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Abstract: This paper studies synchronization of a class of even pairs and symmetrically distributed
eccentric rotors in a vibration system of a single mass body. A vibration system driven by four ERs
with circular distribution structure and the same rotating direction is adopted as the dynamic model.
The motion differential equations of the system are established based on Lagrange equation. The
angular velocity and the phase of each rotor are perturbed by the average value of the synchronous
velocity. The state equation of the system is obtained by applying the averaging method. According
to the necessary condition of the steady-state motion, the synchronization condition and the dimen-
sionless coupling torques of the system are deduced. The stability condition of the synchronous
motion is derived by applying Lyapunov indirect method. The distribution law of the steady-state
phase difference is discussed qualitatively by the numerical analysis of the theoretical results. Then
combined with the numerical results, five sets of experiments are carried out on the experimental
machine, which includes the sub-resonant state and the super-resonant state. The experimental
results show that this vibration system has two super-resonant motion states and one sub-resonant
motion state. The experiment proves the correctness of the theory, which can provide theoretical
guidance for the design of this kind of vibration machine.

Keywords: vibration synchronization; eccentric rotor; phase difference; stability

1. Introduction

The synchronization phenomenon widely exists in nature, which means that two or
more objects have the same or similar motion state. For synchronization of mechanical
systems, Blekhman [1,2] is the first person to theoretically explain the synchronization
problem of two identical eccentric rotors (ERs) with the method of direct separation of
motion. The discovery of synchronization mechanism and application have aroused the
enthusiasm of scholars from all over the world for the study of synchronization theory,
and a number of useful machines have also been invented. The machines mainly focus on
pendulum synchronization and ER synchronization. In the study of pendulum synchro-
nization, Czolczynski et al. [3,4] established a two degree of freedom model of a cantilever
beam system. Then he studied the dynamic properties of two self-excited pendulums
on a vibration beam. In the research of ER synchronization, Kibirkštis et al. [5] used the
pneumatic channel to study the synchronization problem of the pneumatic ER in the state
of self-excited vibration under the pulsating pressure of the feed. Miklós et al. [6] proposed
a new design structure of double ERs, which can generate vibration with independently
adjustable frequency and amplitude. Gu et al. [7] studied synchronization of ERs and
the cylindrical roller in the super-resonant vibration system, which is helpful in solving
practical problems such as vibration crushers and vibration grinders.

Compared with pendulum synchronization, ER synchronization is more useful in engi-
neering applications to design vibration machines. To get the maximum force, Chen et al. [8]
proposed a new method to achieve zero phase difference between two ERs for vibration sys-
tem with different structural parameters by adjusting the power supply frequency of motors

Machines 2022, 10, 457. https://doi.org/10.3390/machines10060457 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10060457
https://doi.org/10.3390/machines10060457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-4741-0838
https://doi.org/10.3390/machines10060457
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10060457?type=check_update&version=2


Machines 2022, 10, 457 2 of 17

and verified the feasibility of the method using experiments. After that, Chen et al. [8,9]
studied the synchronization problem of two co-rotating shaft ERs in the far-resonant state,
which provides a guide for designing a kind of vibration grinder. In fact, not only the
same frequency has the phenomenon of synchronization, but multi-frequency also has the
synchronous application. Zou et al. [10] studied multi-frequency synchronization of two
ERs through theoretical derivation and experimental analysis. Li et al. [11] established the
mechanical model of two ERs with opposite rotation directions and different rotational
velocities, and pointed out the application prospect of multi-frequency synchronization
theory in engineering. The models in the above studies are all plane motions, and the
spatial motions are mentioned below. Based on the modified small parameter method,
Zhao et al. [12] studied the synchronous problem of the staggered installation model of two
ERs in the spatial motion mechanical system, which provided a guideline for the design of
a class of screw feeder. Using the Poincare method and Hamilton principle, Fang et al. [13]
studied the spatial synchronization of two ERs installed in parallel in the far-resonant state,
which provides a new way for designing a new type of vibration screen. Single mass body
is studied in most of the above papers and two mass bodies are introduced below. Chen
et al. [14] proposed a model in which two ERs drive two masses respectively and discussed
the coupling dynamics between two masses. Shishkin et al. [15] designed the two masses
vibration crusher with two ERs mounted on the outer mass. ER drives the inner and outer
two masses to move in opposite directions so as to achieve the effect of crushing materials.
The above papers studied linear systems and the following are nonlinear systems. The
vibration system is a multi-rigid coupled system, so the steady-state motion of the vibration
system is affected by many kinds of influences. Djanan et al. [16] discussed the influence of
the physical characteristics of the motor on the phase difference when two ERs reach the
synchronous state. Introducing nonlinear springs, Li et al. [17] studied synchronization
theory of nonlinear systems.

