜀 = 0.68) and 100.5 μm (𝜀 = 0.77) at the upper and lower bear-
ings, respectively. The maximum force acting on the upper and lower bearings was 416.5 
N and 403 N, respectively.  

In order to evaluate the accuracy of the model, the proportional deviations of the 
simulations from the experiments were calculated using Equations (17) and (18). Table 4 
shows the percentage of relative errors of the resultant displacement (%E ) and bearing 
force (%E ) at each rotor speed, with the values ranging from zero to positive infinity. 
A value close to zero indicates a better correlation between the simulation and the exper-
iment. The simulation deviated by a maximum of 54.1% from the experiment, for 1.7 × 10−3 

kg·m unbalance magnitude and 1000 rpm rotor speed. This is expected since the measure-
ments are affected by structural resonance at this rotor speed. Excluding the comparison 
at 1000 rpm, the maximum deviation was 39.4%. With some exceptions, the deviation was 
relatively higher at lower rotor speeds and lower unbalance magnitudes.  %E =  𝑒 − 𝑒𝑒 𝑥 100%   (17)

%E =  𝐹 − 𝐹𝐹 𝑥 100%,   𝑖 ≔ 𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 (18)

Table 4. The percentage relative errors of the resultant displacement (%E ) and the bearing force 
(%E ). 

 𝒎 ∙ 𝒅 
RPM 

500 750 1000 1250 1500 1750 2000 2250 2500 %E  
1.7 × 10−3 18.2 13 48 5.5 18.5 23.9 26.2 28.7 28.7 
3.8 × 10−3 6.9 24 23.3 6 7.4 8.3 7.8 8.3 9 
5.9 × 10−3 10.2 14.6 7.6 8.6 8.2 4.5 4.4 4.4 1.6 

%E  
1.7 × 10−3 20.8 30.7 38.2 20.5 30 31.7 32.6 35.5 36.7 
3.8 × 10−3 29.9 32.7 23.5 18 18.7 17.2 17 15.2 18 
5.9 × 10−3 29.9 23.2 1.8 9.4 11.6 10.3 11.3 9.2 9.6 

%E  
1.7 × 10−3 35.6 31.8 54.1 11.9 14.4 19 22.6 26.9 33.5 
3.8 × 10−3 17.5 20.5 38.9 0.9 9.1 10.9 14.3 21.1 22.3 
5.9 × 10−3 15.2 23.2 16.8 0.1 5.2 5.8 11.4 16.6 13.5 

%E  
1.7 × 10−3 39.4 21.7 35.8 0.1 14.3 21.1 20.9 25.8 29.5 
3.8 × 10−3 13.4 13.1 14.3 6.3 12 13 10.9 16.9 15.5 
5.9 × 10−3 10 17.4 5.9 1.8 8.8 10.9 11.2 16.2 10.6 
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Figure 13. Summary of the measurements showing the mean values of the resultant displacement 
and reaction forces for the upper and lower bearings. The data points are shown with black circles. 

 
Figure 14. Summary of the simulation result showing the mean values of the resultant displacement 
and reaction forces for the upper and lower bearings. The data points are shown with black circles. 

4.1.3. Computational Time 
In the previous two subsections, the accuracy of the simulation model presented in 

this paper (Model I) was evaluated. The results from the unbalance response simulations 
were compared with the results from the experiments. In this subsection, the computa-
tional efficiency of the model in reducing the simulation time is described. Model I was 
compared with the classical simulation approach (Model II), which requires solving the 
fluid film lubrication models at each time step. Flow charts for the two numerical models 
are shown in Figure 5. The unbalance response of the rotor rig for 5.9 × 10−3 kg·m and 1500 
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rpm was simulated for 0.5 s (i.e., 12.5 revolutions), and the computation time required by 
the two models were compared. All the simulations, which are presented in this subsec-
tion, were carried out on a standard consumer laptop (Intel Core i7-8850H and CPU at 
2.60 GHz) using MATLAB 2019a software.  

For Model II, the unbalance response of a rotor rig was numerically simulated by 
employing FEM to solve the Reynolds equation. Descriptions of the Reynolds equation 
and the simulation procedure are given in Appendix D of this article and in [38–40]. For 
simplification, a plain cylindrical journal bearing with no groove was considered. As with 
the four-shoe TPJB, the diameter of the journal and the axial length of the plain bearing 
were 49.85 mm and 20 mm, respectively. The fluid film domain was discretized into the 
Ne × Me number of elements, where Ne is the number of elements in the circumferential 
direction and Me is the number of elements in the axial direction. The pressure distribu-
tion of the fluid film lubrication was numerically calculated by solving the Reynolds equa-
tion using FEM.  

