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Abstract: The contact behaviour between an ellipsoid and a rigid plane is significant in research
on bearing and assembly joint surfaces. However, an empirical relationship between an elastic–
plastic ellipsoid and a rigid plane has not been established. In this study, the elastic–plastic contact
behaviour between a deformable ellipsoid and a rigid plane was investigated by establishing a new
finite element model. The proposed elastic–plastic ellipsoid contact model was designed considering
the effects of the ellipticity and strain-hardening rate of the ellipsoid. The strain-hardening rate and
ellipticity of the ellipsoid affected the contact area, load and mean pressure. Furthermore, the effect
gradually increased with an increase in interference. New dimensionless empirical formulas for
determining the contact load and contact area were proposed based on the analysis. The proposed
model was validated by comparing the obtained results with previous experimental results and
those of theoretical models. This study can be used to predict the elastic–plastic contact parameters
between a single ellipsoid and a rigid body, such as bearings, gears and cams. It can also be used to
investigate the elastic–plastic contact behaviour between anisotropic rough surfaces composed of
asperities with different radii of curvature.

Keywords: ellipsoid contact; ellipticity of ellipsoid; elastic–plastic contact model; strain hardening;
contact mechanics

1. Introduction

The study of contact between an ellipsoid or sphere (special ellipsoid) and a rigid plane
is significant for the design and maintenance of key parts of mechanical equipment [1–3].
The most common contact of bearings, gears and cams in mechanical equipment is equiva-
lent to the contact between an ellipsoid and a rigid plane [4–6]. The surface of mechanical
contact is microscopically rough and can be regarded as composed of many ellipsoidal
asperities. Moreover, the contact between assembly joints at the microscopic level can
be equivalent to the contact between an ellipsoidal asperity and a rigid plane [7–9]. The
empirical relationship between the contact area, interference and load of assembly joints is
of great significance for the study of friction, electrical conduction, heat conduction and
wear [10,11]. The contact mechanical behaviour of assembly joints can be studied using
mathematical methods such as fractal or statistics. This can extend the microscopic contact
behaviour analysed between a single ellipsoid and rigid plane to the whole macroscopic
contact surface [12]. Although Hertz (Hertz model) [13] gives the elastic contact solution
between the ellipsoid and the rigid plane, elastic–plastic contact after the initial yield of the
ellipsoid does not form a closed solution [14–16].

Greenwood and Williamson (GW model) [17] assumed that the contact surface is
isotropic and that the asperity on the rough surface is composed of hemispherical asperities.
Based on the Hertz theory [13], a contact elastic solution between the hemisphere and
rigid plane was presented. Abbott and Firestone (AF model) [18] proposed a fully plastic
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hemispherical contact model using a truncation model. Chang et al. (CEB model) [19]
proposed a hemispherical contact model based on volume conservation in the contact
process between a hemisphere and rigid plane. The elastic–plastic contact behaviour was
ignored in their model. Zhao et al. (ZMC model) [20] extended their work using the CEB
model and used interpolation to predict the relationship between dimensionless contact
parameters (contact area (A*), contact load (F*) and mean contact pressure (p*)) and the
dimensionless interference (ω*) in the elastic–plastic range. Recent studies have proven
that the ZMC, AF, GW and CEB models are inadequate [21–23]. Some researchers, such as
Ovcharenko et al. [24], Bartier et al. [25] and Chaudhri et al. [26] experimentally studied
the contact behaviour between a deformable sphere and a hard plane. They presented the
relationship between F*, ω* and A* of copper, stainless steel and brass balls with different
diameters when pressed by a sapphire plane or SiC ceramic plane (hard plane). Popov [27]
studied the contact behaviour between a conical asperity and plane based on the method
of dimension reduction (MDR). They found that hardness is inversely proportional to the
indentation radius. Lyashenko [28] proposed a numerical model and showed the influence
of the normal velocity recovery coefficient on the contact behaviour of hemispherical
asperity with a deformable plane. Because the finite element method (FEM) can accurately
simulate the contact behaviour between an asperity and a plane, several researchers have
studied the contact behaviour of hemispherical asperities and rigid planes using the FEM.