The above studies focused on the synchronization of two ERs. In order to meet
the needs of large-scale vibration machines, manufacturers began to develop vibration
machines driven by multi-ERs. However, the fact has been proved that vibration system
driven by three ERs is not suitable for industrial application. By investigating the dynamics
of three horizontally mounted ERs, Zhang et al. [18] found that replacing two ERs with
three ERs could not improve the effective power of the system. In order to overcome the
above shortcomings, control synchronization is an ideal way to achieve the synchronous
motion of ERs with zero phase difference [19]. Chen et al. [20] established a coupled
dynamic characteristic model of the horizontal installation of three ERs and verified that
the vibration system has multiple synchronous states. Fang et al. [21] introduced control
synchronization method in vibration system driven by ER and pendulum to obtain the ideal
motion trajectory. Chen et al. [22] designed a controlled synchronous system consisting of
three ERs, the coupling characteristics of the vibration system are analyzed according to
the experimental data, which provides a guideline for the design of the vibration machine
with control synchronization. Aiming at the problem that multi-frequency synchronization
is difficult to achieve, Jia et al. [23] used the fuzzy control method to achieve the velocity
and phase synchronization of three ERs.

Due to the property of the structure distribution of three ERs system, the synchronous
characteristics of multi-ERs system cannot be fully reflected. Therefore, scholars began
to investigate on the vibration system with the even-pair structural. Using the averaging
method, Liu et al. [24] studied the synchronous stability capability of two pairs of counter-
rotating ERs. Zhang et al. [25] studied the synchronization theory of four co-rotating ERs
in two resonance regions. Kong et al. [26] studied the composite synchronous problem
of four ERs, and the feasibility of the composite synchronous method was verified by
numerical simulation. The above researches have promoted the development of four
ERs system. However, the lack of experiments of four ERs hinders the development of
vibration systems with the even-pair structure in engineering applications. To sum up, this
paper takes four ERs structure as the object to study the synchronous characteristics of
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even-pairs ERs system. The structure of this paper is as follows: In Section 2, the dynamic
model of the vibration system is given, and the differential equations of motion of the
model are established; in Section 3, the response solution of the system is deduced, and the
synchronization condition and the stability condition are obtained; the coupling dynamic
characteristics of the system are numerically analyzed and the simulation results are given
in Section 4; experimental results are provided in Section 5; finally, conclusions are given.

2. Dynamic Model and Motion Differential Equations

Figure 1a shows the dynamic model of four ERs circumferentially distributed on the
rigid body. The body is supported by springs, and springs are symmetrically installed on
body. m is mass of the rigid body; m0 is mass of the ER; ki is stiffness of the vibration system
and fi is damping constant of the vibration system in i direction, i = x, y, respectively; l0 is
the distance between motor eccentric block and rigid body center; β j is the motor mounting
angle between four ERs and the x axis, j = 1, 2, 3, 4, respectively.

In Figure 1b, a fixed coordinate system oxy is established with the mass center as the
origin. o1x1y1 is parallel to the fixed coordinate system oxy. o2x2y2 is a rotating coordinate
system around o1. The system has 7 degrees of freedom which are the displacement in x
and y direction, the rotation around axis ψ and motion ϕi (i = 1, 2, 3, 4) of each rotor.

Based on Lagrange equation, the motion differential equations of vibration system can
be obtained as follows [12]:

M
..
x + fx

.
x + kxx = −m0r

4
∑

i=1

( .
ϕ

2
i cos ϕi +

..
ϕi sin ϕi

)
M

..
y + fy

.
y + kyy = m0r

4
∑

i=1

( .
ϕ

2
i sin ϕi −

..
ϕi cos ϕi

)
J

..
ψ + fψ

.
ψ + kψψ = m0rl0

4
∑

i=1

[ .
ϕ

2
i sin(ϕi + βi)−

..
ϕi cos(ϕi + βi)

]
(Ji + m0r2)

..
ϕi + fi

.
ϕi = Tei −mir[

..
x sin ϕi +

..
y cos ϕi + l0

..
ψ cos(ϕi + βi) + l0

.
ψ

2
sin(ϕi + βi)

(1)

where M = m + 4m0, kψ = (kxl2
y + kyl2

x)/2, fψ = ( fxl2
y + fyl2

x)/2, J is the moment of inertia
of the vibration system about its mass center.
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Figure 1. The vibration machine is excited by four ERs: (a) Dynamic model of the vibration system; 
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Figure 1. The vibration machine is excited by four ERs: (a) Dynamic model of the vibration system;
(b) Three reference coordinate systems.
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3. Theoretical Derivation
3.1. Synchronization of Vibration System

According to the principle of linear superposition, the steady-state response solution
of motion differential equations of the system excited by four ERs as follows [18]:

x = rmrµx
4
∑

i=1
cos(ϕi − γx)

y = rmrµy
4
∑

i=1
sin(ϕi − γy)

ψ =
rmrµψrl

le

4
∑

i=1
sin(ϕi − βi − γψ)

(2)

where ωx =
√

kx
M , ωy =

√
ky
M , ωψ =

√
kψ

J , le =
√

J
M , rl = l0

le
, rm = m0

M , ξx = fx
2
√

Mkx
,

ξy =
fy

2
√

Mky
, ξψ =

fψ

2
√

Jkψ
, nj = ω0

ωj
, µj =

n2
j√

(1−n2
j )

2
+(2ξ jnj)

2
, γj = arctan

2ξ jnj

1−n2
j
; γj are the

phase lag angle, ωj is the natural frequency of the system, ξ j is the relative damping
coefficient of the system in j directions (j = x, y, ψ).