For Model I, the polynomial equations from the first part (Part I in Figure 5a) were 
used for all simulations without redoing the entire analysis. The computational time re-
quired to compute the unbalance response, Part II of the simulation procedure, was 0.897 
s. The accuracy and computational time needed to run simulations using Model II are 
dependent on the number of elements used in the FEM. Table 5 shows the results of dif-
ferent unbalance response simulations and their corresponding computational time. By 
increasing the number of elements, the accuracy of the simulation improves, which, in 
turn, increases the simulation time. For illustration, the values in Table 5 are plotted in 
Figure 15. As the number of elements increases, the relative eccentricity and force con-
verge to exact solutions, and the curves approach towards flat horizontal lines. Regardless 
of the accuracy, Model I was at least three times faster than Model II in terms of compu-
tation time. For low numbers of elements, the accuracy of the results is noticeably poor, 
and the computation time increases depending on the level of accuracy required. Moreo-
ver, unlike plain cylindrical journal bearings, the TPJB model includes additional degrees 
of freedom due to the motion of the pads, resulting in greater computational effort. There-
fore, Model II would have taken longer computational time if TPJBs were modeled instead 
of plain cylindrical journal bearings. 

Table 5. The unbalance response simulation results for Model II for different number of mesh ele-
ments. A MATLAB tic-toc command was used to find the computational time. 

Mesh (Ne × Me) Computational Time [sec] Relative Eccentricity [-] Force [N] 
6 × 4 3.31 73.91 69.08 
8 × 6 5.43 63.05 75.75 

14 × 9 10.65 59.05 79.96 
18 × 12 19.08 58.86 81.34 
27 × 18 40.75 58.69 82.95 
36 × 24 91.37 59.01 83.36 
54 × 36 297.92 59.17 84.06 
90 × 60 2000.10 59.34 84.63 
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Figure 15. The computational time plotted together with the relative eccentricity and force ampli-
tudes as a function of number of elements in circumferential coordinates. 

Figure 16 shows the unbalance responses of the two simulation models. In fact, the 
two models simulate two different bearing types, so the results are expected to be differ-
ent. Unlike Model I, both the orbits and bearing forces of Model II are circular since the 
bearings behave in similar ways regardless of the angular position of the journal. The dy-
namic coefficients of the four-shoe TPJB in Model I, however, vary periodically over the 
bearing’s circumferential angle, leading to square-shaped orbits. Apart from the influence 
of pads in the TPJB model, however, the results from Model I agree with those from Model 
II, especially for finer meshes. 

 
Figure 16. The orbits and bearing forces from the two simulation models. 

4.2. Transient Responses 
4.2.1. Displacements and Bearing Reaction Forces 

The simulation and experimental results with different unbalance magnitudes and 
angular acceleration rates are presented. Figures 17 and 18 display the displacements and 
bearing forces of the upper and lower bearings with 5.9 × 10−3 kg·m unbalance magnitude 
and 2π rad/s2 angular acceleration. The responses from both simulation and experiment 
show a similar trend, and all the displacements and bearing forces increase with the rotor 
speed. However, unlike in the simulation, an amplitude peak appears close to 1000 rpm 
in the experiment, which is due to the structural resonance of the test rig. In the experi-
ment, the upper and lower bearings perform in the same way, and with slight differences. 
Excluding responses close to 1000 rpm, the maximum deviation of displacement and force 
amplitude between the two bearings are 0.0122 mm (18%) and 39.2 N (10%). 

Figures 19 and 20 show the orbits and bearing forces for three ranges of rotor speeds, 
i.e., (500–600) rpm, (1250–1350) rpm, and (2250–2350) rpm. Both the simulation and ex-
perimental results show similar patterns. The periodically varying bearing coefficients on 
and between pads produce orbits and forces with peaks and valleys. For lower unbalance 
magnitude and rotor speed, however, the shape of the orbits looks relatively circular. This 
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is because the bearings operate at low orbit amplitudes and the bearing coefficients are 
almost independent of the angular position of the journal. 