Kogut and Etsion (KE model) [29] established a hemisphere-contact FE model. Em-
pirical formulas for predicting elastic–plastic contact parameters were presented based
on finite element analysis (FEA) results. The model was relatively simple; however, the
disadvantage was its discontinuity. Jackson and Green (JG model) [30] presented a formula
to predict the initial yield of a hemisphere in contact with a rigid plane. This was used to
evaluate the convergence of the FE model and normalize the FEA results. They extended
their work using the KE model and presented continuous formulas. However, this formula
was complicated because continuity was guaranteed. Subsequently, Quicksall et al. [31]
confirmed the validity of the KE and JG models for materials with different elastic–perfectly
plastic properties.

Most materials used in engineering are elastic–plastic materials, considering that the
strain hardening rate and the tangent modulus (Et) are not zero [32]. The JG and KE models
predicted the hemispheric contact parameters of elastic–perfectly plastic materials without
considering the effect of Et. Shankar and Mayuram (SM model) [33,34] extended the work
predicted by the JG and KE models and analysed the effect of Et on the contact behaviour
of a hemisphere with a rigid plane. They determined the deviation between the contact
behaviour of the hemisphere and rigid plane under general elastic–plastic (Et 6= 0) and
elastic–perfectly plastic (Et = 0) contact conditions. In addition, their prediction results were
compared with experimental results, which verified the feasibility of their hemispherical
FE model.

This hemispherical contact model was mainly based on the assumption of isotropic
contact on a rough surface. Different machining methods can produce asperities with
different curvatures because rough surface textures are oriented according to the direction
of the tool’s motion relative to the rough surface [35]. Bush et al. [36] speculated that a rough
surface consists of ellipsoidal asperities with an anisotropic distribution. Some researchers,
such as Horng [37], Jamari and Schipper [38], Wen and Tang et al. (WT model) [39,40]
and Jeng and Wang (JW model) [41] extended the hemispheric model of Chang and
Zhao et al. [19,20] to the contact of ellipses to consider the influence of asperity anisotropy.
However, the effects of ellipsoid ellipticity (ke) were ignored in the prediction results.
Chung [42] established a three-dimensional (3D) elastic–perfectly plastic ellipsoid contact
FE model and analysed the evolution behaviour of the plastic zone at the contact area of
the ellipsoid with varying ke. However, an expression for predicting the contact parameters
was not provided. Li and Zhou et al. [43] established a 3D semi-analytical model of the
contact between a rigid ellipsoid and a deformable plane and studied the von Mises stress
evolution. Notably, the contact behaviour of the rigid ellipsoid pressing the deformable
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plane was different from that of the rigid plane pressing the deformable ellipsoid. Jackson
and Kogut [44] demonstrated this. Becker and Kamlah [45] studied the contact behaviour
between lithium nickel manganese cobalt oxide ellipsoids during loading and unloading.
They presented the relationship of the force–interference. Lin and Lin (LL model) [46]
established an FE model for the contact between an ellipsoid and rigid body. They presented
a formula to predict the initial yield of the ellipsoid during contact. This was used to
evaluate the convergence of the FE model. Furthermore, they concluded that the contact
parameters and elastic–plastic range were related to the ellipticity of the ellipsoid. However,
the effect of the tangent modulus on the contact parameters was ignored in their study.

Thus, an empirical relationship between an elastic–plastic ellipsoid and a rigid plane
has not been established. This can be done based on the FE model of the structures under
different tangent moduli and ellipticities of the ellipsoid. In this study, based on the FEM,
the effect of the tangent modulus on the ellipsoid elastic–plastic contact parameters between
the ellipsoid and rigid plane under different ellipticities of the ellipsoid was investigated.
The values selected in this study were E, 0.1E, 0.075E, 0.05E, 0.025E and 0. The effects of
varying E, Y and ν on the relationship between elastic–plastic contact parameters have
been neglected in the present study. The main reason is that it has been proven in previous
models [47–49] that when ω* is less than 150, varying E, Y and ν has little influence on
the relationship between elastic–plastic contact parameters. The empirical relationships
amongst the dimensionless interference, contact load and contact area in the contact process
between an ellipsoid and rigid body are presented based on the analysis. The accuracy
of the current work was verified by comparison with previous models and experimental
results. This study can be used to predict the elastic–plastic contact parameters between
a single ellipsoid and a rigid body, such as bearings, gears, and cams. It can also be used
to investigate the elastic–plastic contact behaviour between anisotropic rough surfaces
composed of asperities with different radii of curvature.