If four ERs run synchronously, the relationship between each ER and the average
phase is established as follows:

ϕ1 = ϕ + 3
2 α1 + α2 +

1
2 α3

ϕ2 = ϕ− 1
2 α1 + α2 +

1
2 α3

ϕ3 = ϕ− 1
2 α1 − α2 +

1
2 α3

ϕ4 = ϕ− 1
2 α1 − α2 − 3

2 α3

(3)

where ϕ = 1
4

4
∑

i=1
ϕi, ϕi − ϕj = 2αi, i = 1, 2, 3, j = i + 1.

If the vibration system runs stably, the average velocity of four ERs is
.
ϕ = ω0 =

constant. Because the system do the period motion, the angular velocity and phase differ-
ence of ERs are perturbed by the average angular velocity [9]. The angular velocity and
angular acceleration of four ERs can be set as follows:

.
ϕi = (1 + εi)ω0,

..
ϕi =

.
εiω0, i = 1, 2, 3, 4, (4)

If four ERs run synchronously, the mean of the fluctuation coefficients of εi in a single
motion period of the system is zero. So, the system has capability of frequency capture.
Using the averaging method of the nonlinear vibration system, the response solutions

..
x,

..
y, and

..
ψ of the system are obtained by twice derivative on time t in Equation (2). Then

substituting them into the last four formulas of Equation (1) and integrating ϕ = 0 ∼ 2π to
get the mean differential equations as follows:

Jiω0
.
εi + fiω0(1 + εi) = Tei − TLi, i = 1, 2, 3, 4, (5)

where TLi = m0r2ω2
0(χ f i + χai), i = 1, 2, 3, 4, denote the vibration torque of the system. The

remaining symbols are defined in Appendix A (A1–A15).
When four ERs run synchronously, the motor output torque T0i can be obtained

as follows:
T0i = Te0i − fiω0 = m0r2ω2

0(χ f i + χai), i = 1, 2, 3, 4, (6)

According to Equation (6), the synchronous motion is essentially an electromechanical
coupling process. For the mechanical part, synchronization is the movement of four ERs
with a constant phase difference and the same rotational velocity. For motors, synchro-
nization means that the output electromagnetic torque of each motor is constant. Since the
phase differences of ERs are constant, the differences between the output electromagnetic
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torques are constant. The differences ∆Tij between the output torques of motor i and motor
j are obtained as follows:

∆Tij = Ti − Tj = Tuτcij, i = 1, 2, 3, j = i + 1, (7)

where Tu = m0r2ω2
0/2 represents the kinetic energy of ER;

τc12 = Ws1 −Ws2 + Wcs13 cos(2α1 + 2α2 + θs13) + Wcs14 cos(2α1 + 2α2 + 2α3 + θs14)
−Wcs23 cos(2α2 + θs23)−Wcs24 cos(2α2 + 2α3 + θs24) + 2Wcc12 sin(2α1 + θc12)
+Wcc13 sin(2α1 + 2α2 + θc13) + Wcc14 sin(2α1 + 2α2 + 2α3 + θc14)
−Wcc23 sin(2α2 + θc23)]−Wcc24 sin(2α2 + 2α3 + θc24)
τc23 = Ws2 −Ws3 + Wcs12 cos(2α1 + θs12)−Wcs13 cos(2α1 + 2α2 + θs13)
+Wcs24 cos(2α2 + 2α3 + θs24)−Wcs34 cos(2α3 + θs34)
−Wcc12 sin(2α1 + θc12) + Wcc13 sin(2α1 + 2α2 + θc13) + 2Wcc23 sin(2α2 + θc23)
+Wcc24 sin(2α2 + 2α3 + θc24)−Wcc34 sin(2α3 + θc34)
τc34 = Ws3 −Ws4 + Wcs13 cos(2α1 + 2α2 + θs13)−Wcs14 cos(2α1 + 2α2 + 2α3 + θs14)
+Wcs23 cos(2α2 + θs23)−Wcs24 cos(2α2 + 2α3 + θs24)
−Wcc13 sin(2α1 + 2α2 + θc13) + Wcc14 sin(2α1 + 2α2 + 2α3 + θc14)−Wcc23 sin(2α2 + θc23)
+Wcc24 sin(2α2 + 2α3 + θc24) + 2Wcc34 sin(2α3 + θc34)

(8)

From Equation (7), it can be seen that the left hand side ∆Tij are the differences between
the output torques of motors and the right hand side of that is the capture torques of the
system. In Equation (8), the dimensionless parameter Wccij or Wcsij given in Appendix A is
the function of the structural parameters of the system and its value remains unchanged
as long as the structure parameters are determined. So, the coupling torques τcij is only
the function of the phase differences 2αi. It is well-known that trigonometric functions are
bounded, and therefore τcij is bounded. However, the output torque differences ∆Tij are
unbounded. Based on the expression of τcij, there must be the maximum value of τcij. If
the output torque differences ∆Tij are greater than the maximum value of the captured
torques Tuτcijmax, Equation (7) is invalid. Therefore, the synchronous condition is obtained,
that is, ∆Tij ≤ Tuτcijmax, i = 1, 2, 3, j = i + 1. To sum up, the synchronous condition that the
system can perform synchronous motion is obtained using the necessary condition method
of mathematics.

