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Abstract: With the application of new-generation information technology in the full life cycle process
of a complex product, it is showing the characteristics of multi-source, real-time, heterogeneous,
cross-domain transmission. Large data volume and low value density emerge in the process of
complex product design manufacturing and services (DMS). This leads to “information islands”
and insufficient utilization of cross-domain reliability data in the process of integration of DMS for
complex product R&D design data, manufacturing data and operation and maintenance services
(O&MS) data. This paper proposes and illustrates a framework of complex product DMS integration
based on reliability data, including complex product design optimization based on manufacturing and
service reliability data, complex product intelligent manufacturing process optimization based on real-
time reliability data and complex product O&MS optimization based on multi-source heterogeneous
reliability data. Additionally, it then realizes complex product design reliability and optimization,
manufacturing process reliability and optimization and O&MS reliability and intelligent decision
optimization based on reliability data. Finally, the DMS integration framework based on reliability-
data-driven proposal is corrected through the case of engine MDS integration, which can effectively
improve the cross-domain reliability data utilization and overall product reliability of complex
products. The proposed framework extends the application of reliability theory in the process of
complex product DMS integration and provides a reference for enterprises in the R&D, manufacturing
and O&MS of complex products.

Keywords: complex product; integration of design manufacturing and service; reliability data; engine

1. Introduction

With the widespread application of smart manufacturing, Internet of Things(IoT),
cloud computing, 5G and other new-generation information technologies, the traditional
manufacturing model is undergoing radical changes, and the integration of complex prod-
uct DMS [1] has become the main direction for the development of advanced manufacturing
in various countries, which puts forward higher requirements for the acquisition, storage,
analysis, visualization and intelligent decision support of the full life cycle (FLC) process
data of complex product design, manufacturing and services. The deep integration of
digitization, informatization and intelligence makes the products more and more powerful,
more and more perfect, more and more complex and more intelligent, and the problem of
cross-domain reliability in the integration of design, manufacturing and service of com-
plex products (e.g., new energy vehicles, high-speed rail, aerospace equipment, high-end
machine tools and engines, etc.) is particularly prominent. In 1957, the Electronic Equip-
ment Reliability Advisory Group of the U.S. Department of Defense gave the definition,
indices and evaluation methods of reliability in the report “Reliability of Military Electronic
Equipment”, which laid the foundation for the development of reliability theory in the
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fields of complex equipment [2], machinery [3], software [4], manufacturing [5], design [6]
and PLC management [7], and it provided support for the development of product DMS
integration in the fields of aerospace equipment, new energy vehicles, high-end machine
tool equipment and engines, and produced great economic benefits.

Reliability data are an important indicator to measure the quality, function, safety and
maintenance of complex product design, manufacturing and service. How to effectively
obtain the reliability data of complex products in the design, manufacturing and service
stages? How to accurately analyze the intrinsic factors and correlations that affect the
optimization of complex product design, manufacturing performance improvement and
service quality improvement through the trend of reliability data? How to utilize the
cross-domain reliability data from complex product design in the manufacturing stage,
complex manufacturing process and operation and maintenance service process, realize
the closed-loop feedback mechanism of design, manufacturing and service life cycle, and
effectively promote the wide application of reliability data in the FLC of complex product
DMS is the main problem faced by the academia and industry.

In order to promote an effective solution to the above problems, countries have intro-
duced a series of top-level strategic support policies to enhance the global competitiveness
of complex products. Germany proposed the “Industry 4.0” development strategy, which
aims to realize the integration of intelligent production and service of industrial products
through the integration of information network and physical production system. USA has
put forward the concept of “Industrial Internet”, taking the advantages of information
technology to connect people, data and machines to achieve a high degree of integration
of global industrial systems with advanced computing, analysis, sensor technology and
the Internet and efficient use of industrial big data. Japan proposed a “new robot strategy”
based on the application of technologies such as data terminalization, networking and
cloud computing. The United Kingdom promoted the integration of remanufacturing
and services centered on production to achieve a rapid and sharp response to consumer
demand “UK Manufacturing 2050” plan. China has focused on new energy vehicles, major
equipment manufacturing, new sensors and other key industrial complex product areas,
such as design, manufacturing and services, and other key links to carry out the integration
of new generation information technology and manufacturing equipment engineering ap-
plications to implement the “Made in China 2025” strategy. In essence, the implementation
of the above strategies is inseparable from the data collection, analysis and innovative
utilization of the whole process of complex product design, manufacturing and service.

The new generation of information technology (e.g., high-precision sensors, IoT, 5G
and DT, etc.) has been widely used in the process of complex product design, manufacture
and service. It realizes the efficient collection, analysis and application of a large amount of
process data and product structure data generated in the process of complex product design
and trial production, product quality status and various equipment status data generated in
the manufacturing process, as well as operating status and various performance operation
and maintenance and parameter data generated during the service process. Although
large amounts of multidimensional, real-time structured and unstructured data support the
implementation of complex product life management (PLM), it is difficult to use a single
model to achieve integrated management of complex product DMS driven by industrial
big data. Therefore, the data sharing and cross-domain collaboration model based on
reliability data to establish multi-granularity, multi-stage and multi-level integration of
complex product design, manufacturing and service has become a new direction for the
PLM of complex products.

Based on the above, this paper proposes a cross-domain integrated framework of
reliability data in the integration of complex product DMS with the premise that new-
generation information technologies, such as high-precision sensors, IoT, digital twin (DT)
and 5G, are widely used in the integration of complex product DMS. This is to promote
the reliability design optimization of complex products, the reliability and optimization of
multi-agent manufacturing processes and the improvement of intelligent operation and
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maintenance and service reliability, and to provide theoretical and practical support for the
high-quality development of strategies, such as “Industry 4.0”, “Made in China 2025”, etc.

2. Related Works

Based on the understanding of the integration of reliability data and DMS, domestic
and foreign scholars have conducted research on complex product design optimization,
manufacturing process optimization and intelligent decision making of O&MS.

The rapid development of new-generation information technology has led to the
further development of big data acquisition, processing, analysis and application in the full
life cycle (FLC) management process of complex product design, manufacturing and service,
among which the more typical ones are based on big-data-driven [8], IoT [9], Industrial
Internet [10], DT [11], decision theory and group decision making [12], etc. For example,
big-data-driven complex product life cycle management emphasizes the characteristics of
big data through the integrated application of data and knowledge at all stages of the life
cycle to enhance the intelligent decision-making capability of complex product life cycle
management. IoT focuses on its connotation in the FLC quality management of complex
products and further drives the change of enterprise management model, manufacturing
model, service model and business model. The Industrial Internet platform aims to provide
real-time management of data and information by accessing, managing and controlling
product-related data, information and knowledge at all stages of the life cycle, including
beginning of life (BOL), middle of life (MOL) and end of life (EOL). DT provides support for
PLM customizability, multi-level collaboration, full life cycle data management, knowledge
sharing and reuse, and digital simulation. The concept of decision theory and group
decision support avoids research deficiencies in PLM and effectively supports industrial
organizations in managing their products and related data in all phases of the product life
cycle, improving the ability of organizations to manage product development activities,
cross-organizational functions and business units, and collaboration between organizations.