2. Numerical Model

The ellipsoid was in contact with the rigid flat before and after, as shown in Figure 1.
Variables cR (1 ≤ c ≤ ∞) and R are the lengths of the semi-major and semi-minor axes of
an ellipsoid, respectively. The ellipticity of the ellipsoid is defined as ke, ke = R/(cR) = 1/c.
The ellipticities used in this study were ke = 1/5, 1/2 and 1. The LL model [46] presented
critical contact parameters corresponding to the initial yield of the ellipsoid. This was
used to determine the convergence of the FE model. However, to obtain a generalized
solution, all the contact parameters in their study were normalized using the critical contact
parameters corresponding to the initial yield of the hemisphere. The same dimensionless
scheme was adopted in this study: ω* = ω/ωs, F* = F/(Fs·c1/2), A* = A/(As·c), p* = F*/A* and
p/Y = F/(AY). The ωs, Fs and As are the critical deformation, contact load and contact area
corresponding to the initial yield of the hemisphere, respectively. They are presented by
the JG model [30], expressed as follows

ωs =

(
πY(1− ν)[1.295 exp(0.736ν)]

2E

)2

R, (1)

Fs =
4E

3(1− ν2)
R

1
2 ω

3
2
s , (2)

As = πRωs, (3)

where ν, E and Y are Poisson’s ratios, Young’s modulus and yield strength of the hemi-
sphere, respectively.
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Figure 1. Contact diagram of an ellipsoid with a rigid flat.

A 3D ellipsoid contact model was established using the commercial software ANSYS
18.2 Workbench to simulate frictionless normal contact between an ellipsoid and a rigid
body. Using the symmetry of the model, as shown in Figure 2, the complete ellipsoid contact
problem was simplified to a 1/8 ellipsoid contact with a rigid body, saving calculation
time. The following boundary conditions were applied to the ellipsoid model to simulate
the contact of the ellipsoid with the rigid flat: The nodes on the cuboid were constrained
in all the directions. A downward uniform displacement of 150 ω* was loaded onto the
upper surface of the ellipsoid in 300 sub-steps. The nodes on the ellipsoid symmetry planes
x = 0 and z = 0 in the x and z directions, respectively, were constrained. Ellipsoids with
ellipticities of 1/5, 1/2 and 1 were considered in this study. The corresponding material
parameters are listed in Table 1. The material yield strength (Y), Poisson’s ratio (ν) and
Young’s modulus (E) were 0.7 GPa, 0.3 and 207 GPa, respectively. The stress–strain (σ–ε)
curves of isotropic materials are shown in Figure 3. The stress-to-strain ratio in the elastic
range is the E of the material. The σ in the elastic range of the material was less than Y. The
σ increases with ε, and the material initially yields when σ equals Y. For an elastic–perfectly
plastic (Et = 0) material without strain hardening, the σ after initial yield is equal to Y.
However, few materials exhibit elastic–perfectly plastic properties. Usually, owing to strain
hardening, σ will exceed Y after initial yielding [33]. The Et values selected in this study
were E, 0.1E, 0.075E, 0.005E, 0.025E and 0. For the pure elastic material (Et = E), we only
defined the elastic modulus (E = 207 GPa) and Poisson’s ratio (ν = 0.3) in the material
parameter setting. High-order, 3D, 10-node SOLID187 elements were used to discretize the
FE model. The total numbers of nodes corresponding to ellipsoids with ellipticities of 1/5,
1/2 and 1 were 1,735,351, 1,454,265 and 1,111,001, respectively. The mesh of the contact
tip accounted for 60% of the entire mesh. It was found that solution accuracy could not be
improved significantly by excessively increasing the number of nodes. To allow negligible
penetration between contact surfaces, the contact stiffness coefficient was set to 50–100.
Because this contact problem made the analysis highly nonlinear, a large deflection was
activated, and the augmented Lagrange algorithm was selected. The augmented Lagrange
algorithm is regarded as an improvement of the iterative series penalty algorithm. For this
algorithm, the Lagrange multiplier algorithm will be used if the penetration is greater than
the defined tolerance in the contact. This guarantees that the penetration of the convergent
solution is less than the specified tolerance [30]. For the difficult convergence problem,
the iterative scheme was selected, and the maximum and minimum sub-steps were set to
5000–20. The finite element numerical solutions were compared with the Hertz solution,
as listed in Table 2. The deviation between the current numerical and Hertz results was
within 3%.
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Figure 2. Ellipsoidal finite element contact model.