3.2. Stability Condition of Synchronous State

It can be seen from the above analysis that synchronization is a process of electrome-
chanical coupling and the output torque of the motor is also a fluctuation value. Therefore,
perturbing the steady-state torque equation of the motor on ω0, the electromagnetic torque
of the motor is deduced as follows [27]:

Tei = Te0i − ke0iεi, i = 1, 2, 3, 4, (9)

where Te0i are the electromagnetic output torque, ke0i are the angular velocity stiffness
coefficient of motor.

Since the motion of the vibration system is described by the motion differential equa-
tions, the solutions of equations also represent the motion state of the system. Therefore,
the stability of the motion state of the system can be attributed to that of the solution of the
motion differential equations. Applying Lyapunov indirect method to linearize Equation (6)
on 2α10, 2α20, 2α30 (αi0 is Taylor’s first expansion of αi), ω0 and ignoring Wsi, fi, Wcsij, since
they are very small values, the state equation of the motor can be obtained as follows [24]:

ke0j(∆ε j)
′ =

3

∑
i=1

(
∂χaj

∂αi
)∆αi, j = 1, 2, 3, 4, (10)
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Further processing Equation (10), the state equation of the system on the phase differ-
ence can be derived as follows:

∆
.
α = D∆α, (11)

where D =

d11 d12 d13
d21 d22 d23
d31 d32 d33

, ∆α = [2αi − 2αi0].

The determinant det (D− λI) = 0 is solved to get the characteristic equation of the
matrix D on λ as follows:

λ3 + H1λ2 + H2λ + H3 = 0, (12)

where H1 = −d11 − d22 − d33, H2 = d11d33 + d22d33 + d11d22 − d13d31 − d21d32 − d12d21,
H3 = d13d22d31 + d11d23d32 + d12d21d33 − d11d22d33 − d12d23d31 − d13d21d32. Others are in
Appendix A (A16–A24).

Applying Routh–Hurwitz, the stability condition of the synchronous motion of ERs
is deduced [12]. In other words, since Equation (13) is available, the trivial solution ∆α is
stable, which explains that the phase difference is constant.

H1 > 0, H1H2 − H3 > 0, H3 > 0, (13)

Therefore, the synchronous motion of the system is stable only if the solution of
Equation (12) has a negative real part. If Equation (13) is met, the solution of Equation (12)
has a negative real part, which is the stability condition for the synchronous motion.

4. Numerical Analysis

The synchronous condition and the stability condition of the system have been studied
in Section 3. In this section, the following system parameters are introduced to investi-
gate that the system has several steady-state motions. To simplify the analysis process,
kx = ky is chosen. The corresponding parameters are as follows: M = 4370 g, m0 = 46 g,
J = 1750 gm2, kx = 70.5 KN/m, ky = 70.5 KN/m and kψ = 20 KN/m. The natural frequen-
cies are defined as ωx = 127 rad/s, ωy = 127 rad/s, and ωψ = 107 rad/s.

Equation (8) is used to obtain the phase difference value when the system is stable.
Since Equation (8) is a set of transcendental equations, it is not possible to obtain analytic
solutions, so bisection method is adopted. Due to the multiple solutions of nonlinear
equations, the stability condition of the synchronous state in Equation (13) is used to
determine which solution is stable [25]. Applying the parameters in the previous paragraph,
phase differences are obtained in Figure 2.
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Figure 2. Stable phase differences: (a) Identical motor parameters; (b) Different motor damping.

Figure 2a shows the phase differences when the four ERs are identical. When ω0 ≤ 127rad/s,
the system is in sub-resonant state. At this stage, the stable phase difference close to 0◦

results in the superposition of the resultant forces of four ER, which makes the vibration
body move in a large amplitude circle. When ω0 > 127 rad/s, the system is in super-
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resonant state. At another stage, there are two cases of stable phase differences: |180◦|
and |90◦|. These results show that the phase differences have two sets of stable solutions,
which means two equilibrium points. Therefore, the system has two synchronous states in
super-resonant case.

Because ERs are driven directly by motors, not only the mechanical part will affect
the steady-state motion of the vibration system, but the difference of the electrical part
will also affect the steady-state motion. To verify vibration synchronization of ERs is an
electromechanical coupling process, the different damping torque of the motor is discussed
as shown in Figure 2b. The phase differences change correspondingly around 0◦ when
system is in sub-resonant state, ω0 ≤ 127 rad/s. On the contrary, ω0 > 127 rad/s, there are
still two cases of phase differences around |180◦| and |90◦| in super-resonant state. The
phase difference curves in Figure 2b explain that the electrical part plays a key role in the
stable phase difference.

