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Abstract: The manufacturing accuracy of large-scale complex components determines the perfor-
mance and quality of aircraft, ships, high-speed rail, and other equipment. High-precision 3D
measurement plays a crucial role in ensuring manufacturing accuracy. At present, the existing mea-
surement methods rely heavily on manual labor, which cannot satisfy the requirements of industry
quality and efficiency. This paper introduces an integrated mobile robotic measurement system for
the accurate and automatic 3D measurement of large-scale components with complex curved surfaces.
The system consists of the mobile optical scanning measurement device, visual tracking device, and
software platform, which can realize comprehensive and accurate data acquisition and stitching of
large-scale complex components. The combination of visual tracking and 3D measurement based
on the coordinated motion of the dual robot achieved the automatic data acquisition of large-scale
complex components without sticking coded targets. Additionally, this paper also introduces a
DeepMerge algorithm that combines local and global features of the point cloud, which effectively
corrects the initial stitching error of the visual tracking system. The validity of the measurement
system and method was shown by the measurement and stitching experiments on the surface of the
vehicle nose, ensuring the accurate measurement of the robot’s wide range of motion.

Keywords: large-scale measurement; dual mobile robot; machine vision; collaborative measurement

1. Introduction

With the revolutionary development in aerospace, energy, transportation, and other
fields, it has been witnessed in recent years an increased demand for the processing quality
of large-scale components [1], such as aircraft wings, vehicle bodies, wind power blades,
and hull surface [2–5]. The accuracy of surface manufacturing affects the performance and
quality of equipment in relevant fields. Large-scale complex components are irregular and
diverse, and there are a large number of hidden points on their surfaces that are difficult to
measure. Traditional measurement methods cannot satisfy the requirements and accuracy
of on-site measurement [6,7]. Therefore, accurate 3D data measurement is essential for
surface feature extraction and machining quality inspection of complex components [8–10].
It is of great significance to improve the manufacturing capability of large-scale complex
components by realizing the comprehensive and high-precision automatic measurement
of large-scale complex components and effectively eliminating the accumulated errors in
large-scale measurements.

Currently, a host of 3D measurement methods for large-scale complex components
have been proposed one after another. O. Hall Holt et al. integrated a novel approach to
real-time structured light range scanning [11], and the system used a standard video camera
and DLP projector and produced dense range images at 60 Hz with 100 mum accuracy
over a 10 cm working volume. J. Salvi et al. found through experiments that the high
sensitivity to non-linearities of the camera reduces the accuracy and sensitivity to details
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in the surface [12]. Coordinate measuring machine (CMM) is a standard displacement
system used for dimension measurement, which is the most typical measurement method
at present [13,14]. Although it is highly accurate, it has many shortcomings, such as the
large size of equipment, lack of flexibility, and inability to measure hidden points, failing
to meet the on-site measurement requirements of complex components. The point cloud
alignment is also widely used in the measurement. The point cloud measurement based on
public coded targets [15] requires sticking a large number of coded targets on the surface
of the component, which is inefficient. Therefore, the surface features-based method [16]
is unsuitable for complex components. The local point cloud stitching that tracks the
scanner pose [17,18] aims to align the local point cloud after multiple scans, which is
suitable for the measurement of large-scale complex components. Yang Shourui of Tianjin
University proposed a large-scale and high-accuracy automatic measurement method based
on fringe projection, close-range photogrammetry, and industrial robots [19,20], which has
high precision, but can only be measured within the motion range of the robot. A Paoli
developed an industrial robot with two linear guide rails, whose end-effector could fix the
optical scanner [21,22], and the scanner pose for point cloud alignment was acquired by
the mechanical system and a total station. This method is suitable for measuring the hull of
a large yacht. However, the fixed guide rails in this system limit the vertical measurement
range and lack flexibility.

If the robot carrying the scanner is upgraded to an omnidirectional mobile robot, the
measurement range and flexibility of the measurement system will be greatly improved.
However, the precise positioning of the omnidirectional mobile robot will become a new
problem, which will affect the estimation accuracy of the scanner pose and the alignment
accuracy of the multi-view point cloud. Gan Z.X. et al. proposed an application of robot 3D
coordinate measurement combined with laser scanning system [23]. G. Mosqueira et al.
studied a special closed-loop fuze laser alignment method using industrial robots, and the
average positioning accuracy reached 0.38 mm [24]. Jung M. et al. presented an alternative
global localization scheme that uses dual laser scanners and the pure rotational motion
of a mobile robot, and the proposed method showed sufficient efficiency and speed to
be considered robust to real-world conditions and applications [25]. Zheng Wang et al.
found that the laser tracker and IGPS usually have linear error through testing and will be
affected by laser occlusion [26]. Although related devices such as laser sensors and GPS
can solve this problem, these devices are often disturbed by environmental factors and are
not suitable for this study. In recent years, visual tracking techniques have been gradually
used for robot positioning [27,28], but the tracking range is limited by the field of view of
the vision camera. In this regard, the team led by Tao Bo came up with a mobile robotic
measurement system for large-scale complex components based on optical scanning and
visual tracking, achieving the positioning of the robot by measuring scanner and coded
marks on the ground. In the actual measurement of a 2.88 m wind turbine blade model,
the translation error is less than 0.2 mm [29,30]. Although the measurement accuracy is
very high, the ground coding and marking process also increases the complexity of the
measurement task. In the paper [31], based on the new principle of dynamic triangulation
with a laser scanner, the discontinuous (i.e., discrete step) scanning method is converted
into continuous scanning method to eliminate the dead zone in the field of vision. In the
paper [32], in the application of mobile robot navigation, the combination variable scanning
step is implemented to provide accurate measurement and improve obstacle detection.
All of these show that the robot mobile vision system combined with a scanner is a more
suitable method for robot motion measurement.