More and more studies show that complex products gradually show design for manu-
facturing, manufacturing services and service reversal for complex product design opti-
mization and manufacturing process optimization. Zhang Q et al. (2019) [13] proposed the
concept and architecture of smart connected products to systematically review current re-
search on new paradigms for product development, manufacturing and services, providing
a new approach for the study of smart development, smart manufacturing and data-driven
services for complex product life cycle management in a smart connected environment.

2.1. Research on Reliability of Complex Product Design

The reliability of complex products is largely influenced by the decisions made in
the design process. Design defects are transmitted exponentially into the manufacturing
and service processes, and design errors or changes are increasingly costly. Therefore,
the scientific design method is adopted to discover design defects in time and correct
deviations at the beginning of the design, which has become the direction of the reliability
design of complex products.

Costa N et al. [14] introduced service design to manufacturing enterprises, com-
bining the human-oriented service design perspective with the organizational network-
oriented ”product-service” system perspective to form a new production service system
(PSS) method. The new PSS approach has improved the original product design model
and method, and it has been applied in the manufacturing industry and has effectively
promoted the combination of PSS and service design. Chen RR et al. [15] proposed a
model validation method implemented in the design phase, that is, the comparison of
explicit product requirements with system design properties in systems modeling language
(SysML) through the relation-based modeling for static properties (RMSP) method, which
enables designers to detect product defects earlier, thus reducing the cost of modifications
in the manufacturing and service phases. Sassanelli C et al. [16] proposed the design for X
(DfX) approach for parallel engineering, so as to realize the information sharing between
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the design and service phases, and systematically support the PSS design process. Limon
S et al. [17] considered accelerated degradation testing (ADT) as an effective means to
achieve rapid assessment of product reliability during the product design and develop-
ment phase and provide complex modeling of ADT with multiple acceleration factors.
Zhang N et al. [18] constructed a supernetwork model for complex product design through
identification and analysis of design elements, sub-network and supernetwork model
construction and supernetwork performance analysis, and they took the design process of
wind turbines as an example, indicating that the supernetwork model can provide more
process information for the collaborative design of wind turbines and can effectively im-
prove the efficiency of collaborative design of wind turbines. Zhou JG et al. [19] proposed
mathematical concepts of green design methods (including domain redefinition, failure
rate and reliability expression, etc.) based on the life cycle management process, which
have implications for electrical product reliability enhancement and resource utilization
enhancement. Xue DY et al. [20] proposed a new integrated framework for the optimal
design of complex mechanical products by proposing hybrid schemes, developing hybrid
simulation methods and hybrid optimization methods, considering modeling, simulation
and optimization.

With the continuous improvement of the functional requirements of personalized
products, the product structure is becoming more and more complex. The design of a
complex engineering product often involves cross-domain collaboration and integration,
such as machinery, electricity and automation. However, traditional design methods lack
multidisciplinary coordination, leading to barriers to interaction between design stages
and a disconnect between product design and prototyping. Tao F et al. [21] proposed
the concept of digital twin-driven intelligent design, which pioneered the way in which
digital twin technology can improve the design process of different types of products. Qi
QL et al. [22] proposed a five-dimensional digital twin model, which provides a technical
and basis reference for the application of digital twins in complex product design. Wu
Y et al. [23] proposed a new digital twin-enabled multidisciplinary collaborative design
method through multidisciplinary knowledge collaboration, multidisciplinary collaborative
modeling and multidisciplinary collaborative simulation.

2.2. Research on Reliability of Complex Product Manufacturing

With the introduction and application of new information technology in the manu-
facturing industry, various advanced manufacturing models and national strategies have
been proposed and received more and more attention, such as Industry 4.0, Industrial
Internet, Cyber-Physical Systems or Network Manufacturing, China Manufacturing 2025,
Internet + Manufacturing, Cloud Manufacturing (CMfg), etc.

Combined with emerging technologies, such as cloud computing, IoT, service-oriented
technology and high-performance computing, Wang TR et al. [24] proposed a new man-
ufacturing paradigm, CMfg, to solve the bottleneck of informatization development and
manufacturing applications. CMfg is becoming an advanced service-oriented manufactur-
ing model for manufacturing. Yuan MH et al. [25] combined time, composability, quality,
availability, reliability and cost, proposed a CMfg service quality evaluation index system
and constructed a new service quality evaluation model by combining service reliability and
credibility, combination complexity and synergy with execution cost, which is important for
promoting high-quality service management in manufacturing industries. Kusiak A [26] ar-
gued that the future manufacturing enterprise will be highly digitalized, and the traditional
design-for-dedicated manufacturing concept will be transformed into design-for-open
manufacturing. In many cases, the manufacturing process will become a manufacturing as
a service system, that is, service-oriented manufacturing. He YH et al. [27] proposed a fuzzy
polymorphic manufacturing system task reliability assessment method based on extended
stochastic flow network (ESFN) and validated the proposed method with a manufacturing
system producing ferrite phase shifting units as an example. Xu JZ et al. [28] established
an evolutionary game model between the government and CMfg companies based on the
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characteristics of complex network structures using game theory methods. The research
results show that green synergy benefits, cloud platform supervision, government rewards
and punishments, etc., can promote the cooperative relationship between CMfg enterprises,
help promote the collaborative green innovation of CMfg enterprises and enhance their
core competencies.

In addition, the need for excellent complex product reliability and an overall trend
toward smart and connected manufacturing systems have given rise to digital twin man-
ufacturing. Tao F. et al. [29] showed how DT has become the core of the intelligent man-
ufacturing process and analyzed how to use DT to improve the efficiency of intelligent
manufacturing and how to combine DT with new technologies to achieve efficient and
intelligent manufacturing. Yi Y. et al. [30] proposed a DT reference model for intelligent
assembly process design and proposed a three-layer intelligent assembly application frame-
work based on DT. Touckia JK. et al. [31] believe that people’s demand for sustainable
manufacturing and customization products is increasing—and DT have been widely used
in intelligent manufacturing—and propose a reconfiguration of DT design and simulation
for manufacturing systems model.

2.3. Research on Reliability of Complex Product Service

Guided by the technological revolution, widely discussed paradigms, such as servitiza-
tion are gradually pushing manufacturers to provide more and more complex solutions [32],
and the development of industry has put forward higher demands for reducing manufac-
turing operating costs and improving service reliability, etc. Complex products involve
many professional fields, such as machinery, electronics, hydraulics and computers, and
they require regular and irregular maintenance to prolong their service life, thereby increas-
ing the cost of the product during its life cycle. Therefore, for manufacturers of complex
mechanical products, it is very important to achieve the best match between reliability and
economy. If one wants to survive in the fierce market competition, one must compete with
other similar products on the market, clearly understand the functions and performance of
one’s own products, find out the gaps and improve them.