 
Figure 17. The simulated and measured displacements of the shaft with 5.9 × 10−3 kg·m unbalance 
magnitude and 2π rad/s2 angular acceleration. 

 
Figure 18. The simulated and measured bearing forces with 5.9 × 10−3 kg·m unbalance magnitude 
and 2π rad/s2 angular acceleration. 
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Figure 19. The simulated and measured orbit of the shaft with 5.9 × 10−3 kg·m unbalance magnitude 
and 2π rad/s2 angular acceleration. 

 
Figure 20. The simulated and measured bearing force with 5.9 × 10−3 kg·m unbalance magnitude 
and 2π rad/s2 angular acceleration. 

4.2.2. Resultant Displacements and Forces 
Figures 21 and 22 summarize the results from the transient simulations and experi-

ments for three different unbalance amplitudes (i.e., 1.7 × 10−3 kg·m, 3.8 × 10−3 kg·m and 
5.9 × 10−3 kg·m) and three different angular accelerations (i.e., 0.5π rad/s2, 2π rad/s2 and 4π 
rad/s2). The response amplitudes for rotor speeds between 250 rpm and 2500 rpm were 
considered and divided into 23 series intervals with a block size of 100 rpm (except the 
last interval, whose block size is 50 rpm). In each interval, the maximum resultant 
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responses were calculated and presented as a function of rotor speed. Both the maximum 
resultant displacements and bearing forces increased with the rotor speed. The results 
from the simulations and experiments followed a similar trend. As stated above, the struc-
tural resonance of the test rig, which is around 1000 rpm, appears in all the results from 
the measurements.  

As shown in Figures 21 and 22, the numerical simulation predicts the actual meas-
urements well with a slight deviation. For both displacements and forces, these deviations 
decrease as the unbalance magnitude increases. At 5.9 × 10−3 kg·m unbalance magnitude, 
the simulation resultant displacement and force deviate from the corresponding measure-
ment with a maximum of 10% and 14% percentage relative deviation (disregarding re-
sponses at 1000 rpm), respectively. For both simulations and experiments, the results with 
three different angular acceleration rates are similar and the magnitude of the responses 
is not significantly affected.  

 
Figure 21. The simulated and measured shaft displacement for nine different cases: md- unbalance 
magnitude and dΩ/dt: angular acceleration. 
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Figure 22. The simulated and measured bearing forces for nine different cases: md- unbalance mag-
nitude and dΩ/dt: angular acceleration. The lower bearing force measurement with 3.8 × 10−3 kg·m 
and 2π rad/s2 has some discrepancies after 1950 rpm and is excluded from the analysis. 

4.2.3. Frequency Response Function (FFT) 
The frequency content of the responses was calculated using a fast Fourier transform 

(FFT) in the stationary x and y directions. Figures 23 and 24 show the waterfall diagram 
of the displacement responses from the simulations and experiments, respectively. Simi-
larly, the simulated and measured bearing forces are shown in Figures 25 and 26, respec-
tively. Results from both simulation and experiment show that the first-order frequency 
(1 × Ω), which is due to the unbalance mass, is the dominant frequency. Besides, amplitude 
peaks at the third (3 × Ω) and fifth (5 × Ω) frequency orders exist in both simulation and 
experiment. These frequencies are associated with the number of pads (n = 4) [34] and they 
exist as a single frequency at 4 × Ω in the rotating coordinates.  



Machines 2022, 10, 556 24 of 34 
 

 

 
Figure 23. The waterfall diagram of the simulated shaft displacement with 5.9 × 10−3 kg·m and 2π 
rad/s2. N is the number of samples. 

 
Figure 24. The waterfall diagram of the measured shaft displacement with 5.9 × 10−3 kg·m and 2π 
rad/s2. N is the number of samples. 

Furthermore, other frequency orders also appeared in the experiment, although their 
amplitudes were not as pronounced as in the 1 × Ω and 3 × Ω (and 5 × Ω in some cases) 
frequency orders. The frequency order at 7 × Ω is a multiple of the frequency due to the 
number of pads. All bearing pads were assumed to be similar, and there was no irregu-
larity in the pad geometry. However, this is not true, and the design is approximated 
within a specified tolerance. Imperfections in the design can be a reason for the existence 
of other frequency orders. In the simulation, however, no other frequency other than 1 × 
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Ω, 3 × Ω, 5 × Ω, and 7 × Ω frequency orders existed for a frequency range between 3 Hz 
and 250 Hz.  