To solve the above-mentioned problems, including the complexity of public-coded
targets, inflexibility of scanner poses, and spatial limitation of visual tracking, this study
proposes a dual mobile robot with a cooperative measurement system that integrates vision
tracking and 3D measurement for large-scale complex workpieces. Specifically, the system
includes the mobile robot, optical scanning measurement system, and visual tracking
system. The mobile robot carries an optical scanner with a target installed to complete a
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wide range of multi-directional scanning of components. At the same time, the mobile
robot has a vision system that can realize the real-time tracking and calibration of the target,
which can convert all the local point cloud data obtained from each scan into a unified
world coordinate system and achieve a wide range of flexible data acquisition with high
accuracy for large-scale components without sticking coded targets. Additionally, this
study also introduces the DeepMerge algorithm, which integrates local and global features
of the point cloud, to effectively correct the cumulative error in the initial splicing process
of the visual tracking so as to ensure the accuracy of the large-scale mobile measurement
of robots.

2. System Composition
2.1. Overall Structure

The large-scale automatic measurement system proposed in this study consists of
hardware and software systems. The former includes the tracking chassis (AGV), tar-
get tracking system, measurement chassis (AGV), industrial robot, stereo target, visual
measurement system, and central control system, while the latter contains the calibration
module, motion planning module, measurement module, and data processing module, as
shown in Figure 1.
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urement and the mobile robot that can perform visual tracking. The two move autono-
mously and work independently, completing the measurement together. The specific con-
figuration is shown in Figure 2. 
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2.2. Hardware System

The hardware system integrates the mobile robot with the function of optical measure-
ment and the mobile robot that can perform visual tracking. The two move autonomously
and work independently, completing the measurement together. The specific configuration
is shown in Figure 2.
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2.2. Hardware System 
The hardware system integrates the mobile robot with the function of optical meas-

urement and the mobile robot that can perform visual tracking. The two move autono-
mously and work independently, completing the measurement together. The specific con-
figuration is shown in Figure 2. 
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(1) The mobile robot with the function of optical measurement consists of the mea-
surement chassis (AGV), visual measurement system, high-precision stereo target,
industrial robots, and central control system. The robot can adopt various multi-
degree-of-freedom tandem industrial robots depending on the measurement tasks,
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with the stereo target mounted at the end of the robot. The surface of the stereo target
has many targets for tracking in different directions. The visual measurement system
is a binocular visual system or laser measurement system mounted in the stereo
target. The central control system coordinates the work of all devices and realizes
data interaction with upper-level manufacturing execution systems and other systems
through standardized interfaces.

(2) The mobile robot with a visual tracking function has a target tracking system, and its
monocular camera is fixed on the bracket of the tracking chassis (AGV), which can
obtain the position of the high-precision target on the measurement chassis in real
time, thus realizing the real-time tracking and calibration of the target, converting all
local point cloud data obtained each time into the unified world coordinate system,
without sticking coded targets.

The above two autonomous mobile robot systems employ the AGV as the mobile chas-
sis and adopt four-wheel drive and differential steering, which can meet the requirements
of wide-range mobile measurement. These two mobile chassis (AGVs) can move collabora-
tively according to the paths planned by the motion planning module to achieve a wide
range of automated measurement data acquisition. Compared with the traditional fixed
measurement by the robot, this system has obvious advantages in terms of measurement
efficiency and flexibility.

2.3. Software Platform

The central control system is the operation platform of the measurement system,
which coordinates and controls the related equipment of each subsystem to complete the
collaborative measurement and realize the unified management of all equipment. The
mobile chassis (AGV) and robot system complete the corresponding movement under the
command of the central control system. The composition of the software platform modules
is shown in Figure 3.
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The composition of the software platform modules is as follows:

(1) Calibration module. The function of this module is to calibrate the pose relationship
between the stereo target and the visual measurement system and perform the global
calibration among multiple sites (i.e., the transformation relationship between the
coordinate systems of the target tracking systems of adjacent sites after coordinate
transformation). The transformation matrix worked out by calibration enables the
transformation of the high-density point cloud acquired by the visual measurement
system to the world coordinate system of the target tracking system.

(2) Motion planning module. The function of this module is to perform the path and
trajectory planning for the mobile chassis (AGV) and industrial robots. Specifically,
the path planning of mobile chassis (AGV) is to obtain the sequence of operating
points of the two AGVs. The path planning of industrial robots is to obtain the
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sequence of operating points of the robot’s end-effector after the mobile chassis (AGV)
carrying the robot reaches each point. The two cooperate with each other to cover all
the points that need to be measured on the surface of the object to be measured. On
the basis of path planning, trajectory planning is implemented to ensure the stability
and continuity of the bulk movement.

(3) Measurement module. The function of this module is to obtain the overall point cloud
data of the complex workpiece to be measured and complete the unified stitching of
the local point cloud data collected by the visual measurement system through the
transformation relationship between coordinate systems of local calibration and merge
them into the coordinate system of the tracking target system. After the coordinate
transformation, the transformation relationship of the coordinate system obtained by
global calibration is used to align and merge different point cloud segments between
adjacent sites, thus obtaining the complete point cloud data to be measured.

(4) Data processing module. The function of this module is to optimize the point cloud
data. Due to the irregularity of complex workpieces and the limitations of measure-
ment methods, the initial point cloud data obtained by target tracking and visual mea-
surement systems may generate cumulative errors, so the data need to be optimized.

3. System Principle
3.1. Working Principle of Collaborative Measurement

Using the collaborative measurement by a dual mobile robot can relieve the measure-
ment range limitation of the visual tracking system and realize the large-scale point cloud
data acquisition without sticking coded targets. The working principle of collaborative
measurement is as follows:

The optical measurement robot comprises the mobile chassis (AGV) and binocular
optical measurement camera. The binocular optical measurement camera can obtain local
high-precision 3D data of the measured object shape through a single measurement. The
synergic movement of the mobile chassis and the robotic arm enables flexible adjustment
of the position of the visual measurement camera, i.e., the measurement head. Through
multiple movements and measurements, we can obtain all measurement data of the shape
of the object to be measured, realizing flexible and accurate measurement in a wide range.
Visual tracking is required to unify the measurement data at different locations into the
world coordinate system.

The visual tracking robot is composed of the mobile chassis (AGV) and a monocular
tracker. The monocular tracker can measure the pose of the target in real time, and the target
is fixedly connected with the binocular optical measurement camera, so the real-time pose
of the measurement camera can be obtained. Record the pose data of each measurement of
the measurement camera, unify all the measurement data in the world coordinate system,
and stitch them into complete measurement data of the object to be measured.