Pang JH et al. [33] developed an intelligent product quality analysis and manage-
ment system based on rough set (RS) and analytic hierarchy process (AHP), and the
results showed that a data-driven condition monitoring and quality analysis system is
an important tool for preventing disasters in complex electromechanical products. Wang
YR et al. [34] proposed an integrated solution for complex product manufacturing operation
and maintenance based on DT for the lack of deep integration between manufacturing
operation and maintenance and information island in manufacturing and operation and
maintenance links, and they demonstrated the feasibility and effectiveness of the inte-
grated approach by combining the bogie failure prediction of a model of rolling stock.
Chang FT et al. [35] believed that the product service system has become a hot topic in
the current complex product management field, and the deep integration of products and
services has become the key to enhancing product market competitiveness, especially in
the service stage. The integration of high-end manufacturing equipment (HEME) and
maintenance-repair-overhaul (MRO) services is still not enough to guarantee product func-
tional availability. Based on the perspective of complex network, an integrated product
service network model based on functional availability is constructed. This model not
only realizes the integration of products and services, guarantees related functions but
also provides an important foundation for the identification of key nodes and effective
service configuration for availability. Rath N et al. [36] believed that the deterioration of
aero-engine performance has a great impact on the reliability, availability and life cycle of
complex products, developed an engine health detection system and carried out research
on engine health monitoring, diagnosis and prediction technology. The results show that
acquiring, analyzing and utilizing engine health information is a must for condition-based
maintenance, which ensures high availability of complex products and reduces downtime
and operating costs.
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In addition, Tao Fei et al. [37] analyzed the connotation of service, product service and
manufacturing service, combined DT with service and proposed a general DT to enhance
product optimization services, such as DT-driven fault diagnosis methods, DT-driven
prediction and health management, etc. Zhuang CB. et al. [38] proposed an intelligent
production management and control method framework based on DT, which realized the
DT and big-data-driven prediction of the assembly workshop and the production man-
agement and control service of the assembly workshop based on the DT. Hu ZT. et al. [39]
studied the problems of DT in the manufacturing process of large and complex products
and proposed a manufacturing service platform for technical DT to improve the quality
and efficiency of marine diesel engine production.

2.4. Research on Integrated Reliability of Complex Product Design Manufacturing and Services

Complex products have complex structures, long R&D cycles, many manufacturing
links and complex operation and maintenance. Based on the product life cycle perspective,
research on the integration of complex product design, manufacturing and service can
significantly improve the R&D progress and greatly reduce R&D costs. The integrated reli-
ability system fits the characteristics of the development of complex products in the whole
life cycle, which can realize the digitization of reliability work in the whole development
cycle, improve the comprehensiveness, flexibility and convenience of reliability work and
the efficiency of R&D and manufacturing of complex products.

The deep integration of design, manufacturing and service is the key to realizing the
core competitiveness of enterprises with complex products. Lyu Z et al. [40] designed an
integrated reliability system for spacecraft development, solving key issues, such as space-
craft structural safety and design optimization, which provided a unified working platform
for product design, manufacturing and reliability work and realized the application of
spacecraft reliability in the entire development cycle. The shift from product ownership to
integrated solutions PSS is expected to lead to a higher customer satisfaction in many cases
compared to providing products and services separately. Fargnoli M et al. [41] proposed a
service that supports manufacturers in designing their products in relation to the normal
function of their products, an approach based on the synergistic use of PSS quality function
deployment, axiomatic design and service blueprinting tools to reduce over-engineering
risk and product design conflict, providing customers with high-reliability products. Wang
YH et al. [42] synthesized the current field of TRIZ service design knowledge system and
the emerging field of non-TRIZ service design knowledge system and proposed a design-
oriented system emergence thinking method. Violeta DB et al. [43] developed a smart
manufacturing DT demonstrator, enabling cross-domain interoperability among DMS and
reducing implementation costs. Manufacturing firms are increasingly inclined to offer
a combination of products and services to consumers. Bertoni A et al. [44] proposed a
model-based approach to evaluate the life cycle cost of a PSS that is already in the concep-
tual design stage using methods such as CAE, and a case study of the development of a
commercial jet engine turbine candidate structure was carried out.

Further, many scholars have proposed and described the DT framework and applica-
tion of complex product DMS. Bambura R. et al. [45] constructed a DT framework of the
engine manufacturing process consisting of the physical layer, the virtual layer and the
information processing layer. The real-time status data collection of the production line
and the improvement of production efficiency were realized. Liu SM. et al. [46] proposed
an augmented-reality machining process monitoring technology based on a DT machin-
ing system, which realized the optimization of the intermediate manufacturing process
of complex products based on DT. Mortlock T. et al. [47] argued that the use of DT in
manufacturing enterprises can improve the efficiency of the entire manufacturing life cycle
and is conducive to realizing the vision of “Industry 4.0”. DT can enable enterprises to cre-
atively and efficiently utilize existing manufacturing systems, extract invisible knowledge
from experience, achieve more autonomous decision making and control, and improve
corporate performance.



Machines 2022, 10, 555 7 of 28

At present, reliability data are used by some industrial enterprises for complex product
design optimization, manufacturing process optimization and operation and maintenance
service reliability and intelligent decision-making optimization. For example, based on the
operational reliability data of the Boeing 787, through the design optimization of the power
supply system, telecommunication operation technology and new composite materials, etc.,
the operational reliability of the Boeing 787 has been greatly improved, and its reliability
has reached 98.4%. In the meantime, the operation and maintenance costs decreased by
7% compared with the original costs. Bosch Smart Factory in Germany realizes the intelli-
gent optimization and decision making of complex production process by capturing key
parameters of key machine components through IoT sensors. Siemens realizes intelligent
operation and maintenance and intelligent decision support by analyzing the machine oper-
ation status, product quality and manufacturing process reliability data from the operation
process of manufacturing enterprise. Therefore, from the existing literature and practical
research of industrial enterprises, reliability data bring new directions for the integrated
management and intelligent decision making of complex product DMS.

In summary, the traditional PLM method is still very helpful in the FLC management
process of complex product DMS. However, by the advancement of advanced digital means,
such as digitization, intelligence and visualization in product design, manufacturing and
service stages, and reliability data acquisition, analysis and utilization have been further
developed. At the same time, the integration of complex product design, manufacturing
and service is moving closer and closer in design, manufacturing and service stages.
Cross-domain research is becoming more and more prominent, and high integration is
becoming more and more important. Therefore, based on reliability data, the research on
the integrated cross-domain reliability of complex product DMS has become an urgent
problem to be solved to improve the performance and reliability of complex products.

3. An Integrated Framework of Complex Product Design Manufacturing and Service
Based on Reliability Data

In this paper, we constructed an integrated framework of complex product DMS based
on a reliability-data-driven model, as shown in Figure 1, which consists of four parts:
complex product DMS integration reliability data acquisition, processing, optimization and
innovation application.