Based on the conclusion in Figure 2, it is found that the system has multiple equilibrium
states. To analyze the selective motion characteristics of the system, a force analysis diagram
in Figure 3 is used in combination with Figure 2.
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Figure 3. Force analysis of the system in steady-state motion: (a) Sub-resonant phase differences are
0◦; (b) Super-resonant phase differences are |90◦|; (c) Super-resonant phase differences are |180◦|.

Choosing the rotation angles of ERs determined by phase differences in Figure 2a,
the force analysis of the rigid body is carried out in Figure 3a when the system is in sub-
resonant state, ω0 ≤ 127 rad/s. The resultant force of four ERs makes the rigid body move
in circular motion, which is consistent with the motion selection principle of the vibration
system [20]. The resultant force of ERs is superimposed and the vibration amplitude reaches
the maximum value. Hence, the circular motion trajectory can be used to design a kind of
vibration screen.

When the system is in super-resonant state, phase differences are |90◦| in Figure 3b.
Because the resultant forces of four ERs cancel out, the rigid body is at rest, which is in
accordance with the principle of minimum potential energy [28]. In another steady-state,
phase differences are |180◦| as shown in Figure 3c. The resultant forces of four ERs also
cancel out as Figure 3b. In the same way, there is no motion on the rigid body.

To sum up, the system chooses vibration as its motion state in the sub-resonant state,
whereas it chooses rest as its motion state in the super-resonant state. In particular, the
super-resonant has two motion states.

5. Experiment
5.1. Experimental Machine

Figure 4 shows experimental machine corresponding to the dynamic model of the
system. Four ERs driven by DC motor are symmetrically distributed on the rigid body.
In this work, four motors are supplied with the same voltage to investigate vibration
synchronization and no motor control scheme is used. Adjusting the voltage of the motor
to change the angular velocity of ER, the system can be run in sub-resonant state or super-
resonant state. The center and edge of the rigid body are installed with two perpendicular
acceleration sensors (type: IEPE, the sensitivity of 20 mv/g), respectively, to measure the
acceleration amplitudes of the rigid body in x and y directions. Each ER is installed to a
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photoelectric sensor (type: NPN, voltage: 5 V) to measure the motor velocity and the phase
of the eccentric block. The sensor signal is collected by B&K data equipment (sampling time:
10 kHz). The experimental results with different motion states are shown in Figures 5–12.
The rotational velocities and phase differences of ERs are obtained by using the pulse
interval time of the photoelectric sensor. No signal processing technique is performed on
the acceleration amplitude signal. For simplicity, the amplitudes referred to in the following
discussion are acceleration amplitudes. The curves are plotted using Origin 9.0.
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Figure 5. Phase differences of ERs change from 0◦ to 0◦ with disturbance: (a) Synchronous veloc-
ities of four ERs; (b) Phase differences; (c) Acceleration amplitude in y direction at 20 s and 40 s;
(d) Acceleration amplitude in x direction at 20 s and 40 s.
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Figure 6. Phase images of four ERs in sub-resonant state during one period of motion.
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Figure 7. Phase differences of ERs change from 90◦ to 90◦ with disturbance: (a) Synchronous
velocities of four ERs; (b) Phase differences; (c) Acceleration amplitude in y direction at 20 s and 40 s;
(d) Acceleration amplitude in x direction at 20 s and 40 s.
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Figure 8. Phase images of 90◦ in super-resonance during one period of motion.

Machines 2022, 10, 457 12 of 18 
 

 

5.3.2. Steady State Two 
In Figure 9, the system presents two steady-state motions. At 20 s, the synchronous 

velocity of ERs fluctuates at 2330 r/min and phase differences are  852 1 ,  1032 2  
and  702 3 . At 40 s, the synchronous velocity of ERs fluctuates at 2320 r/min, which 
means there’s not much change on the synchronous velocity between 20 s and 40 s. How-
ever, the phase difference 12 changes from

 85  to 
159 , the phase difference 22  

from 
103  to 

177 , and the phase difference 32  from 
 70  to 

160 .The phe-
nomenon illustrates that the system has two motion states in super-resonant stage. This 
experiment proves that the final motion state of ERs depends on the initial or the disturbed 
conditions. 

From Figure 9c,d, the changes of the acceleration are basically consistent with Figure 
7 at 20 s. However, the changes at 40 s are different from those at 20 s. Comparing two 
different moments, it can be found that magnitudes at 20 s are less than 40 s in x and y 
directions. Therefore, it can be concluded that the vibration amplitude of the rigid body 
of the 90 phase difference is smaller than that of the 180  phase difference. The result 
also expresses that the offset way of excitation forces of ERs in the 90  phase difference 
is better because the rigid body has a larger swing amplitude when phase differences ap-
proach 180 . 

 
Figure 9. Phase differences of ERs change from 90  to 180  with disturbance: (a) Synchronous 
velocities of four ERs; (b) Phase differences; (c) Acceleration amplitude in y direction at 20 s and 40 
s; (d) Acceleration amplitude in x direction at 20 s and 40 s. 