Table 1. Material properties.

ke Et E (GPa) Y (GPa) R (mm) ν

1 1/5
0; 0.025E; 0.05E;

0.075E; 0.1E 207 0.7 1 0.32 1/2
3 1

Figure 3. Stress–strain relationship for isotropic strain hardening materials.

Table 2. Comparison of Hertz and simulation results.

Hertz Simulation Hertz Simulation Hertz Simulation

ke 1/5 1/5 1/2 1/2 1 1
F* 6.98 6.95 2.61 2.63 1 0.986
ω* 3.21 3.19 1.85 1.83 1 0.99
A* 1.82 1.83 1.44 1.47 1 0.988

3. Numerical Results and Discussion
3.1. Contact Parameters

The elastic–plastic contact parameters were extracted from the FEA results and nor-
malized. The present analysis covered the effect of the ellipticity (ke) of an ellipsoid and
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tangential modulus (Et) on the mean contact pressure to yield strength ratio (p/Y) dimen-
sionless contact load (F*), dimensionless mean contact pressure (p*) and dimensionless
contact area (A*) at a large interference (ω* ≤ 150). The purpose of this study was to fit the
empirical relationship by analysing the relationship between different contact parameters
based on the FEA results.

The relationship between F* and ω* was calculated for ke = 1/5, 1/2 and 1 at Et/E = 0,
0.025, 0.05, 0.075, 0.1 and 1 atω* ≤ 150. Figure 4a shows the relationship between F* and
ω* for the three different values of ke at Et/E = 0.025. A similar trend was observed for
Et/E = 0, 0.05, 0.075, 0.1 and 1. F* increases with an increase in ω* for all values of ke. The
effect of Et on the relationship between F* and ω* at ke = 1/2 is plotted in Figure 4b. A
similar trend was observed at ke = 1/5 and 1. The effect of Et on F* gradually increased
with an increase in ω*. A possible reason for this is that strain hardening occurs after the
ellipsoid’s initial yielding, increasing the strength of the plastic zone relative to the yield
strength of the original material. The greater the value of Et of the material, the greater is
the increase in the strength of the plastic zone. Therefore, the larger the value of Et, the
stronger is the resistance to interference. Therefore, for the same ω*, the larger is the value
of Et, the larger is the value of F*. At ω* = 150, F* deviation between an Et of 0.025E and
0.1E reached 15.38%. It is clear from Figure 4a,b that the effects of ke on F* were greater
than those of Et. Since the Et of most engineering materials is less than 0.1E, this paper only
predicts the relationship between F* and ω* at 0 < Et/E ≤ 0.1. The relationship between F*

and ω* was fitted using the FEA results as follows:

ke = 1, 0 ≤ ω∗ ≤ 1; F∗ = (ω∗)1.5,
ke = 1, 1 ≤ ω∗ ≤ 150; F∗ = a1 + b1ω∗ + 2.4× 10−2(ω∗)2 − 6.32× 10−5(ω∗)3,
ke = 1/2, 0 ≤ ω∗ ≤ 1.85; F∗ = 1.0325(ω∗)1.51,
ke = 1/2, 1.85 ≤ ω∗ ≤ 150; F∗ = a2 + b2ω∗ + 3.2× 10−2(ω∗)2 − 8.68× 10−5(ω∗)3,
ke = 1/5, 0 ≤ ω∗ ≤ 3.21; F∗ = 1.189(ω∗)1.52,
ke = 1/5, 3.21 ≤ ω∗ ≤ 150; F∗ = a3 + b3ω∗ + 4.9× 10−2(ω∗)2 − 1.385× 10−4(ω∗)3.

(4)

0 < Et
E ≤ 0.1; a1 = −1.806− 11.872 Et

E , b1 =2.78 + 12 Et
E ,

0 < Et
E ≤ 0.1; a2 = −3.794− 24.42 Et

E , b2 =3.453 + 12 Et
E ,

0 < Et
E ≤ 0.1; a3 = −8.401− 38.56 Et

E , b3 =4.638 + 12 Et
E .