When the size of the object to be measured is large, the optical measurement robot and
the visual tracking robot achieve the complete measurement of the large-scale workpiece
through multiple alternating motions, that is, when one is in motion, the other remains
stationary. The coordinate system established by the initial position of the vision track-
ing robot is denoted as the initial coordinate system. Through the measurement of the
monocular tracker, the mapping relationship with the initial coordinate system is always
maintained, and all the measurement data are unified into the initial coordinate system,
that is, the world coordinate system. This method is called “coordinate transformation”
in this study. During the alternating motion, the coordinate and pose transformation is
performed through the pose relationship obtained by detecting the real-time pose of the
target, which is finally expressed in the world coordinate system.

The coordinate systems are as shown in Figure 4. In this study, the coordinate transfor-
mation relationship of the initial coordinate system, namely the world coordinate system
(W), the coordinate system for the tracking mobile chassis (V1), the coordinate system for
the mobile chassis platform (V2), and the coordinate system for the robot arm base (B), the
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coordinate system for the end of the robot arm (E), the coordinate system for the target (T),
the coordinate system for the measurement head (S), and the coordinate system for the
tracker (C) were established. In this study, T denotes the transformation matrix and TB

A
represents the transformation matrix from the B series to the A series.
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The transformation of unifying the measurement data to the initial coordinate system
is as follows:

PW = TS
W PS = TC

WTS
CPS = TV2

W TC
V1TT

CTS
T PS (1)

where PS denotes the measurement data before unifying the coordinate system and PW
denotes the measurement data after unifying the coordinate system. TT

C is obtained by
measuring the target using the tracker. TS

T and TC
V1 are regarded as fixed values, which are

obtained by calibration after installing the equipment.
If V1 and W coincide at the beginning of the measurement, TV1

W is the identity matrix.
If V1 is stationary and TC

W remains unchanged, the coordinate system transformation of the
measurement data can be performed according to Formula (1).

When V1 moves, V2 and E are stationary, and the relationship between T and W
remains unchanged, i.e., TT

W remains unchanged. If the new TT
C can be obtained using the

monocular tracker, the new TC
W can be obtained based on Formula (2). The coordinate

transformation of the measurement data can be performed according to Formula (1).

TC
W = TT

WTC
T = TT

W

(
TT

C

)−1
(2)

If the two mobile platforms move alternately in the above-mentioned manner, the
mapping relationship (TT

W) between L and W can always remain. If this system only relies
on the measurement of C to L to complete the global positioning and navigation, it requires
establishing the mapping relationship between V1, V2, and W. As TT

W was obtained, it only
requires establishing the transformation relationship from T to the two mobile platforms
(V1 and V2), as shown in Formulas (3) and (4).

TT
V2 = TB

V2TE
BTT

E (3)

TT
V1 = TC

V1TT
C (4)

In Formula (3), TB
V2 and TT

E are fixed values, which are obtained by calibration after
installing the equipment. TE

B is calculated in real time by reading the joint parameters of
the robot arm. In Formula (4), TC

V1 is obtained by calibration after installing the robot, and
TT

C is obtained by measuring the target using the tracker.
Then, according to Formulas (5) and (6), the poses of the two mobile platforms in the

initial coordinate system can be obtained, that is, the global positioning of the two robots
is realized:

TV2
W = TT

WTV2
T = TT

W

(
TT

V2

)−1
(5)
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TV1
W = TT

WTV1
T = TT

W

(
TT

V1

)−1
(6)

The use of the above collaborative measurement can realize the large-scale point cloud
data acquisition without sticking to coded targets.

3.2. System Workflow

Figure 5 shows the schematic diagram of the main workflow of the work system.
The workflow is mainly divided into three parts, namely, before measurement, during
measurement, and after measurement.
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(1) Before the measurement, the path and trajectory planning are performed for the
AGV and robot, and the subsequent overall measurement and acquisition program is
executed according to the planned trajectory. In this part, the stereo target and vision
measurement system are calibrated.

(2) During the measurement, the visual measurement system, stereo target, and target
tracking system are used to obtain the overall point cloud data of the components to
be measured. The steps are as follows:

a. First, stop the target tracking system and the visual measurement system at
the initial point according to the path planning. Once the measurement starts,
the visual measurement system performs the point-to-point measurement on
the measured workpiece based on the path planned by the motion planning
module. Meanwhile, the target tracking system records the pose of the visual
measurement system at each measuring point.

b. When the size of the workpiece to be measured is large, the robot needs to
move forward by one station. The measurement chassis (AGV) moves forward
along the planned smooth curve for a certain distance at a predetermined
speed and stops, and then the visual measurement system smoothly passes
the measuring point along the planned path to perform the measurement, and
the target tracking system records and collects the pose of the stereo target.
When the stereo target on the measurement chassis (AGV) is not within the
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measurement range of the target tracking system, the tracking chassis (AGV)
needs to perform a coordinate transformation to continue the measurement.

c. During the coordinate transformation, the target tracking system first records
the pose of the stereo target, then the tracking chassis (AGV) moves forward
a certain distance according to the suitable working distance of the target
tracking system and stops and records the pose of the stereo target again.
Next, the coordinate transformation is performed on the target tracking system
according to the two sets of pose-related information of the stereo target
recorded by the target tracking system. After the coordinate transformation,
the target tracking system and the visual measurement system continue to
perform measurement by taking photos according to Steps a and b until the
task is completed.

d. Stitch and merge the local point cloud data acquired by the visual measurement
system into the coordinate system of the tracking target system through the
local calibration of the coordinate system’s transformation relationship. After
the coordinate transformation, we can align and merge different point cloud
segments obtained from scanning the tracking target system between adjacent
sites using the coordinate system’s transformation relationship derived from
the global calibration. Finally, the point cloud data of the entire component to
be measured can be obtained.

(3) After measurement, optimize the measured data. The proposed intelligent algorithm
(DeepMerge) is used to effectively correct the accumulative errors of the point cloud
of visual tracking and stitching.