As shown in Figure 1, in the integrated reliability data acquisition layer of complex
product DMS, it mainly acquires multi-source heterogeneous data, such as product de-
sign experiments, product manufacturing and service operation and maintenance. This
is performed through 5G, IoT, high-precision sensor, quality management system (QMS),
intelligent manufacturing system, manufacturing execution system (MES), etc., to obtain
reliability data, such as quality, process, status of complex product DMS process. Through
digital processing methods, such as Python, cloud storage and cloud computing, we can
carry out data pre-processing, data integration, data analysis and data interpretation on the
structured data, semi-structured data and unstructured data in the DMS stage. Data clean-
ing, transformation, mining and visualization can effectively obtain key reliability data in
the process of complex product DMS. This is achieved through the application of reliability
data key feature analysis, correlation analysis, deep learning and optimization, clustering
analysis and intelligent decision making to achieve complex product design reliability and
optimization, manufacturing reliability and process optimization, O&MS and intelligent
decision-making optimization. Eventually, the integrated innovative application of DMS,
such as innovative design of complex products, manufacturing process optimization and
intelligent operation and maintenance and service enhancement based on reliability data,
will be realized.
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3.1. Complex Product Design Optimization Driven by Manufacturing and Service Reliability Data

In the past, the product design concept was “test-analyze-and-fix (TAAF)”, in which
the problems of product design reliability were found only through the test phase [48].
However, with the increasingly complex digital and intelligent competition, the tradi-
tional TAAF method is no longer applicable to the complex product design process due
to the influence factors, such as design cycle, design and manufacturing costs, mainte-
nance and operation costs, and digital transformation of enterprises, especially for the
integrated process of DMS process of complex products. Therefore, reliability should be
designed into the product through a more scientific approach. A well-designed finished
product may be unreliable in use due to poor production quality. How can we use design
analysis, mathematical statistics and analysis, failure mode, effects and criticality analy-
sis (FMECA), deep learning, product usage and maintenance data, lifetime information,
critical failure information, intelligent decision making and service, etc., to discover the
variation in the manufacturing process and service process? Additionally, the feedback of
the corresponding information to the product design engineers, based on manufacturing
and service reliability-data-driven optimization of complex product design, becomes a
key technical route to solve the reliability of complex product design in the context of
intelligent manufacturing.

As shown in Figure 2, the research on reliability-data-driven design optimization
of manufacturing and service reliability of complex product mainly includes complex
product manufacturing and service reliability data acquisition and database construction,
design reliability optimization and innovative applications. In terms of manufacturing
and service reliability data acquisition and database construction, first of all, it is necessary
to obtain manufacturing and service reliability data, such as manufacturing reliability
data represented by product quality reliability data, machine operation state reliability
data, process reliability data, etc., and service reliability data represented by critical failure
reliability data, life and degradation reliability data, use and maintenance reliability data
of complex products, etc. Then, through the database, model base, knowledge base and
association rules and mapping rules between manufacturing reliability data and service
reliability data, reliability data support is provided for the optimization of complex product
reliability design.

The area of complex product design reliability optimization is mainly based on the
quality function deployment (QFD) model to identify the influencing factors and control
methods that affect the design and product to meet customer needs, based on load strength
analysis (LSA) of key features’ design parameters and safety margins of manufacturing
deviations of complex products and based on DT, performance requirement analysis, design
verification and continuous iteration of the key features of complex products. Finally, the
manufacturing reliability data and service reliability data are integrated into the general
process of complex product reliability design and realize digital design, integrated product
development (IPD), green design, DfX, design for reliability (DfR) based on the closed-loop
reliability design model driven by dynamic manufacturing reliability data and service
reliability data.
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3.1.1. Complex Product Requirement Analysis and Key Design Feature Identification

Complex product designers deeply understand and analyze customer needs in the
early stage of design, identify key design features of complex product reliability design
and fully understand the innovative application of reliability design in all aspects of life
cycle management and cross-domain, such as complex product design, manufacturing
and O&MS, and intelligent decision making, etc. It is of great significance to maximize
the satisfaction of customer needs, shorten the design cycle, improve the reliability of the
manufacturing process and reduce service and maintenance costs. Traditional demand
analysis methods, such as pre-product research, competitor analysis, project risk analysis
and other methods, can still locate consumer demand characteristics. However, with the
widespread application of the new generation of information technologies, through Python,
deep learning and other methods, it can effectively collect and analyze complex product
professional websites and user big data analysis, through high-precision sensors, IoT, etc.,
to collect dynamic data of manufacturing and O&MS and processes, reliability data of
complex products in use and maintenance, and reliability data of life and degradation. It is
possible to further mine and identify key design features that affect complex product design.

Based on QFD to identify the influencing factors that affect the design and product
to meet customer needs and the key quality characteristics of the integrated process of
complex product DMS, it systematically and effectively presents the focus of the reliability
design process and the methods to guarantee the reliability design control, which provides
methodological support to the market, design, production, reliability and product quality
managers to realize the analysis of complex product requirements and identify the key
characteristics [49]. Based on the application of big data and other applications in the
manufacturing process, the effective identification of key quality features that affect the
function of complex products is a key link in the quality supervision and improvement
of the intelligent manufacturing process. This is achieved through online collection of
data, such as key design features’ manufacturing process characteristics of multi-process
manufacturing process, intelligent operation of key design features and life state changes
in the service process. This is achieved by using machine-learning and intelligent decision-
making methods to establish a mapping relationship model between design parameters and
state data in the manufacturing and service processes, etc., thereby realizing the reliability
design and optimization of key features of complex products with closed-loop feedback
mechanism [50].

3.1.2. Complex Product Reliability Design and Optimization Process

The new generation of information technology continues to penetrate the field of
complex product reliability design, which brings opportunities and challenges to the design
reliability of complex products. Design reliability determines the structure, performance
and service satisfaction of complex products. More so, it is a key factor that directly
affects the competitiveness of complex products in the global scope. As a predictive
reliability analysis technology, FMECA is widely used to improve the reliability and safety
of complex product design, manufacturing and use phases, and it can also make preventive
maintenance decisions for key features of complex products, etc. Therefore, FMECA may
be the most reliable and effective reliability analysis method, and its principle is to analyze
the failure modes of each key design feature of complex products and, in turn, determine
the impact of each failure mode on the overall performance of complex products [51]. In
addition, LSA is a method for ensuring that all load and strength cases are considered when
designing key features of complex products. It is mainly used in the early stage of complex
product design, and with the activities of complex product design, manufacturing and
operation and maintenance service data, it can continue in most of the complex product
life cycle. The contents of LSA mainly include evaluating the safety margin of the inherent
reliability of complex products, analyzing and identifying the realization path of reducing
the strength of complex products, finding out the most unfavorable load and strength
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data of complex products and their changing trends, especially the key design of complex
products’ features, etc. [52].