  

)
/(

2




12

32
22

)160(2

)177(2

)159(2

3

2

1







)70(2

)103(2

)85(2

3

2

1









0 20 40 60
0

500

1000

1500

2000

2500

 

 

        
     

19.95 20.00 20.05
-2

0

2

39.95 40.00 40.05
-2

0

2

                                                  

                                                  

19.95 20.00 20.05
-2

0

2

39.95 40.00 40.05
-2

0

2

                                                 

                                                 

0 20 40 60
-180

-120

-60

0

60

120

180

 

 

Figure 9. Phase differences of ERs change from 90◦ to 180◦ with disturbance: (a) Synchronous
velocities of four ERs; (b) Phase differences; (c) Acceleration amplitude in y direction at 20 s and 40 s;
(d) Acceleration amplitude in x direction at 20 s and 40 s.
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Figure 10. Phase differences of ERs change from 180◦ to 180◦ with disturbance: (a) Synchronous
velocities of four ERs; (b) Phase differences; (c) Acceleration amplitude in y direction at 20 s and 40 s;
(d) Acceleration amplitude in x direction at 20 s and 40 s.
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Figure 11. Phase images of 180◦ in super-resonance during one period of motion.
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Figure 12. Phase differences of ERs change from 180◦ to 90◦ with disturbance: (a) Synchronous
velocities of four ERs; (b) Phase differences; (c) Acceleration amplitude in y direction at 20 s and 40 s;
(d) Acceleration amplitude in x direction at 20 s and 40 s.

5.2. The System Is in the Sub-Reasonant State

Both time domain curves in Figure 5 and high speed images in Figure 6 are used to
study the dynamic characteristics of the system.

Figure 5a shows that the synchronous velocity of ERs is 780 r/min and the correspond-
ing excitation frequency is ω0 = 82 rad/s. Therefore, the system is in sub-resonant state at
this stage. When ERs are supplied with power simultaneously, four ERs quickly perform a
steady-state motion because parameters of the system satisfy the synchronous condition.
In Figure 5b, the phase differences are 2α1 = −10◦, 2α2 = 9◦, and 2α3 = −42◦ when the
system runs in synchronous state.

Comparing the acceleration curves in Figure 5c with Figure 5d, the vibration phases of
x direction are almost identical between the mass center and the edge at two different times:
20 s and 40 s. However, the vibration phases of y direction have certain differences with
those of x direction. There are two reasons: first, the phase differences of ERs are not exactly
equal to 0◦, which make the rigid body swing around the mass center. The sway of the
rigid body has more influence on y direction than x direction for the experimental machine
in Figure 4. Second, the amplitude in x direction is greater than that in y direction, which is
caused by the difference stiffness of the cylindrical spring between x and y direction. In
fact, excitation frequency ω0 = 82 rad/s is more closely related to the natural frequency in
x direction. Generally speaking, the motion trajectory of the mass center is a long ellipse
whose long axis is x direction.

After 30 s, this disturbance method quickly powering off ER 1 and then powering
on ER 1 is adopted to analyze the stability of the system. It can be found that the system
quickly recovers to a state similar to that before the disturbance. This is because the
vibration amplitude of the rigid body is large, which leads to the coupling torque to be
large and strong. To verify the data accuracy from the acquisition equipment, the image
method is used for comparison in Figure 6.
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During the experiment, a high-speed camera records the instantaneous phases of four
ERs at a 50 Hz acquisition frequency. As shown in Figure 6, phase differences obtained
by measurement are 2α1 = −10◦, 2α2 = 9◦, and 2α3 = −42◦. This result corresponds well
with the data in Figure 5b.

5.3. The System Is in the Super-Resonant State

Adjusting excitation frequency of motor to ω0 ≈ 241 rad/s, then system is in super-
resonant state. According to Figure 2, there are two sets of steady-state phase differences.
Therefore, there are also four sets of changes in super-resonant state, which are analyzed
sequentially from Figures 7–12.

5.3.1. Steady State One

In Figure 7, four ERs quickly run in the synchronous state when ERs are supplied
power simultaneously. At 20 s, the synchronous velocity of ERs fluctuate at 2330 r/min,
and phase differences are 2α1 = −90◦, 2α2 = −99◦, and 2α3 = −74◦. The disturbance
method in Figure 5 is used at 30 s. After the system returns to steady-state motion again,
it can be found that the motion state is not changed. At 40 s, the synchronous velocity
of ERs fluctuate at 2330 r/min, and phase differences are 2α1 = −88◦, 2α2 = −103◦, and
2α3 = −73◦. Stable phase differences have slight fluctuations at two different moments
because of characteristics of small fluctuations when the electromechanical coupling system
runs in the state of vibration synchronization.

Comparing the acceleration curves in Figure 7c with Figure 7d, it can be seen that
acceleration amplitudes in y direction are not the same phase. Moreover, acceleration
amplitudes in x direction are in phase. These motions explain that the motion state of
the rigid body is slightly swinging on the mass center. Although curves in Figure 7c,d
fluctuates a little bit, it is not that big, which means that forces are mostly cancelling out.
Combined with force analysis in Figure 3, the motion state can be well reflected by the
phase differences of ERs.