4. System Core Modules
4.1. Calibration Module

As shown in Figure 6, the calibration module consists of the robot on the measurement
chassis (AGV), stereo target, visual measurement system, calibration plate, and target track-
ing system on the tracking chassis (AGV). The target is equipped with a light source to guide
the tracking system outside the measurement range to perform real-time high-precision
tracking, and the target position is relatively fixed with the visual measurement system.
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Figure 6. System calibration principle.

The calibration plate is a plate with a uniform mesh, and a sphere for determining its
pose is fixed on the surface. Assume that the centers of the three spheres are A, X, and Y,
obtain the point cloud data of the calibration plate in the measurement area, and update the
foot point O: assume that the equation of the line AX is ax + by + c = 0 and the coordinate
of point B is (m, n), then the foot point O is

(
b2m− abn− ac

a2 + b2 ,
a2n− abm− bc

a2 + b2 ) (7)
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Assuming that
→

OX is
→
x and

→
OY is

→
y ,
→
z can be obtained by the cross-multiplication of

the two, then the space coordinate system is established with the point O as the origin, and
the pose coordinate of the calibration plate after normalization is expressed as:

→
x ·x →

y ·x →
z ·x O·x

→
x ·y →

y ·y →
z ·y O·y

→
x ·z →

y ·z →
z ·z O·z

0 0 0 1

 (8)

Placing the calibration plate within the measurable range of the measurement camera,
the transformation relationship between the measurement coordinate system and the
calibration coordinate system is TS

P. The positional relationship between the target and
the measurement camera is relatively fixed, and the transformation relationship between
the two is TT

S . The transformation relationship between the target tracking system and the
stereo target is TC

T . Then:
TC

P = TC
TTT

S TS
P (9)

The position of the camera and the target is measured by controlling the robot’s
movement, and the feature corner points in different calibration plates are measured twice
to obtain a new set of transformation relationships:

TC
T1 TT1

S1 TS1
P = TC

T2 TT2
S1 TS2

P (10)

Then:
TC

T2
−1 TC

T1TT1
S1 = TT2

S2 TS2
P TS1

P
−1 (11)

If, A = TC
T2
−1 TC

T1, B = TS2
P TS1

P
−1, X = TT

S , then

AX = XB (12)

After X is solved, the acquired point cloud can be converted to the target coordinate
system. Based on the results of the global calibration, all the stitched point clouds can
be unified to the coordinate system of the monocular camera. During the measurement
process, the position between the tracking camera and the target and that between the target
and the measurement camera will not change even if the robot has a certain displacement,
thus avoiding rebuilding the model and re-establishing the system relationship. The specific
workflow is shown in Figure 7.
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The detailed steps of the workflow are as follows:

(1) Place the calibration plate sprayed with eikonogen within the measurable range of
the measuring camera to obtain the point cloud data of the calibration plate in the
measurement area;

(2) Import the point cloud data into Geomagic to obtain the center coordinates of the
three spheres by fitting;
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(3) Change the pose of the target and the measurement camera by moving the robot arm
and obtain the transformation relationship (TS

P) between the measuring coordinate
system and the calibration coordinate system under different poses. The tracking
camera tracks the position of the target to obtain the transformation relationship (TC

T)
between the target and the tracking camera at the corresponding moment.

(4) Control the distance between the measurement camera and the calibration plate
within the effective field of view, collect as many data sets as possible for calcula-
tion, and obtain the calibration results. The transformation relationship between the
measurement camera and the target is TT

S .

4.2. Trajectory Planning Module

To realize the automatic, comprehensive, and accurate measurement of large-scale
workpieces, this study introduces a set of autonomous trajectory planning algorithms,
including the trajectory planning of optical measurement robot (AGV and robotic arm)
and visual tracking robot (AGV). Assuming that the measurement range of the measuring
head is a rectangle (m denotes width and n denotes height), p denotes the motion range
of the robot in the lateral direction, and other input parameters are shown in Figure 8. By
uniformly sorting and connecting the above three groups of planning results, the overall
movement instruction sequence of the system can be obtained.
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4.2.1. Trajectory Planning of the Optical Measurement Robot

(1) Mobile Measuring Chassis (AGV)

By projecting the 3D design model of the measured object onto a 2D plane, a 2D closed
figure can be obtained. As shown in Figure 9, it is a closed diagram obtained by projection
with high-speed rail as an example. This figure can be seen as the contour of the object to
be measured. A series of point locations are generated at the periphery of the contour at a
uniform space (calculated based on Formulas (13) and (14)). At each point, the direction of
the motion platform is perpendicular to the normal of the contour at that point.

distance ∈ (d3 + w/2, d4 + w/2) (13)

step ∈ (p, p + m) (14)
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(2) Trajectory planning for the optical measurement robot arm

In order to obtain the complete measurement data of the measured object surface, the
robot needs to cover the measurement range of the measuring head to the local surface
of the object, which is similar to the full coverage path planning in the path planning of
mobile robot. Therefore, as shown in Figure 10, in this system, we first determined the
position of the measurement boundary based on the height of the object to be measured
and then performed the full coverage path planning to obtain the position sequence of the
robot end-effector.
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Figure 10. Schematic diagram for the trajectory planning of the robot arm.

In Figure 10, i and j are: {
i = h/n
j = p/m + 1

(15)

4.2.2. Trajectory Planning of the Visual Tracking Robot

The set containing all measuring points is denoted as C. A series of points
((t1, t2, · · · , tn)) are generated at the periphery of the measuring points at a distance of d1
from each measuring point, as candidates for tracking points. According to the field of view
(θ) of the tracker and the upper limit of the optimal line of sight (d2), all the measuring
points that can be covered by each tracking point are calculated, and the set of measuring
points that can be covered by the ti is expressed as cover(ti).

Ti denotes a set of t that can cover all tracking points, namely:

C ⊆ cover(Ti) (16)

To meet the conditions required for coordinate transformation, the coverage ranges of
two adjacent t in Ti must have an intersection:

cover
(
tj
)
∩ cover(tk) 6= ∅, tj, tk ∈ Ti (17)

To minimize the number of coordinate transformations, the group with the least
number of points is selected from all Ti and returned:

res = min{T1, T2, · · ·} (18)
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The schematic diagram and flow chart of the trajectory planning of the mobile tracking
chassis are shown in Figures 11 and 12, respectively.
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4.3. DeepMerge for Point Cloud Stitching Based on Deep Learning

As mentioned above, when the system collects the measurement data, the target
tracking system completes the initial point cloud stitching. However, slight errors may
occur in the stitching by the target tracking system. The DeepMerge mentioned in this
study is a point cloud stitching algorithm based on the global and local features of the point
cloud, which can effectively correct the initial point cloud stitching of the target system.