(5)

Figure 4. Evolution of F* with increasing ω*: (a) under different values of ke; (b) under different
values of Et.

The relationship between A* and ω* was calculated for ke = 1/5, 1/2 and 1 at Et/E = 0,
0.025, 0.05, 0.075, 0.1 and 1 at ω* ≤ 150. Figure 5a shows the relationship between A* and
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ω* for ke = 1/5, 1/2 and 1 at Et/E = 0.025. A similar trend was observed for Et/E = 0, 0.05,
0.075, 0.1 and 1. A* increased with an increase in ω* for all values of ke. Figure 5b shows the
relationship between A* and ω* for the six different values of Et at ke = 1/2. The effect of Et
on A* gradually increased with an increase in ω*. As mentioned earlier, the larger the value
of Et, the stronger is the resistance to interference. Therefore, for the same ω*, a larger Et
corresponded to a smaller A* value. At ω* = 150, the A* deviation between Et of 0.025E and
0.1E reached 11.55%. It is clear from Figure 5a,b that the effects of ke on A* were slightly
greater than those of Et. Since the Et of most engineering materials is less than 0.1E, this
paper only predicts the relationship between A* and ω* at 0 < Et/E ≤ 0.1. The relationship
between A* and ω* was fitted using the FEA results as follows:

ke = 1, 0 ≤ ω∗ ≤ 1; A∗ = (ω∗),
ke = 1, 1 ≤ ω∗ ≤ 150; A∗ = a1 + b1ω∗ + 4.1× 10−3(ω∗)2 − 1.13× 10−5(ω∗)3,
ke = 1/2, 0 ≤ ω∗ ≤ 1.85; A∗ = 0.758(ω∗)1.055,
ke = 1/2, 1.85 ≤ ω∗ ≤ 150; A∗ = a2 + b2ω∗ + 4.41× 10−3(ω∗)2 − 1.31× 10−5(ω∗)3,
ke = 1/5, 0 ≤ ω∗ ≤ 3.21; A∗ = 0.48(ω∗)1.143,
ke = 1/5, 3.21 ≤ ω∗ ≤ 150; A∗ = a3 + b3ω∗ + 5.7× 10−3(ω∗)2 − 1.747× 10−5(ω∗)3.

(6)

0 < Et
E ≤ 0.1; a1 = −0.48 + 3.2 Et

E , b1 =1.478− 3.2 Et
E ,

0 < Et
E ≤ 0.1; a2 = −1.146 + 5.888 Et

E , b2 =1.392− 3.2 Et
E ,

0 < Et
E ≤ 0.1; a3 = −2.154 + 10.272 Et

E , b3 =1.22− 3.2 Et
E .

(7)

Figure 5. Evolution of A* with increasing ω*: (a) under different values of ke; (b) under different
Et values.

The relationship between A* and F* was calculated for ke = 1/5, 1/2 and 1, at Et/E = 0,
0.025, 0.05, 0.075, 0.1 and 1 at F* ≤ 1200. Figure 6a shows the relationship between A* and
F* for the three different values of ke. Here, only the results at Et/E = 0.025 for ke = 1/5, 1/2
and 1 were analysed. Similar results were observed for other Et values. A* increased with
an increase in F* for all values of ke. Figure 6b shows the relationship between A* and F* for
different values of Et at ke = 1/2. The effect of Et on A* increased with an increase in F*. As
mentioned earlier, the larger the value of Et, the stronger is the resistance to interference.
Therefore, for the same F* value, a larger Et corresponded to a smaller A* value. Since the
Et of most engineering materials is less than 0.1E, this paper only predicts the relationship
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between A* and F* at 0 < Et/E ≤ 0.1. The relationship between A* and F* was fitted using
the FEA results as follows:

ke = 1, 0 ≤ F∗ ≤ 1; A∗ = (F∗)
2
3 ,

ke = 1, 1 ≤ F∗ ≤ 1000; A∗ = a1 + b1F∗ − 1.75× 10−4(F∗)2 + c1(F∗)3,
ke = 1/2, 0 ≤ F∗ ≤ 2.61; A∗ = 0.737(F∗)0.7,
ke = 1/2, 2.61 ≤ F∗ ≤ 1000; A∗ = a2 + b2F∗ − 1.11× 10−4c2(F∗)3,
ke = 1/5, 0 ≤ F∗ ≤ 6.98; A∗ = 0.4232(F∗)0.752,
ke = 1/5, 6.98 ≤ F∗ ≤ 1000; A∗ = a3 + b3F∗ − 4.515× 10−5(F∗)2 + c3(F∗)3.