Figure 8 is that phase differences of ERs in super-resonant state are recorded by
high-speed camera at 155 Hz. The average values of phase differences are 2α1 = −86◦,
2α2 = 100◦, and 2α3 = −74◦. These results are consistent with those in Figure 7b.

5.3.2. Steady State Two

In Figure 9, the system presents two steady-state motions. At 20 s, the synchronous
velocity of ERs fluctuates at 2330 r/min and phase differences are 2α1 = −85◦, 2α2 = −103◦

and 2α3 = −70◦. At 40 s, the synchronous velocity of ERs fluctuates at 2320 r/min,
which means there’s not much change on the synchronous velocity between 20 s and 40 s.
However, the phase difference 2α1 changes from −85◦ to 159◦, the phase difference 2α2
from −103◦ to −177◦, and the phase difference 2α3 from −70◦ to −160◦. The phenomenon
illustrates that the system has two motion states in super-resonant stage. This experiment
proves that the final motion state of ERs depends on the initial or the disturbed conditions.

From Figure 9c,d, the changes of the acceleration are basically consistent with Figure 7
at 20 s. However, the changes at 40 s are different from those at 20 s. Comparing two
different moments, it can be found that magnitudes at 20 s are less than 40 s in x and y
directions. Therefore, it can be concluded that the vibration amplitude of the rigid body
of the 90◦ phase difference is smaller than that of the 180◦ phase difference. The result
also expresses that the offset way of excitation forces of ERs in the 90◦ phase difference
is better because the rigid body has a larger swing amplitude when phase differences
approach 180◦.

It is worth noting that the vibration torque TLi of the system at 40 s is larger than that
at 20 s, resulting in motor load, which is also large, so the synchronous velocity of ERs will
be reduced slightly at 40 s. The phase difference between the two states is not exactly close
to 90◦ or 180◦, which indicates the system is asymmetric. Generally speaking, acceleration



Machines 2022, 10, 457 14 of 17

phases of y direction are nearly opposite and vibration phases of x direction are almost
identically, which follows the principle of minimum potential energy [28].

5.3.3. Steady State Three

In Figure 10, the synchronous velocity of ERs fluctuates at 2320 r/min. At 20 s, phase
differences are 2α1 = 146◦, 2α2 = −171◦, and 2α3 = −159◦. At 40 s, the synchronous
velocity of ERs fluctuates at 2320 r/min and phase differences are 2α1 = 152◦, 2α2 = −166◦,
and 2α3 = −159◦. After the disturbance, stable phase differences have slight changes at
two different moments. This is because the synchronous process is an electromechanical
coupling process. Since the synchronous motion fluctuates, so does the phase difference. In
this work, the time difference of the pulse of the photoelectric sensor is used to calculate
the phase difference of ERs. The curves fluctuated due to the algorithm used. In spite of
the disturbance, the system still selects the steady-state motion of the 180◦ phase difference.
Because the system is asymmetric, the motion state of the rigid body is slightly swinging
around the mass center.

Figure 11 is that phase differences of ERs in super-resonant state are recorded by
high-speed camera at 155 Hz. The average values of phase differences are 2α1 = 155◦,
2α2 = −178◦, and 2α3 = −165◦. These results are consistent with those in Figure 10b.

5.3.4. Steady State Four

In Figure 12, the system implements another way to change when the disturbance
is applied.

The synchronous velocity of ERs fluctuates at 2320 r/min and phase differences are
2α1 = 155◦, 2α2 = −178◦, and 2α3 = −165◦ at 20 s. However, phase differences 2α1 change
from 155◦ to −98◦, 2α2 from −178◦ to −106◦, and 2α3 from −165◦ to −76◦ at 40 s. The
synchronous velocity of 40 s fluctuates at 2330 r/min, which has a slight change compared
to that of 20 s. Other changes are the same as the previous three experiments.

To sum up, the disturbance method of cutting off power is used to study the selec-
tive motion characteristics of the system. It can be found that the system can perform
synchronous motion as long as the synchronization condition is available. Further, the
experimental results show that the synchronous motion state depends on the initial condi-
tion and the disturbance condition. In this vibration machine, the system has five kinds of
synchronous states, which shows that the system has selective motion characteristics.

6. Conclusions

This paper takes four co-rotating and circularly distributed ERs to excite a single
mass rigid body as research object. The selective motion characteristics of the system are
investigated theoretically and experimentally. Conclusions are as follows:

(1) Since the synchronous condition is transcendental equation of the phase differences,
not only it has the characteristics of multiple solutions but also it is not possible to obtain
an analytical expression. A numerical method is proposed to calculate the phase difference
according to the synchronous condition and its stability condition, which is proved by
the experiments.

(2) Based on the principle of minimum potential energy, phase differences distri-
bution of four ERs are given according to force analysis, which is verified theoretically
and experimentally.

(3) Since vibration synchronization is essentially an electromechanical coupling pro-
cess, the influence of motor is investigated on the synchronous state. The mechanical
part of experimental machine adopts an even number of pairs of ERs symmetrically dis-
tributed on the rigid body, and electrical part uses four motors with same specifications.
Despite the same type of motor, there are still differences, which can be found from the
experimental results.