3.1.3. Complex Product Reliability Design Control and Evaluation

In order to successfully realize the reliability design of the whole process of complex
products and effectively introduce the concept of design reliability into the whole pro-
cess of complex product design and manufacturing services, it will be helpful to promote
the design process of complex products, ensure design quality and reduce design flaws
(e.g., structural calculation errors, incorrect selection of equipment materials, radical design,
neglect of human reliability, etc.). Therefore, it is necessary to introduce design reliability
maturity and related design reliability control and evaluation work in the FLC of complex
products. Design reliability is the basis of manufacturing reliability and service reliability of
complex products. Combined with the reliability data of manufacturing and operation and
maintenance of complex products, a multi-factor reliability design scheme improvement
method is constructed from multiple factors, such as manufacturing state, operation state
and service state of key design features of complex products, and the factors affecting the
reliability of complex product design and the continuous innovation path to improve the
reliability design to realize the reliability design of complex products are comprehensively
elaborated [53]. On this basis, a tool set can be constructed to control and evaluate the relia-
bility design of complex products using gray comprehensive evaluation, gray fuzzy theory,
multi-factor analysis, particle swarm algorithm and high-acceleration stress screening, so
as to meet customer needs of innovative design solutions for complex products with high
reliability [54].

3.2. Complex Product Intelligent Manufacturing Process Optimization Driven by Real-Time
Reliability Data

Manufacturing is the key link of complex products, and it is particularly important
to optimize the intelligent manufacturing process of complex products based on real-time
reliability data. By collecting and analyzing the operation and maintenance inspection,
diagnosis and maintenance data generated by key machinery and equipment in the man-
ufacturing process, the design data of key product components and the manufacturing
quality, system reliability, etc., for integrated analysis and application, intelligent detection
of machine equipment status and buffer management in the manufacturing process are
realized. This is performed through interactive application with complex product qual-
ity improvement, so as to achieve optimization and innovative application in complex
product intelligent manufacturing process based on real-time reliability-data-driven and
machine-buffer-quality-reliability model.

As shown in Figure 3, the intelligent manufacturing process optimization of complex
products driven by real-time reliability data mainly includes three parts: the acquisition of
real-time reliability data in the manufacturing process; the optimization of intelligent manu-
facturing process driven by reliability data; and the innovation and application of complex
product manufacturing reliability. Firstly, it is necessary to obtain design data related to
manufacturing reliability (such as functional data, BOM structure and design deviation
standards, etc.), manufacturing data (such as process product quality data, inspection data
and manufacturing condition monitoring data, etc.) and operation and maintenance service
data (such as key component fault detection and diagnosis data, etc.). Additionally, it is
necessary to form a real-time, multi-source, heterogeneous database of complex product
manufacturing process and corresponding association rules and mapping rules. Secondly,
based on the reliability data collected in real time, through deep learning, support vector
machines, Monte Carlo, artificial neural network stochastic-flow manufacturing network
(AN-SFMN) and quality-reliability (Q-R) methods are used to optimize the analysis and
intelligent decision making of the intelligent manufacturing process of complex products.
Finally, the machine-buffer-quality-reliability (MBQR) framework is used for the evaluation
and innovative application of manufacturing reliability of complex products.
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on real-time reliability data drive.

3.2.1. Research on Reliability Optimization of Manufacturing Process Based on
Machine STATE

The development of the Industrial Internet of Things (IIoT) enables intelligent man-
ufacturing processes and intelligent control of complex products. Cloud-based remote
data collection, intelligent machine interconnection and sensor monitoring technologies
provide a new direction for the optimization of intelligent manufacturing processes based
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on machine states [55]. In order to better evaluate the technical condition of machine
operation, various possible machine state signals, such as failure information of key com-
ponents, such as bearings, equipment vibration signals and pressure signals, are obtained
through high-precision sensors, IIoT, etc. From these feature signals, feature vectors are
extracted and counted to identify the machine operation status. Based on multi-sensor
data fusion technology, time domain and frequency domain features are extracted from
different sensor signals, and deep learning, neural network and other methods are used
for feature fusion. The fusion feature vector is used as a machine health indicator for
training deep belief network (DBN) for further classification to effectively identify ma-
chine operating conditions [56]. Enhancing production plant and manufacturing process
control helps improve the overall performance of the complex product manufacturing
system. Based on machine-learning, IIoT, high-precision sensors and other technologies
and tools, the solution of fault diagnosis, real-time data classification and prediction of
machine operating status in the intelligent manufacturing process of complex products has
become a priority for the production performance, predictive maintenance and avoidance
of energy waste in intelligent manufacturing systems of complex products [57]. Based on
reliability-data-driven methods, extracting and processing the failure characteristic signals
related to machine damage, degradation and methods to identify degradation patterns
related to technical conditions are becoming one of the main directions in the research of
reliability optimization of manufacturing processes based on machine states [58].

3.2.2. Research on Reliability Optimization of Manufacturing Process Based on Buffer

The polymorphism of buffers, machines and system structures allows the manufac-
turing system to be flexible and can ensure that the manufacturing system may still not
fail completely after a particular machine fails. The buffer capacity has a significant impact
on the machine state, and the reasonable allocation of the buffer can effectively improve
the average throughput of the manufacturing system and reduce the impact of material
interruption on the manufacturing process, which is important in the design of manu-
facturing system reliability [59]. The Toyota production system and lean manufacturing
are widely used in industries such as automobile manufacturing. Manufacturing systems
continue to reduce inventory levels and allocate less space for work in progress (as well
as raw materials and finished products, etc.), and limited capacity buffers are becoming a
trend in manufacturing systems [60]. Multi-state manufacturing system (MMS) has become
the main form of the current complex product manufacturing system. The reliability of
MMS is expressed as the possibility that all workstations provide enough and sufficient
capacity to meet specific needs and the possibility that all buffers do not run out of storage.
Further, considering the rework, defect rate and joint buffering, buffer capacity allocation,
minimizing allocation cost and evaluating the reliability optimization of manufacturing
systems with buffers under maintainable conditions have become the focus of research on
reliability optimization of multi-state manufacturing systems [61,62].

3.2.3. Research on Reliability Optimization of Manufacturing Process Based on
WIP Quality

Quality deviation and production rhythm are the two main characteristics of quality-
reliability dependency (Q-R). Multi-state reliability models and dependency theory are
often used to characterize the polymorphism of manufacturing systems in the process of
degradation, but most studies on MMS dependency ignore the dynamic characteristics
of manufacturing systems [63]. Work in process (WIP) is the main output element of the
manufacturing process. The quality of WIP is directly related to the operating state of
the manufacturing system. For the intelligent manufacturing system process of complex
products, there are many deviations (e.g., machining dimensions, surface accuracy, work-
in-process quality, machine running status, etc.) in the operating characteristics of the
manufacturing system, which are harmful to the operating characteristics. The coupling
effect leads to the change of WIP quality and ultimately affects the decline of finished
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product reliability, which is reflected as the loss of product manufacturing reliability [64].
Efficient production process design can reduce WIP quality loss, rework, errors and fail-
ures, thereby reducing manufacturing system costs and improving the quality of the final
product [65]. Based on the correlation between the production task execution state, pro-
duction equipment degradation state and production product quality state, considering
the manufacturing system WIP quality and reliability can optimize the MMS task relia-
bility assessment method and help the development of reliability prediction and health
management technology of the intelligent manufacturing system [66].