(8)

0 < Et
E ≤ 0.1; a1 = 0.561 + 0.8 Et

E , b1 =0.442− 0.8 Et
E , c1 =1.0× 10−7 + 4.0× 10−7 Et

E ,

0 < Et
E ≤ 0.1; a2 = 0.577 + 1.88 Et

E , b2 =0.331− 0.72 Et
E , c2 =5.257× 10−8 + 4.0× 10−8 Et

E ,

0 < Et
E ≤ 0.1; a3 = 0.314 + 2.8 Et

E , b3 =0.217− 0.4 Et
E , c3 =1.613× 10−8 + 4.0× 10−8 Et

E .

(9)

Figure 6. Evolution of A* with increasing F*: (a) under different ke values; (b) under the different
Et values.

The relationship between p* and ω* was calculated for ke = 1/5, 1/2 and 1 at Et/E = 0,
0.025, 0.05, 0.075, 0.1 and 1 at ω* ≤ 150. Figure 7a shows the relationship between p* and ω*

for ke = 1/5, 1/2 and 1 at Et/E = 0.025. A similar trend was observed for Et/E = 0, 0.05, 0.075,
0.1 and 1; p* increased with an increase in ω* for all values of ke. To explore the influence of
varying Et on the relationship between p* and ω*, only the results of ke = 1/2 for Et/E = 1,
0.1, 0.075, 0.05, 0.025 and 0 are plotted in Figure 7b; p* increased with an increase in ω*. The
trend was similar for the six different Et values. However, their magnitudes were different.
For the same ω*, the greater the value of Et, the greater the value of p*.

The relationship between p/Y and ω* was calculated for ke = 1/5, 1/2 and 1 at Et/E = 0,
0.025, 0.05, 0.075, 0.1 and 1 at ω* ≤ 150. To explore the influence of varying Et on the
relationship between p/Y and ω*, only the results of ke = 1/2 for Et/E = 1, 0.1, 0.075, 0.05,
0.025 and 0 are plotted in Figure 8a; p/Y increased with an increase in ω*. The trend was
similar for the six different Et values. However, their magnitudes were different. For the
same ω*, the greater the value of Et, the greater the value of p/Y. The corresponding ω*

when p/Y reaches 2.8 is shown in Figure 8b. The KE model predicts that the contact state
changes from elastic–plastic to fully plastic contact when p/Y reaches 2.8. They concluded
that the ω* corresponding to p/Y of 2.8 is a constant 110, independent of the shape and
the material of asperity. It can be observed in Figure 8b that when p/Y reaches 2.8, the
corresponding ω* is not a constant 110, but depends on the ke and Et of the ellipsoid. The
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current results show that the transition from elastic–plastic to fully plastic does not act at
constant ω* as predicted by the KE model.

Figure 7. Evolution of p* with increasing ω*: (a) under different ke values; (b) under different
Et values.

Figure 8. (a) Evolution of p/Y with increasing ω* under different Et values at ke = 1/2. (b) Elastic–
plastic to –fully plastic transition ω* variation with Et/E ratio under different ke values.

3.2. Comparison with Experimental Results

Ovcharenko et al. [24] experimentally presented the variation in the contact area of
copper and stainless-steel balls pressed by a sapphire plane (hard plane) under varying
loads. Chaudhri et al. [26] experimentally demonstrated the relationship between the
contact area and load in the contact between a brass ball and sapphire plane. The balls
used in their experiment were work-hardened to make them behave as an elastic–perfectly
plastic material (Et = 0) when in contact with the hard plane. To verify the correctness of
the present study, Equations (8) and (9) at ke = 1 and Et/E ≤ 0.03 were compared with the
experimental results of Ovcharenko et al. [24] and Chaudhri et al. [26], as shown in Figure 9.
The current results slightly underestimated the experimental prediction results with an
increase in interference. This may be because the ball used in the experiment behaved as
an elastic–perfectly plastic material (Et = 0) after the hardening treatment. Additionally,
Equations (8) and (9) were derived from the analysis of general elastoplastic materials
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(Et 6= 0). As shown in Figure 9, the prediction results of Equations (8) and (9) at low Et
values were consistent with the experimental results.