 
Figure 25. The waterfall diagram of the simulated bearing forces with 5.9 × 10−3 kg·m and 2π rad/s2. 
N is the number of samples. 

 
Figure 26. The waterfall diagram of the measured bearing forces with 5.9 × 10−3 kg·m and 2π rad/s2. 
N is the number of samples. 

5. Discussions and Conclusions 
The dynamic responses of the vertical rotor with TPJBs under constant and variable 

rotor spin speeds were successfully modeled by predefining the bearing coefficients using 
polynomial equations and periodic functions (sine and cosine). These equations represent 
the direct and cross-coupling bearing coefficients as functions of the location of the journal 
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center and rotor speed. For polynomial equations, the fitting was computed using 
MATLAB, and the poly53 function was chosen based on the goodness-of-fit performance 
test. The response simulations under constant rotor speed were carried out for different 
unbalance magnitudes and rotor speeds, whereas the transient responses were simulated 
for different unbalance magnitudes and rotor angular accelerations. Both models were 
validated with experiments. 

The orbits and bearing forces were square-shaped, and the simulation and experi-
mental results displayed similar patterns. Both the magnitude and the shape of the re-
sponses were influenced by the unbalance magnitude and rotor speed. At lower unbal-
ance magnitudes and rotor speeds, however, the bearings operated at low orbit ampli-
tude, and the bearing dynamic coefficients were almost independent of the load direction. 
The square-shaped orbits and forces were not as amplified as those under higher unbal-
anced magnitude and rotor speed. Such as in the experiments, the FFT of the simulated 
responses contains amplitude peaks at the first (1 × Ω), third (3 × Ω), and fifth (5 × Ω) 
frequency orders. The first frequency order (1 × Ω) is due to the unbalance force, whereas 
the third and fifth frequency orders (3 × Ω and 5 × Ω) are associated with the number of 
pads. 

One can conclude that the simulation results compared favorably with the experi-
mental results, with some minor deviations. Uncertainties in bearing parameter predic-
tion were the main potential reason for these deviations. The fluid film lubrication simu-
lation used assumptions, and bearing parameters were approximated. For instance, the 
geometry of the pads was assumed to be similar and uniform, which is, however, not true 
in the actual bearings. Furthermore, unlike in the simulations, the response measurements 
close to 1000 rpm were affected by rotor rig-induced vibration noise. 

The simulation model presented in this paper is advantageous since it does not re-
quire solving the fluid film lubrication model at each time step. It was found to be more 
efficient than the classical simulation model in terms of simulation time and useful for 
heavy simulations that are impractical to solve with the standard numerical integration 
procedure. 
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Nomenclature 𝑎  The length of the line connecting the center of the rotor and center of 
gravity (m) 𝐶  Center of gravity (-) 𝐶  , 𝐶  Maximum, minimum bearing damping in the local (i,j → ξ,η) coor-
dinates (N-s/m) 𝐂𝛃 (𝐂𝛃𝐮𝐩𝐩𝐞𝐫,𝐂𝛃𝐥𝐨𝐰𝐞𝐫)  
Bearing (upper, lower) damping matrix in the local 𝜉 and 𝜂 coor-
dinates (N-s/m) 𝐂𝐁 Bearing damping matrix in the Cartesian coordinates (N-s/m) 𝑑 The minimum distance between the center of the journal and the un-
balance mass (m) 𝑒 Eccentricity (m) 𝑒  Eccentricity in the Cartesian x-direction (m) 𝑒  Eccentricity in the Cartesian y-direction (m) 𝑒 , 𝑒  Measured, simulated mean amplitude of the orbit (for i: upper or 
lower bearing), (m) 𝐟𝐮 Unbalance force vector (N) 𝐹 , 𝐹  Measured, simulated mean force (for i: upper or lower bearing), (N) 

G Gyroscopic matrix 𝐾  , 𝐾  Maximum, minimum bearing damping in the local (i,j → ξ,η) coor-
dinates (N/m) 𝐊𝛃 (𝐊𝛃𝐮𝐩𝐩𝐞𝐫,𝐊𝛃𝐥𝐨𝐰𝐞𝐫)  
Bearing (upper, lower) stiffness matrix in the local 𝜉 and 𝜂 coordi-
nates (N/m) 𝐊𝐁 Bearing stiffness matrix in the Cartesian coordinates (N/m) 𝐊𝐒 The stiffness of the bracket structure (N/m) 