3.3. Complex Product Operation and Maintenance Services Optimization Based on Multi-Source
Heterogeneous Reliability-Data-Driven Model

The widespread application of information technology, such as IoT and deep learning,
makes it possible to accumulate and deeply mine real-time, massive multi-source heteroge-
neous data in the FLC of product DMS. Additionally, its effective use can accurately and
efficiently improve the reliability of products and O&MS and reduce the cost of operation
and maintenance services costs.

As shown in Figure 4, the research on optimization and innovative application of
complex product O&MS based on multi-source heterogeneous reliability data drive mainly
includes three parts: multi-source heterogeneous reliability data acquisition of manufac-
turing O&MS, reliability-data-driven optimization of complex product manufacturing
operation and maintenance service and innovative application of complex product manu-
facturing operation and maintenance service. Firstly, for the data islands between DMS,
service fragmentation, DMS operation and maintenance disconnection, etc., it is neces-
sary to form operation and maintenance service data interaction rules, cycle iteration and
cross-domain closed-loop feedback mechanism, which will be helpful for improving the
efficiency, reliability and quality of O&MS. Secondly, through deep learning, artificial neural
network, artificial intelligence and reliability analysis and other methods, it is necessary to
realize the reliability-data-driven complex product fault detection and diagnosis, preven-
tive maintenance strategy and spare parts management and optimization research. Finally,
the innovative applications of complex products in condition detection and feature extrac-
tion, intelligent online detection, diagnosis and prediction, and intelligent maintenance
decisions and activities are realized through methods such as association and clustering,
DT, machine learning and structural equation modeling, and so on.

3.3.1. Research on Fault Detection and Diagnosis of Complex Products Based on Reliability
Data Drive

Manufacturing process safety, manufacturing system reliability and product quality of
complex products are becoming more and more important in modern industries. In modern
digital manufacturing, 79.6% of machine downtime is caused by mechanical failures, and
how to mine sensitive fault characteristics from the complex and diverse data signals
of long-term mechanical operation and perform fault detection and diagnosis on them
becomes the key to the reliability of O&MS [67]. Fault detection and diagnosis (FDD)
can identify the root causes of observed system failures, which are crucial to eliminating
hidden dangers in manufacturing systems. Timely and accurate FDD of complex product
manufacturing processes and systems can effectively improve their reliability and safety.
This is different from the traditional FDD based on feature extraction, feature selection and
classification and packaging into different modules. It is based on intelligent technologies,
such as wireless sensor networks, IoT and DT, to obtain vibration signals, time, frequency
and spatial domain data, by using deep learning, neural networks, genetic algorithms,
particle swarm algorithms and principal component analysis to achieve fast, efficient and
accurate identification of sensitive features based on data and knowledge-based drive
and extraction, optimization and classification screening of sensitive features, etc. [68].
Although deep-learning models are widely used in reliability-data-driven FDD methods
due to their automatic feature learning capabilities, these models still need to be trained
based on historical sensor data, which makes it difficult to meet the real-time requirement of
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online fault detection and diagnosis applications. Based on migration learning, knowledge
can be learned from the source domain to achieve efficient and reliable solutions to different
but similar problems in the target domain, so as to provide online fault detection and
diagnosis, prediction and preventive maintenance in the integrated process of complex
product DMS [69].
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3.3.2. Research on Preventive Maintenance Strategy Based on Reliability Data Drive

With the application of new technologies, such as smart sensors, Industry 4.0, smart
manufacturing, 5G and IoT, in complex product manufacturing processes and operations
and maintenance services, automated predictive maintenance is also closely related to
robotics. The proliferation of smart sensors has led to an exponential growth in the amount
of data extracted from production process. When processed and analyzed, valuable in-
formation and knowledge can be identified from manufacturing processes, production
systems and equipment, which are used to support increasingly complex system decision
making and management through effective analysis and application [70]. Industry 4.0
introduces new paradigms for manufacturing systems, such as digitalization, intelligence,
service, networking and platform. Building data-oriented predictive maintenance based
on reliability data and IoT technologies achieves a guarantee of the longest uptime of the
entire manufacturing chain, reducing production costs while increasing productivity [71].
Predictive maintenance is an effective method to avoid failures and casualties. Taking
computer numerical control (CNC) machine tools as an example, as the master machine of
industrial manufacturing, if the failure cannot be eliminated in time, it may cause loss of
manufacturing accuracy, affect production and reliability of complex products. A hybrid
approach based on DT model and DT data-driven model can adequately solve the problem
of state diversity and consistency of CNC machine tools during their life cycle, thereby
enabling accurate, timely and intelligent predictive maintenance [72].

3.3.3. Research on Spare Parts Management and Optimization Based on
Maintenance Strategy

Spare parts management is one of the most important aspects of industrial manu-
facturing systems, especially for highly complex manufacturing processes that require a
large stock of spare parts to replace failed components in a timely manner. Spare parts
management and maintenance costs are an important part of manufacturing costs, and
spare parts management should be considered early in the design and operation phases to
reduce downtime in manufacturing systems, and determining the optimal number of spare
parts, suppliers and quality of spare parts based on historical data can minimize the total
cost of the system [73]. Implementing a secure and trusted spare parts inventory system
based on blockchain technology, integrating interplanetary file systems (IPFS) decentralized
storage to store and share spare parts data, which is tamper proof, traceable, accessible, im-
mutable, resilient and reliable, provides a new research direction for spare parts inventory
management systems to provide reliable ownership tracking of spare parts [74]. In general,
manufacturing systems have observable defect information and delayed spare parts avail-
ability characteristics; therefore, they have a health-status-oriented drive to achieve joint
optimization of preventive maintenance and spare parts inventory management. It can
promote the timeliness and robustness of maintenance decisions and reduce the production
downtime caused by the delay of spare parts, which is the key to affecting the reliability of
intelligent manufacturing systems and complex product O&MS [75]. Additive manufactur-
ing (AM) is considered to be a revolution in the traditional manufacturing technology of
spare parts. The application of AM technology in the field of spare parts management can
reduce delivery time, waste, energy use, spare parts inventory and improve manufacturing
system utilization and reliability of complex product O&MS [76].

4. Case Study
4.1. Case Description

The engine is the core device that provides the power source for the car and is the heart
of the car. The quality of the engine performance determines the reliability, power, stability
and environmental protection in the conditions of use of the car. How to achieve short
design cycle, low manufacturing cost, high stability of operation and maintenance service,
high speed, light weight, low noise, high thermal efficiency and excellent emission perfor-
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mance, etc., has become the key for enterprises to continuously pursue the improvement of
the overall reliability of engine product DMS.