Figure 9. Comparisons of A* as the function of F* predicted by the present model and experiment
results at ke = 1 and Et/E ≤ 0.03.

Bartier et al. [25] experimentally presented the variation in the contact load of an AISI
4135 steel plane (E = 210GPa, Y = 472 MPa, ν = 0.3, ε = Y(n−1)/nσ1/n/E and n = 0.105) pressed
by a carbide ball under varying interference. To verify the correctness of the current study,
Equations (4) and (5) at ke = 1 and 0.07 ≤ Et/E ≤ 0.1 were compared with the experimental
results of Bartier et al. [25], as shown in Figure 10. The current prediction results were
consistent with the experimental results.

Figure 10. Comparisons of F* as the function of ω* predicted by the present model and experiment
results at ke = 1 and 0.07 ≤ Et/E ≤ 0.1.

3.3. Comparison with Previous Numerical Models

The ellipsoid with ke = 1 corresponds to hemispheric contact. Hemispheric contact
behaviour has been widely studied. The JG and KE models predicted the hemispherical
contact parameters of elastic–perfectly plastic materials. The Lyashenko model predicted
the hemispherical contact behaviour of plastic materials. The SM model predicted the
hemispherical contact behaviour of elastic–plastic materials (considering strain hardening).
The experiments verified the correctness of the model. To confirm the rationality of the
current ellipsoid model, it was compared with the SM, JG, Lyashenko and KE models at
ke = 1. As shown in Figure 11, the F* values predicted by the present ellipsoid model at
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ke = 1 were compared with the results of the previous models. As interference increased,
the prediction results of the KE and JG models based on elastic–perfectly plastic materials
were lower than the current prediction results (considering the strain-hardening behaviour),
and the prediction results of the Hertz model based on elastic materials were higher than
the current prediction results. The deviation between the present and JG models increased
with an increase in ω* for ke = 1; this was larger for a larger ω*. At ω* = 150, the F* deviation
between the present and JG models was 11.21% at Et = 0.025E and 27.63% at Et = 0.1E. The
SM model predicted the variation in F* with ω* relatively well under different Et values.
However, the effect of ke on contact behaviour was ignored in their study.

Figure 11. Comparisons of F* predicted by the present and previous models at ke = 1.

The contact parameters predicted by the present model were also compared with
those predicted by the LL ellipsoid model (based on the analysis of elastic–perfectly plastic
materials). For simplicity, only a comparison of F* is plotted in Figure 12. The trend
obtained by the other comparison results is similar to that obtained for F* in Figure 12.
The prediction results of the present model correlated well with the LL model for a low Et
(Et less than 0.025E). As Et increased, the results of the LL model began to deviate; the F*

for all values of ke were underestimated. At ω* = 150 and ke = 1/2, the F* deviation between
the present and LL models was 10.53% at Et = 0.025E and 30.72% at Et = 0.1E.

Figure 12. Comparisons of F* predicted by the present and LL models at ke = 1/5 and 1/2.
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4. Conclusions

The elastic–plastic contact parameters of ellipsoids with different ellipticities on a
rigid plane were studied using an FEM. The ellipsoid was assumed to be an isotropic,
strain-hardening, elastic–plastic material. The influence of the tangential modulus and
ellipticity of the ellipsoid on the elastic–plastic contact parameters was presented based on
this analysis.

The effect of the ellipticity of the ellipsoid on the elastic–plastic contact parameters
persists throughout the contact. The effect of the tangential modulus on the contact param-
eters increased with an increase in interference. New dimensionless empirical formulas
for determining the relationship between the contact area, interference and load under
different tangential moduli and ellipticities of the ellipsoid were proposed.

The accuracy of the proposed model was confirmed by comparing the results with
previous experimental results and those obtained using theoretical models. This study
can be applied to the contact between two ellipsoids. In addition, the contact between the
ellipsoid and the rigid plane can be equivalent to the contact between a single asperity of
the joint surface. From this study, the contact behaviour of the whole joint surface can be
studied based on fractal or statistical methods.
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