L The sum of the square errors 
M Mass matrix (kg) 𝑚  Unbalance mass (kg) 
Me Number of elements in the axial direction (-) 𝑛 Number of pads (-) 
Ne Number of elements in the circumferential direction (-) 
R Radius of the journal (m) 𝑅  Adjusted R-square 
r The polynomial degrees of the relative eccentricity (-) 
s The polynomial degrees of the rotor speed (-) 𝐓 Transformation matrix (-) 
Tin The inlet temperature of the lubricant (supply lubricant) (°C) 
Tout The outlet average temperature of the lubricant (°C) 𝑌  Calculated maximum or minimum local bearing coefficient, values 

from RAPPID (N/m or N-s/m) 𝑌  
An approximated maximum or minimum local bearing coefficient 
(N/m or N-s/m) 

%E ,  Percentage errors of the amplitude of the orbit, (-) 
%E  Percentage errors of the bearing force (-) 
Greek symbols 𝛼, 𝛼 Eccentricity angle: the angle of the line connecting the center of the 

bearing and center of journal from the positive x-axis, whirling 
speed (rad, rad/s) 𝛽  Regression coefficients 𝜀 Relative eccentricity, 𝜀 = e/Cb [-] 
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𝜙, 𝜙, 𝜙 Angle of the line connecting the center of the journal and center of 
gravity of the journal from the positive x-axis, rotor spin speed, and 
rotor angular acceleration (rad, rad/s, rad/s2) 

ξ Rotating coordinate that passes through the center of the bearing 
and collinear to the eccentricity line 

η Rotating coordinate that is perpendicular to the eccentricity line 
Ω Constant angular speed of the journal (rad/s) 

Appendix A 

Table A1. Summary of the models. 

   Relative Eccentricity (𝜺𝒊) 

   First Order (𝜀1) 
Second Order 

(𝜀2) 
Third Order 

(𝜀3) 
Fourth Order 

(𝜀4) 
Fifth Order 

(𝜀5) 

   RMSE% 
[%] 

𝑹𝒂𝒅𝒋𝟐  RMSE% 
[%] 

𝑹𝒂𝒅𝒋𝟐  RMSE% 
[%] 

𝑹𝒂𝒅𝒋𝟐  RMSE% 
[%] 

𝑹𝒂𝒅𝒋𝟐  RMSE% 
[%] 

𝑹𝒂𝒅𝒋𝟐  

R
ot

or
 s

pe
ed

 (𝛀𝐣 ) 
 

Se
co

nd
 o

rd
er

 (Ω2 ) 

𝐾  60.8 0.543 43.3 0.768 23.7 0.93 11.3 0.984 4.7 0.997 𝐾  58.2 0.587 40.1 0.803 20.6 0.948 9.2 0.989 3.5 0.998 𝐾  57.5 0.592 39.6 0.806 20.2 0.949 9 0.989 3.5 0.998 𝐾  29.2 0.838 17.3 0.943 6.2 0.992 2.2 0.999 1.0 0.999 𝐶  50.5 0.588 25.4 0.895 11.4 0.978 4.4 0.996 1.4 0.999 𝐶  50.6 0.631 23.7 0.919 9.9 0.985 3.6 0.998 1.2 0.999 𝐶  50.9 0.63 23.8 0.918 10 0.985 3.6 0.998 1.2 0.999 𝐶  20.7 0.802 5.9 0.983 1.8 0.998 0.6 0.999 0.5 0.999 𝐾  28.9 0.839 16.9 0.944 5.8 0.993 2 0.999 1.6 0.999 𝐾  56.9 0.599 39 0.811 19.8 0.951 8.8 0.99 3.3 0.998 𝐾  57.7 0.593 39.6 0.807 20.2 0.949 9 0.989 3.4 0.998 𝐾  0.7 0.999 0.6 0.999 0.6 0.999 0.6 0.999 0.6 0.999 𝐶  21.0 0.797 6.2 0.981 2.2 0.997 1.7 0.998 1.7 0.998 𝐶  50.6 0.633 23.5 0.92 9.9 0.985 3.6 0.998 1.3 0.999 𝐶  50.4 0.633 23.5 0.92 9.8 0.985 3.6 0.998 1.4 0.999 𝐶  0.8 0.93 0.8 0.929 0.8 0.926 0.8 0.921 0.8 0.915 