(1) Principle of DeepMerge for point cloud stitching

Based on the initial point cloud stitching of the target tracking system, DeepMerge
obtains the part with approximately the same shape and extracts the global and local
features of the point cloud of this part, obtains the feature similarity matrix through the
similarity of the features, and finally completes the homogeneous transformation of the
point cloud stitching through the singular value decomposition module.

Unlike the conventional point cloud stitching algorithms, the initial point cloud stitch-
ing of this system provides us with the same shape information between the two-point
clouds to be stitched. Figure 13 shows the initial point cloud stitching when the target
tracking system has errors. The red and green points are the parts of the source point cloud
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(P) and the target point cloud (Q) with the same shape. Based on the results of initial point
cloud stitching, the part of the same shape of the source point cloud (P) and the target
point cloud (Q) has an important feature: the spacing between the corresponding points
in the two-point clouds is very small. Specifically, after completing the initial point cloud
stitching, the target tracking system searches for the point in the target point cloud (P)
closest to each corresponding to the point in the source point cloud (Q). If the spacing
between the closest point pair is less than the threshold δ, it is considered that the point
pair belongs to the same part of the source point cloud (P) and the target point cloud (Q),
and vice versa. Then, the point cloud with the same shape as the source point cloud (P)
and the target point cloud (Q) can be obtained.
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Figure 13. Initial point cloud stitching when the target tracking system has errors.

In the source point cloud (P), there are some points near the part with the same shape,
and the spacing between these points and the nearest points in the target point cloud (Q)
is smaller than the threshold (δ), so the two parts with the same shape of the two-point
clouds calculated based on the stitching results of the target tracking system are not exactly
the same. As shown in Figure 14, the red and green points are the parts with the same
shape in the source point cloud (P) and the target point cloud (Q), respectively, and the
blue points are points that do not have the same shape according to the stitching results
of the target tracking system. Therefore, it is proposed to correct the initial point cloud
stitching by combining the global and local information features of the point cloud to form
accurate information related to the point cloud stitching.
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The foremost thing to solve the local features of the point cloud is to stitch and cor-
rect the feature embedding extracted from the point structure consisting of points and
the nearest k points in the point cloud. That is, for each point (pi) in the point cloud,
solve the coordinate (pi1, pi2, . . . , pik) of the nearest k points. Because the neighborhood
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points themselves also contain some information, it is obvious that using only the coordi-
nates of neighborhood points wastes a lot of information. The normal vector information
of the neighborhood of a point proves to be the most effective and is used by many
traditional algorithms.

During the point cloud processing, the calculation of the normal vector of a point on
the surface is generally approximated as the estimation of the normal of a tangent plane of
the surface, so it can be regarded as the estimation of the least-squares plane fit. The plane
is a point set (Z) fitted by calculating the point (pi) of the normal vector and its nearest
points pi1, pi2, . . . , pik. Specifically, it is assumed that the plane equation obtained by fitting
the point set Z is:

ax + by + cz = d (19)

The distance from any point (pj =
(
xj, yj, zj

)
) to the plane is:

dj =
∣∣axj + byj + czj − d

∣∣ (20)

Fitting the best plane is to minimize the distances from all points in the point set to
the plane:

(a, b, c, d) = argmin
k

∑
j=1

∣∣axj + byj + czj − d
∣∣2 (21)

Thus, the problem of fitting the plane is converted into a problem of calculating
the extrema:

f =
k

∑
j=1

d2
j − λ

(
a2 + b2 + c2 − 1

)
(22)

The problem of calculating the extrema can be converted into a problem of calculating
eigenvalues of matrix by calculating partial derivatives. Specifically, we took the partial
derivative of f with respect to d:

∂ f
∂d

= −2
k

∑
j=1

(
axj + byj + czj − d

)
= 0 (23)

Then, d can be expressed as:

d =

k
∑

j=1
xj

k
a +

k
∑

j=1
yj

k
b +

k
∑

j=1
zj

k
c (24)

Substitute d into the Formula for the distance from the point to the plane:

dj =
∣∣a(xj − x

)
+ b
(
yj − y

)
+ c
(
zj − z

)∣∣ (25)

Assuming that ∆xj = xj − x, ∆yj = yj − y, and ∆zj = zj − z, the partial derivatives of
f with respect to a, b, and c are:

∂ f
∂a = 2

k
∑

j=1

(
a∆xj + b∆yj + c∆zj

)
∆xj − 2λa = 0

∂ f
∂b = 2

k
∑

j=1

(
a∆xj + b∆yj + c∆zj

)
∆yj − 2λb = 0

∂ f
∂c = 2

k
∑

j=1

(
a∆xj + b∆yj + c∆zj

)
∆zj − 2λc = 0

(26)

The coefficients of Formula (26) can form a 3D square matrix, and the eigenvector
corresponding to the minimum eigenvalue of the square matrix is the normal vector (ni)
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of the point (pi). Through the above calculation of normal vectors, the normal vectors
(ni1, ni2, . . . , nik) of the nearest k points to the point pi are found.

Additionally, the distance is a piece of very important information to be learned in
the point cloud, so we can explicitly put it into the local structure of the point cloud, that
is, find the distance di1, di2, . . . , dik of all the k points to the point pi. Finally, the nearest k
points, their normal vectors, and the distances from the point pi to these nearest points
are stitched to form a k× 7 matrix, which is the final extracted local structure. By feeding
the local structure of the point cloud into the neural network feature extractor, the local
features of the point cloud can be obtained.

(2) Model structure of DeepMerge

As shown in Figure 15, the entire model structure of the DeepMerge consists of three
parts, including the point structure extractor, point feature extractor, and differentiable
singular value decomposition module.
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Figure 15. Algorithm model structure.