The GS6 series engine is a high-performance, low-fuel-consumption, all-aluminum
gasoline engine independently developed by the SAIC Group, which took 4 years to build
and has completely independent intellectual property rights. The GS61 has a maximum
power of 138 kw, a maximum torque of 300 Nm, a maximum effective thermal efficiency
of 40% and a comprehensive fuel consumption of 5.4 L/100 km. The GS61 engine has
62 patented technologies and applies a series of key technologies, such as in-cylinder direct
injection, 350 bar high-pressure fuel injection system, cylinder head and cylinder block
cooling, electronic water pump, variable-section turbocharging, continuously variable
displacement oil pump, water-cooled intercooling, low-pressure exhaust gas recirculation,
rapid phase adjustment variable valve timing (VVT) and variable valve lift, and so on.
Through nearly 5 million kilometers of vehicle testing and more than 55,000 h of engine
bench testing, the GS6 product R&D and design cycle were shortened from 55 months
to 48 months. The manufacturing system average trouble-free time and other reliability
indicators were significantly improved, and the O&MS and other intelligent decision-
making and dynamic optimizations were realized. At the same time, some key indicators
were improved, e.g.: the dynamic response area increased by 39%, fuel consumption
decreased by 7%, and idling noise was less than 70 decibels. It successfully realized the core
strategy of powertrain for low emissions, low energy consumption and high performance,
and its performance, efficiency, quality and reliability are all at the world’s top level.

In 2021, global car sales had reached about 81.05 million. As a typical representative
of long R&D and design cycles, complex manufacturing processes and high requirements
for O&MS, how to realize the integration of engine DMS through cross-domain and collab-
orative utilization of design reliability data generated in the design process, manufacturing
reliability data of complex manufacturing process and reliability data of operation and
maintenance service, so as to effectively shorten the engine R&D cycle, realize the opti-
mization of manufacturing process and operation and maintenance service cost reduction
goals, are still some of the core issues that need to be solved urgently for current R&D and
manufacturing enterprises.

4.2. A Case Study on the Integration of Engine Design Manufacturing and Services Based on
Reliability Data Drive

The focus is on the integration process of engine assembly DMS through the collection
of engine demand characteristics, design information, manufacturing process reliability
data and intelligent operation and maintenance service reliability data, based on the cross-
domain closed-loop feedback mechanism between design, manufacturing and service. The
product development and design cycle are significantly shortened, the overall performance
is significantly improved, the mean time between failures and other reliability indicators are
significantly improved, the manufacturing cost is significantly reduced, and the intelligence
of O&MS is significantly increased, so as to provide consumers with safer and more reliable
complex products, as shown in Figure 5.
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4.2.1. Design Reliability and Optimization Research

Engine R&D and design is a huge and complex system engineering with deep integra-
tion of technology and management, characterized by high investment, high threshold and
long cycle, which is characterized by long-term and continuous investment in technology
iteration, harsh product manufacturing and operation conditions, high safety standards,
high product value and repeated iterations of product development in multiple batches. As
a typical complex product with closely related design, manufacturing and service integra-
tion, the engine requires a 4–6-year development cycle, and key component development,
manufacturing and O&MS may require continuous improvement throughout the life cycle
of the complex product, among other characteristics. In the face of an increasingly complex
competitive market environment, how to accurately obtain and identify market demand,
continuously shorten the R&D and design cycle of complex products, continuously reduce
the cross-domain defect transfer from design defects to manufacturing and operation and
maintenance service stages, and ensure the reliability of complex products has become one
of the main difficulties faced by enterprise R&D and design, manufacturing and operation
and maintenance service personnel. The reliability concept is introduced in the pre-research
stage, concept and design verification stage, product and process verification stage and
manufacturing maturity stage of complex products, etc., to realize the unified standard
of design and manufacturing reliability data, traceability of quality and reliability of key
components, full participation of manufacturing in front-end design and full consideration
of back-end manufacturing and testing in design, so as to realize the continuous improve-
ment of reliability and optimization of complex product design driven by reliability data,
as shown in the upper part of Figure 5.

In the pre-research stage, through customer demand analysis, new technology pro-
gram research, competitive product analysis, manufacturing strategy analysis and product
economic and social benefit analysis, the preliminary version of complex product outline
diagram, preliminary research reports on manufacturing processes and key components
and materials are formed, and design, manufacturing standards are formed. In the concept
and design verification stage, according to the market’s refined requirements, engineering
and manufacturing needs, it is necessary to identify and optimize the bottlenecks in the
R&D and manufacturing process, lock the preliminary engineering technology develop-
ment plan, complete the first prototype trial production and achieve the key performance
targets of complex products by verifying and optimizing the design, determine the com-
plete model of complex products, design drawing data, process solutions and engineering
bill of material (EBOM) and manufacturing bill of material (MBOM) and product manu-
facturing strategies, etc. In the product and process verification stage, mass production
manufacturing is completed, and the functionality, durability, manufacturability, weight
and quality, reliability of key parts and complex products are further verified based on
the reliability data of manufacturing and equipment operation and maintenance. It is
necessary to provide support for subsequent complex product manufacturing reliability
and intelligent O&MS, as shown in Figure 6.

4.2.2. Manufacturing Reliability and Optimization Research

Machining is the main core process of the engine manufacturing process. The GS61
series engines use intelligent machines provided by world-class equipment suppliers to
complete the complex machining process. Its main core processing equipment comes from
Germany, Spain, Italy and China and other world-class powertrain processing equipment
manufacturers, such as: Germany—GROB high-precision high-speed dual-spindle ma-
chining center; Germany—ELWEMA flexible robot; Spain—ETXE-TAR flexible machining
center; and other advanced intelligent processing equipment. The manufacturing pro-
cess adopts advanced engine manufacturing equipment and technologies such as fully
automatic multi-axis CNC machining center, flexible high-pressure parts cleaning, high-
pressure seal leak detection and fuel helium inspection, engine hot test, etc., matched with
RFID wireless tracking technology and intelligent whole-line monitoring information sys-
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tem to meet the real-time application of manufacturing real-time information and product
quality information, providing reliable in-process, over-finished and final products. The
manufacturing process is continuously optimized and supported, as shown in the middle
of Figure 5.
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This is based on the IoT, 5G, DT and other new-generation information technologies,
through MES, warehouse management system (WMS), QMS, radio frequency identification
(RFID) and other means to achieve real-time access and acquire machine operating state
data, manufacturing process data, in-process quality data, product quality and reliability
data and intelligent decision making. As one of the main components of the engine, the
engine block links the engine crankshaft connecting the rod mechanism, gas distribution
mechanism, oil supply and cooling into a unified whole, and the engine block processing
process and quality reliability have a great impact on the quality and reliability of the whole
engine. Taking the engine block production process as an example, through the use of
German GROB and other high-precision high-speed dual-spindle machining equipment for
milling the cylinder block surface, drilling, reaming, twisting, boring and pinning of various
hole systems, the cylinder block blank parts are processed into semi-finished and over-
finished products of various processes. After that, non-destructive testing of processing size,
hardness, strength and surface flatness is carried out by non-destructive testing technology.
Through the air tightness detection test, the cylinder hole penetration and air tightness
are intelligently detected. Predictive maintenance of machining equipment, such as tools,
controls the machining tool speed, feed, machining depth and width, etc. The quality
and reliability of the processed parts are controlled through random sampling and testing.
The reliability of the manufacturing system is ensured by rational planning of machining
processes and bottleneck manufacturing processes through finished product management.
As a result, the finished cylinder body that meets the relevant parameters and quality
requirements, such as design strength, stiffness and tightness, is obtained, as shown in
Figure 7.