Th
ir

d 
or

de
r (

Ω3 ) 

𝐾  62.1 0.524 35.8 0.841 24 0.928 11.6 0.983 4.9 0.997 𝐾  59.4 0.57 31.9 0.875 20.8 0.946 9.5 0.989 3.7 0.998 𝐾  58.7 0.575 31.4 0.878 20.5 0.948 9.3 0.989 3.6 0.998 𝐾  29.8 0.831 10.4 0.979 6.2 0.992 2.3 0.998 0.9 0.999 𝐶  51.6 0.57 26.2 0.888 11.5 0.978 4.4 0.996 1.4 0.999 𝐶  51.7 0.615 24.4 0.914 10 0.985 3.7 0.997 1.3 0.999 𝐶  52 0.614 24.5 0.913 10.1 0.985 3.7 0.998 1.2 0.999 𝐶  21.2 0.794 6.0 0.983 1.8 0.998 0.6 0.999 0.4 0.999 𝐾  29.4 0.833 10.0 0.98 5.8 0.993 2.0 0.999 1.5 0.999 𝐾  58.1 0.582 30.8 0.882 20.0 0.95 9.0 0.989 3.5 0.998 𝐾  58.9 0.576 31.4 0.879 20.4 0.948 9.2 0.989 3.6 0.998 𝐾  0.6 0.999 0.6 0.999 0.5 0.999 0.5 0.999 0.5 0.999 𝐶  21.4 0.789 6.3 0.981 2.2 0.997 1.7 0.998 1.6 0.998 𝐶  51.7 0.617 24.3 0.915 10.0 0.985 3.7 0.998 1.3 0.999 𝐶  51.5 0.618 24.2 0.915 9.9 0.985 3.6 0.998 1.3 0.999 𝐶  0.3 0.985 0.3 0.986 0.3 0.986 0.3 0.986 0.3 0.990 
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Appendix B 

Table A2. Calculated coefficients of the two-dimensional polynomial equation (poly53) as a function 
of centered and scaled relative eccentricity (𝜀) and rotor speed (Ω). The relative eccentricity (𝜀) is 
normalized by mean and standard deviation of 0.4011 and 0.2589, respectively. The rotor speed (Ω) 
is normalized by mean and standard deviation of 1292 and 803.5, respectively. 