(4) This kind of vibration system has two synchronous states in super-resonant state
and one synchronous state in sub-resonant are proved theoretically and experimentally.
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Combined with the force analysis, symmetry of the 90◦ phase differences are better than
that of 180◦ because the system response of 90◦ is smaller.
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Appendix A

Ws = µx sin γx + µy sin γy + µψr2
l sin γψ, (A1)

acsij = µx sin γx + µy sin γy + µψr2
l sin γψ cos(βi − β j) (A2)

bcsij = −µψr2
l sin γψ sin(βi − β j) (A3)

accij = µx cos γx + µy cos γy + µψr2
l cos γψ cos(βi − β j) (A4)

bccij = µψr2
l cos γψ sin(βi − β j) (A5)

Wcsij = rm

√
a2

csij + b2
csij, θsij =

 arctan(− bcsij
acsij

), acsij ≥ 0

π + arctan(− bcsij
acsij

), acsij < 0
(A6)

Wccij = rm

√
a2

ccij + b2
ccij, θcij =

 arctan(
bccij
accij

), accij ≥ 0

π + arctan(
bccij
accij

), accij < 0
, (A7)

χ f 1 =
1
2
{Ws1 + Wcs12 cos(2α1 + θs12) + Wcs13 cos(2α1 + 2α2 + θs13) + Wcs14 cos(2α1 + 2α2 + 2α3 + θs14)}, (A8)

χa1 =
1
2
{Wcc12 sin(2α1 + θc12) + Wcc13 sin(2α1 + 2α2 + θc13) + Wcc14 sin(2α1 + 2α2 + 2α3 + θc14)}, (A9)

χ f 2 =
1
2
{Ws2 + Wcs12 cos(2α1 + θs12) + Wcs13 cos(2α2 + θs23) + Wcs13 cos(2α2 + 2α3 + θs24)}, (A10)

χa2 =
1
2
{−Wcc12 sin(2α1 + θc12) + Wcc23 sin(2α2 + θc23) + Wcc24 sin(2α2 + 2α3 + θc24)}, (A11)

χ f 3 =
1
2
{Ws3 + Wcs13 cos(2α1 + 2α2 + θs13) + Wcs23 cos(2α2 + θs23) + Wcs34 cos(2α3 + θs34)}, (A12)

χa3 =
1
2
{−Wcc13 sin(2α1 + 2α2 + θc13)−Wcc23 sin(2α2 + θc23) + Wcc34 sin(2α3 + θc34)}, (A13)
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χ f 4 =
1
2
{Ws4 + Wcs14 cos(2α1 + 2α2 + 2α3 + θs14) + Wcs24 cos(2α2 + 2α3 + θs24) + Wcs34 cos(2α3 + θs34)}, (A14)

χa4 =
1
2
{−Wcc14 sin(2α1 + 2α2 + 2α3 + θc14)−Wcc24 sin(2α2 + 2α3 + θc24)−Wcc34 sin(2α3 + θc34)}, (A15)

d11 = Wcc12 cos(2α10 + θc12)/k2 + Wcc12 cos(2α10 + θc12)/k1 + Wcc13 cos(2α10 + 2α20 + θc13)/k1+
Wcc14 cos(2α10 + 2α20 + 2α30 + θc14)/k1,

(A16)

d12 = Wcc23 cos(2α20 + θc23)/k2 + Wcc24 cos(2α20 + 2α30 + θc24)/k2 −Wcc13 cos(2α10 + 2α20 + θc13)/k1−
Wcc14 cos(2α10 + 2α20 + 2α30 + θc14)/k1,

(A17)

d13 = Wcc24 cos(2α20 + 2α30 + θc24)/k2 −Wcc14 cos(2α10 + 2α20 + 2α30 + θc14)/k1, (A18)

d21 = Wcc12 cos(2α10 + θc12)/k2 −Wcc13 cos(2α10 + 2α20 + θc13)/k3, (A19)

d22 = Wcc23 cos(2α20 + θc23)/k2 + Wcc24 cos(2α20 + 2α30 + θc24)/k2 + Wcc13 cos(2α10 + 2α20 + θc13)/k3+
Wcc23 cos(2α20 + θc14)/k3,

(A20)

d23 = Wcc34 cos(2α30 + θc34)/k3 −Wcc24 cos(2α20 + 2α30 + θc24)/k2, (A21)

d31 = Wcc13 cos(2α10 + 2α20 + θc13)/k3 −Wcc14 cos(2α10 + 2α20 + 2α30 + θc14)/k4, (A22)

d32 = Wcc13 cos(2α10 + 2α20 + θc13)/k3 + Wcc23 cos(2α20 + θc23)/k3+
Wcc14 cos(2α10 + 2α20 + 2α30 + θc14)/k4 + Wcc24 cos(2α20 + 2α30 + θc14)/k4,

(A23)

d33 = Wcc34 cos(2α30 + θc34)/k3 + Wcc14 cos(2α10 + 2α20 + 2α30 + θc14)/k4+
Wcc24 cos(2α20 + 2α30 + θc24)/k4 + Wcc14 cos(2α30 + θc34)/k4,

(A24)
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