The point structure extractor of the DeepMerge is shown in Figure 16. First, all points
in the point cloud are decentralized. Next, the farthest point of each point is selected. Then,
the coordinates of each decentralized point and its farthest point are stitched, the local
structure of the extracted point is added, and k copies of the global structure of the point
are obtained and stitched with the local structure of the point, thus obtaining the k× 14
point structure.
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Figure 16. Point structure extractor of the DeepMerge.

As shown in Figure 17, since the input point structure is a k× 14 matrix, after each con-
volution, we used the max-pooling layer to compress the intermediate feature embeddings
into a 1D vector, stitch all the compressed 1D intermediate feature embeddings in the last
layer, and input them into the last convolution layer. The DeepMerge has five convolution
layers, and the number of filters in each convolution layer is 64, 64, 128, 256, and 512.

After being processed by the point feature extractor, each point in the point cloud has
a 512D feature embedding vector. The rotation matrix R and translation vector t can be
obtained by feeding the point-by-point feature embedding vector into the differentiable
singular value decomposition module. The rotation matrix R and translation vector t are
the homogeneous transformation matrix stitched by adjacent point clouds.
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5. Point Cloud Data Collection and Stitching Experiment

To verify the validity of the measurement system and method, this study took the
vehicle nose as the object to carry out the collaborative measurement experiment.

5.1. Introduction to the Experimental Platform

As shown in Figure 18, the optical scanning measuring robot adopts the JAKA flexible
manipulator. The end of the manipulator carried a high-precision binocular depth camera
with a target installed on it. The camera was equipped with PhoXi 3D Scanner S with
3.2 million 3D points in each one, an accuracy of less than 0.05 mm, and an optimal scanning
distance of 442 mm. The visual tracking robot took Metronor’s Lightpen as monocular
cameras for tracking targets, enabling accurate measurements of up to 30 m and spatial
length measurement accuracy of up to 25 µm. The above hardware ensures the accuracy of
the system.

1 

 

 

  Figure 18. Establishment of the experimental platform for data acquisition of the vehicle nose.

Additionally, the system was equipped with a remote PC terminal as the host com-
puter to control the entire large-scale mobile robot measurement system to carry out the
measurement.
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5.2. Data Collection Experiment

We conducted trajectory planning for the dimensions of the vehicle nose. Specifi-
cally, we controlled the coordinated motion of the optical measurement robot and the
visual tracking robot to plan a suitable data acquisition path. During data acquisition,
we completed the acquisition of multi-directional point cloud data based on the planned
data acquisition path. With the help of visual tracking, we unified the measurement data
obtained in different poses into the world coordinate system and transfered them to the
central control system to form a complete point cloud data file to finish the point cloud
data acquisition.

The 3D data acquisition process (as shown in Figure 19) of the vehicle body by the dual
mobile robot realizes the measurement data acquisition without sticking coded targets.
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Figure 20 shows the initial point cloud stitching completed when collecting the mea-
surement data of the vehicle nose. The scanned point cloud data was stitched to reconstruct
the complete 3D point cloud data on the surface of the vehicle nose.
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5.3. Data Stitching Experiment

The measurement data of large-scale components needed to be collected multiple
times, which means that data stitching needed to be performed many times, so each high-
precision stitching is particularly important. In terms of the stitching of the vehicle nose’s
complete point cloud data, the effects of the initial point cloud stitching and DeepMerge
stitching correction were compared, as shown in Figure 21. The red and green points
are the parts of the source point cloud (P) and the target point cloud (Q) with the same
shape. Figure 21a shows the initial point cloud stitching effect of the target system. It is
found that the stitching parts of the green and redpoint clouds are relatively sparse, with
obvious cumulative errors. Figure 21b shows the stitching effect after the correction of the
DeepMerge. It can be seen that the stitching parts of the two-point clouds overlap densely
and cross evenly, indicating that a better stitching effect is achieved after the correction.
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Figure 21. Comparison of the overall stitching effect of the vehicle nose. (a) Initial point cloud
stitching. (b) DeepMerge algorithm correction.

The data were collected and stitched twice at the same position on the vehicle nose in
the same robot pose, as shown in Figure 22. The red and green points are the parts of the
source point cloud (P) and the target point cloud (Q) with the same shape. As the two-point
clouds are at the same location, they share an overlapping part, and the essence of stitching
is the registration of two-point clouds. Figure 22a is the initial point cloud stitching of the
target, with obvious errors; Figure 22b shows the stitching effect after the correction of
the DeepMerge. The overlapping part is dense and uniform, which can achieve a better
stitching effect.
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After stitching and merging the data several times, the complete 3D point cloud of the
vehicle nose after being stitched by DeepMerge is shown in Figure 23. Even though there is
a lot of noise, DeepMerge achieves the accurate stitching.
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In order to verify the reliability of this experiment, this paper spliced two different
complete point clouds of the vehicle head processed by the DeepMerge algorithm at any
error angle, and detected whether there were errors. As shown in Figure 24, it can be seen
that the two-point clouds almost reach the same pose, and the overlapping parts are dense
and uniform, forming a good stitching and registration effect.
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Figure 24. Effect of DeepMerge on point cloud stitching and registration with arbitrary error. (a) The
input of arbitrary errors. (b) The output of the stitching algorithm.

The stitching error detection was performed on the stitching and registration of the
above-mentioned point cloud of the vehicle nose. Outliers were not removed during the
point cloud stitching, so when performing the comparison to detect errors, some outliers
were identified as errors, even if threshold screening was adopted. Figure 25 shows the
error results obtained through comparison, in which the red dots denote the points with
upper deviation, and the green dots denote the points that have lower deviation. It is found
that the error is small, evidencing the correctness and effectiveness of this algorithm.
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6. Conclusions

This paper introduced a new cooperative measurement method of two mobile robots
and completed the preliminary test to evaluate the correctness of the measurement system.