 𝑲𝝃𝝃𝒎𝒂𝒙 𝑲𝝃𝜼𝒎𝒂𝒙 𝑲𝜼𝝃𝒎𝒂𝒙 𝑲𝜼𝜼𝒎𝒂𝒙 𝑪𝝃𝝃𝒎𝒂𝒙 𝑪𝝃𝜼𝒎𝒂𝒙 𝑪𝜼𝝃𝒎𝒂𝒙 𝑪𝜼𝜼𝒎𝒂𝒙 𝛃𝟎𝟎 1.8E6 2.6E5 2.9E5 9.5E5 1E4 1.3E3 1.3E3 7.2E3 𝛃𝟏𝟎 2.3E6 5.1E5 5.1E5 6.1E5 9.7E3 2.3E3 2.3E3 3.1E3 𝛃𝟎𝟏 1.1E6 1.6E5 1.7E5 5.8E5 −3.2E2 −4.2E1 −5.3E1 −1.8E2 𝛃𝟐𝟎 −8.5E5 3.9E4 5E4 3.1E5 2.3E3 9.3E2 9.3E2 1.6E3 𝛃𝟏𝟏 −5E5 3E4 3.7E4 3.2E5 −3.5E2 −9.1E1 −9.2E1 −2.1E1 𝛃𝟎𝟐 3.2E3 −3.1E2 −1.3E3 −1.8E4 −1.2E2 −0.4E0 2.6E0 −1.2E2 𝛃𝟑𝟎 −8.9E5 −1.8E4 −1E4 9.6E4 8.5E2 4.1E2 4.2E2 5.5E2 𝛃𝟐𝟏 −6.9E5 −4.6E3 1.6E3 1.6E5 −3.1E2 −9.4E1 −8.4E1 −1.8E1 𝛃𝟏𝟐 1.1E4 −4.7E3 −5.5E3 −2.4E4 1.5E1 −3.3E0 −4.6E0 1.5E0 𝛃𝟎𝟑 1.4E3 1.2E3 1.4E3 −9.9E3 8.6E1 1.3E1 1.1E1 2.1E1 𝛃𝟒𝟎 3E6 4.6E5 4.5E5 9.2E4 6.9E3 1.1E3 1.1E3 2.6E2 𝛃𝟑𝟏 2.7E6 4.6E5 4.5E5 1.3E5 −3.2E2 −5.7E1 −5.8E1 −7.2E1 𝛃𝟐𝟐 −1.2E5 −2.2E4 −2.2E4 −1.6E4 −3E1 −1.9E1 −1.8E1 −4.6E1 𝛃𝟏𝟑 1E4 −1.8E2 5E2 −6.5E3 1.5E2 2E1 2.2E1 −3.2E1 𝛃𝟓𝟎 1.8E6 2.6E5 2.6E5 4E4 3.7E3 5.8E2 5.8E2 8.1E1 𝛃𝟒𝟏 1.9E6 2.9E5 2.8E5 6E4 −1.4E2 −1.2E1 −1.5E1 −4.4E1 𝛃𝟑𝟐 −8.8E4 −1.4E4 −1.3E4 −1.4E3 −2.4E1 −1.2E1 −1.1E1 −2.8E1 𝛃𝟐𝟑 6.9E3 −7.9E2 −8.5E2 2.1E3 9E1 5.1E0 4.4E0 −3E0 
 𝑲𝝃𝝃𝒎𝒊𝒏 𝑲𝝃𝜼𝒎𝒊𝒏 𝑲𝜼𝝃𝒎𝒊𝒏 𝑲𝜼𝜼𝒎𝒊𝒏 𝑪𝝃𝝃𝒎𝒊𝒏 𝑪𝝃𝜼𝒎𝒊𝒏 𝑪𝜼𝝃𝒎𝒊𝒏 𝑪𝜼𝜼𝒎𝒊𝒏 𝛃𝟎𝟎 9.5E5 −2.7E5 −2.5E5 5.6E5 7.2E3 −1.2E3 −1.3E3 5.1E3 𝛃𝟏𝟎 5.9E5 −4.8E5 −4.8E5 1.5E3 3.1E3 −2.2E3 −2.2E3 −0.4E0 𝛃𝟎𝟏 5.9E5 −1.6E5 −1.5E5 3.4E5 −9.6E1 6.4E1 5.4E1 −1.8E2 𝛃𝟐𝟎 3.4E5 −6.2E4 −5E4 1.3E3 1.6E3 −9.2E2 −9.2E2 −0.4E0 𝛃𝟏𝟏 3.1E5 −4.5E4 −3.7E4 −4.1E2 −2E2 9E1 8.9E1 −2.2E1 𝛃𝟎𝟐 −2.9E4 −1E3 −1.9E3 −1.1E4 −2.1E2 −9.3E0 −6.1E0 −1.3E2 𝛃𝟑𝟎 1.6E5 −2.3E3 6.5E3 −1.5E3 6.9E2 −4.3E2 −4.4E2 −2.7E0 𝛃𝟐𝟏 1.7E5 −1.2E4 −4.4E3 −3.6E3 −1.1E2 4.4E1 5E1 −9.2E0 𝛃𝟏𝟐 −4.9E4 −7.9E2 −8.9E2 1.7E2 −1.8E2 −3.2E1 −3.5E1 −2.4E0 𝛃𝟎𝟑 −2.9E4 −3.1E3 −2.6E3 −4.8E3 −1E2 −2E1 −2.2E1 6.2E1 𝛃𝟒𝟎 7.5E4 −4.1E5 −4.2E5 3.8E2 2.4E2 −1.1E3 −1.1E3 1.2E0 𝛃𝟑𝟏 1.2E5 −4.1E5 −4.2E5 1.6E3 −2.8E1 6.7E1 6.8E1 −2E0 𝛃𝟐𝟐 −1.8E4 2.2E4 2.2E4 −1.3E3 −2E1 1.6E1 1.7E1 −4.2E0 𝛃𝟏𝟑 −9.7E3 −4E3 −3.1E3 −1E3 −3.8E0 −3.9E1 −3.9E1 5.8E0 𝛃𝟓𝟎 1.2E4 −2.3E5 −2.4E5 1.5E3 1.5E1 −5.5E2 −5.5E2 0.5E0 𝛃𝟒𝟏 4.1E4 −2.5E5 −2.6E5 −2.3E1 −7.4E1 3.6E1 3.6E1 0.7E0 𝛃𝟑𝟐 6.1E3 1.6E4 1.6E4 −8.5E2 5.5E1 2.8E1 2.8E1 −0.6E0 𝛃𝟐𝟑 1.3E4 −5.4E2 −6.8E2 2.2E3 1E2 −1.1E1 −1.2E1 0.7E0 