4.2.3. Operation and Maintenance Service Reliability and Optimization Research

The design, manufacturing and O&MS of complex products emphasize the real-time
collection and processing of equipment data, manufacturing process data and operation
and maintenance data, the realization of database, model library and knowledge base and
data association rules and mapping rules construction, and the interconnection and interac-
tion of design parameters with manufacturing data and operation and maintenance data
through deep learning and artificial intelligence, so as to realize intelligent decision-making
process. Through the intelligent operation and maintenance service and optimization plat-
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form, enterprises can realize reliability data acquisition, machine and equipment operation
status and life data collection, equipment operation and maintenance service data, etc.,
to interact with R&D support platform in a timely manner. It is necessary to provide
auxiliary decision making and continuous optimization for enterprises to realize intelligent
equipment detection, diagnosis and prediction, production and manufacturing condition
detection, spare parts management and maintenance strategy, etc., thus realizing the relia-
bility and optimization of complex product O&MS based on multi-source heterogeneous
reliability data, as shown in the lower part of Figure 5.
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Spare parts management, as the main link of the intelligent manufacturing process
of complex products, is of great significance for intelligent equipment to achieve timely
maintenance and ensure manufacturing reliability. The development of unmanned super-
market and IoT technology provides new development ideas for unmanned spare parts
warehouse management. The use of RFID, computer software and hardware induction
control technology, etc., is necessary to achieve the whole process of monitoring, data
interoperability and real-time update of spare parts in stock. Real-time inventory query,
point-to-point material collection and other business scenarios are realized through UHF
RFID chip millisecond-level-induction automatic production billing and scanning system
automatic settlement technology. This is performed by using the ERP system to realize
convenient operation and management modes, such as unattended spare parts and easy
material retrieval. It is possible to carry out paperless inventory counting through tablet
computers to achieve green, fast and accurate inventory counting. It is possible to realize
lean procurement of inventory spare parts based on historical experience, big data analysis
of inventory spare parts, production planning and cost–benefit analysis, etc., as shown in
Figure 8.

4.3. Discussion

At the same time, in order to further explain the rationality and scientificity of the
framework, a questionnaire survey was conducted among R&D engineers, manufacturing
engineers and O&MS engineers who participated in the R&D, manufacturing and service
of the GS series. The survey content mainly included evaluating whether the framework’s
R&D and manufacturing services for complex products have been improved and the
amount of improvement that still remains.
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The content of the questionnaire mainly included whether the products have im-
proved in design, manufacturing and O&MS before and after the implementation of the
framework. For example: According to your work experience, does the implementation of
this framework effectively shorten the development cycle of the GS series? Additionally,
choose by how much the R&D cycle has been shortened? At the same time, according to
the production report and the research of the production staff, confirm the WIP primary
quality pass rate and the primary product reliability (the product is offline and qualified,
if there is any behavior such as repair, it is considered that the product is a non-qualified
product). As shown in Figure 9.

As shown in Figure 9, the product design cycle was shorter by 12.7%, the primary
product reliability (the product is offline and qualified, if there is any behavior such as
repair, it is considered that the product is a non-qualified product) increased by about 2%,
the maintenance frequency decreased by about 28.6%, and the environmental protection
index of the overall product increased by 1%.
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5. Conclusions and Outlook
5.1. Conclusions

With the application of IoT, 5G, high-precision sensors and intelligent manufacturing
technologies in the FLC of complex product DMS, DMS are increasingly showing the trend
of integration. Based on the application of reliability theory in the process of complex
product design, manufacturing and service, this paper investigates the technical ways to
realize the integration of complex product DMS driven by reliability data, which provides
a new method reference to reduce the cross-domain reliability loss in the integration of
complex product design manufacturing service and effectively improve the reliability of
complex products.

(1) From the current complex product design, manufacturing and service, this paper
expounds the problems and deficiencies of complex product design, manufacturing and
service at the present stage, and a framework for integrating complex product design,
manufacturing and service based on reliability data drive is proposed.

(2) From the application of integrated reliability data of complex product design
and manufacturing services, we propose the main technical route for implementing the
integrated framework of complex product DMS based on reliability data. Additionally,
it includes the optimization of complex product design driven by manufacturing and
service reliability data, intelligent manufacturing process optimization of complex products
driven by real-time reliability data and optimization of O&MS of complex products driven
by multi-source heterogeneous reliability data. Additionally, complex product design
reliability and optimization, manufacturing process reliability and optimization and the
O&MS and intelligent decision-making reliability and optimization driven by reliability
data are then realized.

(3) Taking the DMS integration of engine products as a case study, the design reliability
and optimization, manufacturing reliability and optimization, and operation and mainte-
nance service reliability and optimization processes are studied, and the introduction is
carried out. The feasibility of the data-driven complex product DMS integration framework
proposed in this paper is verified.

5.2. Research Deficiencies and Prospects

This paper explores the implementation technology path of reliability theory in the
process of complex product DMS integration, and it illustrates the engine DMS process as
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an example, which, to some extent, complements the application of reliability theory in
the process of complex product life cycle management, especially the integration process
of complex product DMS. The R&D and design cycle of complex products is long, the
manufacturing process is complex, and there are many uncertain factors in O&MS, and
reliability data in the process of DMS present various forms of expression, multiple sources
and inconsistent data structures. Therefore, this paper only shows the application potential
of reliability-data-driven integration of complex product DMS. In-depth discussions with
traditional and emerging methods are still needed in the future to further strengthen the
points of this paper. The follow-up of this study still needs to further verify the optimization
and innovative application of reliability data in the integration process of complex product
DMS from reliability data analysis, which is also the direction and content that can continue
to be explored in the future.
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Abbreviation

Acronyms Full Name
DMS design manufacturing and service
O&MS operation and maintenance services
IoT internet of things
FLC full life cycle
DT digital twin
PLM product life management
PSS production service system
DfX design for x
ADT accelerated degradation testing
CMfg cloud manufacturing
FMECA failure mode, effects and criticality analysis
LSA load strength analysis
QFD quality function deployment
MMS multistate manufacturing system
WIP work in process
FDD fault detection and diagnosis
CNC computer numerical control
AM additive manufacturing
MBQR machine-buffer-quality-reliability
WMS warehouse management system
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QMS quality management system
RFID radio frequency identification
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