In this document, the composition and design of the dual Mobile Robot Cooperative
measurement system were introduced in detail, with emphasis on the system workflow and
data acquisition algorithm, and a preliminary test was carried out. The new measurement
method provided the possibility of measuring the detail size of large and complex compo-
nents. Compared with the traditional measurement method, our method offered a great
improvement. For example, using mobile vision for tracking and positioning, lifting the
range limitation of the traditional fixed vision system, and realizing large-scale point cloud
data collection without coding positioning marks. The preliminary test results show that
the point cloud data collected and stitched by this method is dense and uniform, and the
error between different collections is small, forming a good stitching and registration effect,
which proves the correctness and effectiveness of this measurement method. This research
method provides an effective solution for the high-precision automatic measurement of
large-scale complex components.
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Finally, we would like to point out that the dual robot measurement system proposed
has high efficiency and low cost, and is very suitable for quality control, reverse engineering
and manufacturing defect detection of large and complex components. Our future work
will focus on the further improvement of the system accuracy and robustness to improve
the system efficiency and measurement accuracy. In addition, this research will also be
applied to the measurement of high-speed railway locomotive, aircraft, and other large
parts and complete machines, which can provide ideas for the flexible measurement of
large and complex parts.

Author Contributions: Conceptualization, L.Q., Z.G., J.R. and F.W.; methodology, L.Q., F.W. and H.S.;
software, F.W. and H.S.; validation, F.W., Z.M. and H.S.; formal analysis, L.Q., J.R. and Z.M.; investiga-
tion, J.R., F.W. and H.S.; resources, L.Q. and Z.G.; data curation, L.Q. and F.W.; writing—original draft
preparation, L.Q., J.R. and F.W.; writing—review and editing, L.Q., J.R., Z.M. and H.S.; visualization,
F.W. and Z.M.; supervision, Z.G. and Y.S.; project administration, L.Q.; funding acquisition, L.Q. and
Z.G. All authors have read and agreed to the published version of the manuscript.

Funding: 1. The National Key Research and Development Program (Grant No. SQ2020YFF0403429);
2. Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0103); 3. Natural
Science Foundation of Jiangxi Province (20212BAB202026).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Shanghai Engineering Research Center of AI &
Robotics, Fudan University, China, and the Engineering Research Center of AI & Robotics, Ministry
of Education, China.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, D.H.; Feng, X.Z.; Xu, X.H.; Yang, Z.Y.; Li, W.L.; Yan, S.J.; Ding, H. Robotic grinding of complex components: A step towards

efficient and intelligent machining challenges, solutions, and applications. Robot. Comput. Integr. Manuf. 2020, 65, 101908.
[CrossRef]

2. Saadat, M.; Cretin, L. Measurement systems for large aerospace components. Sens. Rev. 2002, 22, 199–206. [CrossRef]
3. Feng, F.; Yan, S.J.; Ding, H. Design and research of multi-robot collaborative polishing system for large wind turbine blades. Robot.

Tech. Appl. 2018, 5, 16–24.
4. Dai, S.J.; Wang, X.J.; Zhang, H.B.; Wen, B.R. Research on variation of grinding temperature of wind turbine blade robotic grinding.

Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 235, 367–377. [CrossRef]
5. Soori, M.; Asmael, M.; Khan, A.; Farouk, N. Minimization of surface roughness in 5-axis milling of turbine blades. Mech. Based

Des. Struct. Mach. 2021, 1–18. [CrossRef]
6. Chen, Z.; Du, F. Measuring principle and uncertainty analysis of a large volume measurement network based on the combination

of iGPS and portable scanner. Measurement 2017, 104, 263–277. [CrossRef]
7. Lu, Q.; Ge, Y.H.; Cui, Z. Research on Feature Edge Detection Method of Large-Size Components Based on Machine Vision. Appl.

Mech. Mater. 2012, 152–154, 1367–1372. [CrossRef]
8. Xu, J.; Sheng, H.; Zhang, S.; Tan, J.; Deng, J. Surface accuracy optimization of mechanical parts with multiple circular holes for

additive manufacturing based on triangular fuzzy number. Front. Mech. Eng. 2021, 16, 133–150. [CrossRef]
9. Chen, Z.; Zhang, F.; Qu, X.; Liang, B. Fast Measurement and Reconstruction of Large Workpieces with Freeform Surfaces by

Combining Local Scanning and Global Position Data. Sensors 2015, 15, 14328–14344. [CrossRef]
10. Summers, A.; Wang, Q.; Brady, N.; Holden, R. Investigating the measurement of offshore wind turbine blades using coherent

laser radar. Robot. Comput. Manuf. 2016, 41, 43–52. [CrossRef]
11. Hall-Holt, O.; Rusinkiewicz, S. Stripe boundary codes for real-time structured-light range scanning of moving objects. In

Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2,
pp. 359–366. [CrossRef]

12. Salvi, J.; Fernandez, S.; Pribanic, T.; Llado, X. A state of the art in structured light patterns for surface profilometry. Pattern
Recognit. 2010, 43, 2666–2680. [CrossRef]

13. Sadaoui, S.E.; Phan, N. Touch Probe Measurement in Dimensional Metrology: A Review. Int. J. Automot. Mech. Eng. 2021, 18,
8647–8657. [CrossRef]

http://doi.org/10.1016/j.rcim.2019.101908
http://doi.org/10.1108/02602280210433025
http://doi.org/10.1177/0954405420972988
http://doi.org/10.1080/15397734.2021.1992779
http://doi.org/10.1016/j.measurement.2017.03.037
http://doi.org/10.4028/www.scientific.net/AMM.152-154.1367
http://doi.org/10.1007/s11465-020-0610-6
http://doi.org/10.3390/s150614328
http://doi.org/10.1016/j.rcim.2016.02.007
http://doi.org/10.1109/iccv.2001.937648
http://doi.org/10.1016/j.patcog.2010.03.004
http://doi.org/10.15282/ijame.18.2.2021.02.0658


Machines 2022, 10, 540 21 of 21

14. Arenhart, R.S.; Pizzolato, M.; Menin, P.L.; Hoch, L. Devices for Interim Check of Coordinate Measuring Machines: A Systematic
Review. MAPAN 2021, 36, 157–173. [CrossRef]

15. Reich, C.; Ritter, R.; Thesing, J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection.
Opt. Eng. 2000, 39, 224–232. [CrossRef]