  



Machines 2022, 10, 556 30 of 34 
 

 

Appendix C 

 
Figure A1. Orbits and bearing forces of the upper and lower bearings with 1.7 × 10−3 kg·m unbalance 
magnitude and at 500 rpm, 1500 rpm, and 2500 rpm. UF: unfiltered measurement signal; F: filtered 
measurement signal by a band pass filter; S: simulation. 
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Figure A2. Orbits and bearing forces of the upper and lower bearings with 3.8 × 10−3 kg·m unbalance 
magnitude and at 500 rpm, 1500 rpm, and 2500 rpm. UF: unfiltered measurement signal; F: filtered 
measurement signal by a band pass filter; S: simulation. 

Appendix D. Fluid film forces and FEM 
A plain cylindrical journal bearing without grooves is considered. The schematic rep-

resentation of the plain cylindrical journal bearing and the bearing parameters are shown 
in Figure A3 and Table A3, respectively. The fluid film pressure distribution within the 
gap between the shaft and bearing is modeled using the classical Reynolds equation as 
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shown in Equation (A1). The lubricant is assumed to be an iso-viscous and incompressible 
fluid with constant density. The flow is assumed to be laminar.  1𝑅 𝜕𝜕𝜓 ℎ 𝜕𝑝𝜕𝜓 + 𝜕𝜕𝑧 ℎ 𝜕𝑝𝜕𝑧  =  6𝜇𝛺 𝜕ℎ𝜕𝜓 + 12𝜇 𝜕ℎ𝜕𝑡   (A1)

where p is the fluid-film pressure, 𝜇 is the viscosity of the lubricant, Ω is the angular 
speed of the rotor, 𝜓 is the circumferential coordinate and z is the axial coordinate. The 
fluid film thickness,  ℎ(𝜓), is given as a function of circumferential coordinate (𝜓) as 
shown in Equation (A2).  ℎ(𝜓) =  𝐶 +  𝑒 𝑐𝑜𝑠(𝜓 − 𝛼) =  𝐶 + 𝑒  𝑐𝑜𝑠(𝜓) + 𝑒  𝑠𝑖𝑛(𝜓) (A2)

where 𝐶  is the radial bearing clearance, e is eccentricity, 𝑒  and 𝑒  represent journal 
eccentricities in the stationary x and y axes. The bearing forces are calculated by integrat-
ing the pressure distribution over the fluid film domain, Equation (A3). 𝐹𝐹  = 𝑝 cos 𝜓sin 𝜓  (𝑅𝑑𝜓)𝑑𝑧   (A3)

 
Figure A3. Schematic representation of a plain cylindrical journal bearing. 

Table A3. Plain cylindrical journal bearing parameters. 

Descriptions Values 
Diameter (mm) 49.815 
Length (mm) 20 
Radial bearing clearance (μm) 130  
Rotor speed (rpm) 1500 
Lubricant Q6 Handel oil 
Oil supply pressure (MPa) 0.01 
Viscosity (mPa·s) 46.11 

The Reynolds equation governing the fluid flow is numerically solved. A finite ele-
ment analysis is used to calculate the pressure distribution within the fluid film. The fluid 
film domain is discretized by Me × Ne  mesh elements, and each element is represented 
by a four-node bilinear quadrilateral shape function. The FEM equation in matrix form is 
shown in Equation (A4) with boundary conditions of zero pressure at the sides of the 
bearing. 𝐊𝐩 𝐩  = 𝐊𝐔𝐱 𝐔𝐱 + [𝐊𝐡] 𝐡    (A4)

where 𝐊𝐩  is the pressure fluidity matrix, 𝐊𝐔𝐱  is the shear fluidity matrix, and [𝐊𝐡] 
is the squeeze component matrix. The bearing is symmetrical along the axial direction, 
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and therefore, only half of the bearing, which is 10 mm in the axial direction, is considered 
in the analysis to reduce the computation time.  
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