16. Tam, G.K.; Cheng, Z.-Q.; Lai, Y.-K.; Langbein, F.C.; Liu, Y.; Marshall, D.; Martin, R.R.; Sun, X.-F.; Rosin, P.L. Registration of 3D
Point Clouds and Meshes: A Survey from Rigid to Nonrigid. IEEE Trans. Vis. Comput. Graph. 2012, 19, 1199–1217. [CrossRef]
[PubMed]

17. Yin, S.; Ren, Y.; Guo, Y.; Zhu, J.; Yang, S.; Ye, S. Development and calibration of an integrated 3D scanning system for high-accuracy
large-scale metrology. Measurement 2014, 54, 65–76. [CrossRef]

18. Barone, S.; Paoli, A.; Razionale, A.V. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor
Framework. Sensors 2012, 12, 16785–16801. [CrossRef]

19. Yang, S.; Liu, M.; Yin, S.; Guo, Y.; Ren, Y.; Zhu, J. An improved method for location of concentric circles in vision measurement.
Measurement 2017, 100, 243–251. [CrossRef]

20. Yang, S.; Liu, M.; Song, J.; Yin, S.; Guo, Y.; Ren, Y.; Zhu, J. Flexible digital projector calibration method based on per-pixel distortion
measurement and correction. Opt. Lasers Eng. 2017, 92, 29–38. [CrossRef]

21. Paoli, A.; Razionale, A.V. Large yacht hull measurement by integrating optical scanning with mechanical tracking-based
methodologies. Robot. Comput. Manuf. 2012, 28, 592–601. [CrossRef]

22. Barone, S.; Paoli, A.; Razionale, A.V. Shape measurement by a multi-view methodology based on the remote tracking of a 3D
optical scanner. Opt. Lasers Eng. 2012, 50, 380–390. [CrossRef]

23. Gan, Z.X.; Tang, Q. Laser sensor-based robot visual system and its application. Robot. Tech. Appl. 2010, 5, 20–25.
24. Mosqueira, G.; Apetz, J.; Santos, K.; Villani, E.; Suterio, R.; Trabasso, L.G. Analysis of the indoor GPS system as feedback for

the robotic alignment of fuselages using laser radar measurements as comparison. Robot. Comput. Manuf. 2012, 28, 700–709.
[CrossRef]

25. Jung, M.; Song, J.B. Efficient autonomous global localization for service robots using dual laser scanners and rotational motion.
Int. J. Control Autom. Syst. 2017, 15, 723–751. [CrossRef]

26. Wang, Z.; Mastrogiacomo, L.; Franceschini, F.; Maropoulos, P. Experimental comparison of dynamic tracking performance of
iGPS and laser tracker. Int. J. Adv. Manuf. Technol. 2011, 56, 205–213. [CrossRef]

27. Michalos, G.; Makris, S.; Eytan, A.; Matthaiakis, S.; Chryssolouris, G. Robot Path Correction Using Stereo Vision System. Procedia
CIRP 2012, 3, 352–357. [CrossRef]

28. Schmidt, B.; Wang, L. Automatic work objects calibration via a global–local camera system. Robot. Comput. Manuf. 2014, 30,
678–683. [CrossRef]

29. Wang, J.; Tao, B.; Gong, Z.; Yu, S.; Yin, Z. A Mobile Robotic Measurement System for Large-scale Complex Components Based on
Optical Scanning and Visual Tracking. Robot. Comput.-Integr. Manuf. 2021, 67, 102010. [CrossRef]

30. Wang, J.; Tao, B.; Gong, Z.; Yu, W.; Yin, Z. A Mobile Robotic 3-D Measurement Method Based on Point Clouds Alignment for
Large-Scale Complex Surfaces. IEEE Trans. Instrum. Meas. 2021, 70, 7503011. [CrossRef]

31. Lindner, L.; Sergiyenko, O.; Rodríguez-Quiñonez, J.; Tyrsa, V.V.; Mercorelli, P.; Fuentes, W.F.; Murrieta-Rico, F.N.; Nieto-Hipólito,
J. Continuous 3D scanning mode using servomotors instead of stepping motors in dynamic laser triangulation. In Proceedings of
the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 944–949.

32. Garcia-Cruz, X.M.; Sergiyenko, O.; Tyrsa, V.V.; Rivas-López, M.; Hernández-Balbuena, D.; Rodríguez-Quiñonez, J.; Basaca-
Preciado, L.; Mercorelli, P. Optimization of 3D laser scanning speed by use of combined variable step. Opt. Lasers Eng. 2014, 54,
141–151. [CrossRef]

http://doi.org/10.1007/s12647-020-00406-0
http://doi.org/10.1117/1.602356
http://doi.org/10.1109/TVCG.2012.310
http://www.ncbi.nlm.nih.gov/pubmed/23661012
http://doi.org/10.1016/j.measurement.2014.04.009
http://doi.org/10.3390/s121216785
http://doi.org/10.1016/j.measurement.2016.12.045
http://doi.org/10.1016/j.optlaseng.2016.12.012
http://doi.org/10.1016/j.rcim.2012.02.010
http://doi.org/10.1016/j.optlaseng.2011.10.019
http://doi.org/10.1016/j.rcim.2012.03.004
http://doi.org/10.1007/s12555-015-0272-z
http://doi.org/10.1007/s00170-011-3166-0
http://doi.org/10.1016/j.procir.2012.07.061
http://doi.org/10.1016/j.rcim.2013.11.004
http://doi.org/10.1016/j.rcim.2020.102010
http://doi.org/10.1109/TIM.2021.3090156
http://doi.org/10.1016/j.optlaseng.2013.08.011

	Introduction 
	System Composition 
	Overall Structure 
	Hardware System 
	Software Platform 

	System Principle 
	Working Principle of Collaborative Measurement 
	System Workflow 

	System Core Modules 
	Calibration Module 
	Trajectory Planning Module 
	Trajectory Planning of the Optical Measurement Robot 
	Trajectory Planning of the Visual Tracking Robot 

	DeepMerge for Point Cloud Stitching Based on Deep Learning 

	Point Cloud Data Collection and Stitching Experiment 
	Introduction to the Experimental Platform 
	Data Collection Experiment 
	Data Stitching Experiment 

	Conclusions 
	References

