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Abstract: In this paper, we propose a robust image feature extraction and fusion method to effectively
fuse image feature and depth information and improve the registration accuracy of RGB-D images.
The proposed method directly splices the image feature point descriptors with the corresponding
point cloud feature descriptors to obtain the fusion descriptor of the feature points. The fusion feature
descriptor is constructed based on the SIFT, SURF, and ORB feature descriptors and the PFH and
FPFH point cloud feature descriptors. Furthermore, the registration performance based on fusion
features is tested through the RGB-D datasets of YCB and KITTI. ORBPFH reduces the false-matching
rate by 4.66~16.66%, and ORBFPFH reduces the false-matching rate by 9~20%. The experimental
results show that the RGB-D robust feature extraction and fusion method proposed in this paper is
suitable for the fusion of ORB with PFH and FPFH, which can improve feature representation and
registration, representing a novel approach for RGB-D image matching.

Keywords: feature fusion; feature extraction; feature descriptor; RGB-D

1. Introduction

Since the advent of the Microsoft Kinect camera, various new RGB-D cameras have
been launched. RGB-D cameras can simultaneously provide color images and dense depth
images. Owing to his data acquisition advantage, RGB-D cameras are widely used in
robotics and computer vision. The extraction and matching of image features are the
basis for realizing these applications. Significant progress has been made in the feature
extraction, representation, and matching of images and depth maps (or point clouds).
However, there is room for further improvement of these processes. For example, the depth
image includes information not contained in the original color image. Further research is
required to effectively and comprehensively utilize the color image information and depth
information to improve feature-matching accuracy. Therefore, to effectively fuse image
and depth information and improve feature-matching accuracy, a robust RGB-D image
feature extraction and fusion method based on image and depth feature fusion is proposed
in this paper. The main idea of the proposed method is to directly splice the image feature
point descriptor and the corresponding point cloud feature descriptor to obtain the fusion
descriptor of feature points to be used as the basis of feature matching. The methodology
framework comprises image feature extraction and representation, point cloud feature
extraction and representation, and feature fusion, as shown in Figure 1.

The main contributions of this paper are as follows:

1. A feature point description method that fuses image feature and depth information is
proposed, which has the potential to improve the accuracy of feature matching.

2. The feature-matching performance of different fusion features constructed based on
the proposed method is verified on public RGB-D datasets.
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Figure 1. Sample graph with blue (dotted), green (solid), and red (dashed) lines. 

The main contributions of this paper are as follows: 
1. A feature point description method that fuses image feature and depth information 

is proposed, which has the potential to improve the accuracy of feature matching. 
2. The feature-matching performance of different fusion features constructed based on 

the proposed method is verified on public RGB-D datasets. 

2. Related Work 
The aim of the present study is to design a robust RGB-D image feature extraction 

and fusion method to improve RGB-D image registration accuracy. However, a method 
to fully fuse RGB images with depth information remains to be established. In this section, 
we review current related research on feature extraction, representation, and fusion 
method of images and point clouds. 
(1) Image feature extraction and representation 

Lowe et al. proposed the famous scale-invariant feature transform (SIFT) algorithm 
[1]. SIFT is both a feature detector and a feature descriptor. The algorithm is theoretically 
scale-invariant and has good anti-interference to illumination, rotation, scaling, noise, and 
occlusion properties. The SIFT feature descriptor is a 128-dimensional vector. However, 
the calculation process of this algorithm is complicated, and the speed is slow. Rosten et 
al. proposed the features from accelerated segment test (FAST) algorithm [2]. FAST is a 
corner-detection method that can quickly extract feature points. It uses a 16-pixel circle 
around the candidate point, p, to classify whether the candidate point is a corner. The 
most significant advantage of this method is high computational efficiency, but FAST is 
not a feature descriptor, so it must be combined with other feature descriptors. Bay et al. 
proposed the speeded-up robust features (SURF) algorithm [3]. SURF is a fast and high-
performance scale- and rotation-invariant feature point detector and descriptor that com-
bines the Hessian matrix and the Haar wavelet. The SURF descriptor only uses a 64-di-
mensional vector, which reduces the time required for feature calculation and matching. 
Leutenegger et al. proposed the binary robust invariant scalable keypoints (BRISK) algo-
rithm [4]. The BRISK algorithm usually uses the FAST algorithm to detect the image’s 
feature points quickly, then individually samples the grayscale of each keypoint neigh-
borhood and obtains a 512-bit binary code by comparing the sampled grayscale. BRISK 
has low computational complexity, good real-time performance, scale invariance, rotation 
invariance, and anti-noise ability but poor matching accuracy. Rublee et al. proposed the 
oriented FAST and rotated BRIEF (ORB) algorithm [5], which combines the FAST and 
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2. Related Work

The aim of the present study is to design a robust RGB-D image feature extraction and
fusion method to improve RGB-D image registration accuracy. However, a method to fully
fuse RGB images with depth information remains to be established. In this section, we
review current related research on feature extraction, representation, and fusion method of
images and point clouds.

(1) Image feature extraction and representation

Lowe et al. proposed the famous scale-invariant feature transform (SIFT) algorithm [1].
SIFT is both a feature detector and a feature descriptor. The algorithm is theoretically
scale-invariant and has good anti-interference to illumination, rotation, scaling, noise, and
occlusion properties. The SIFT feature descriptor is a 128-dimensional vector. However,
the calculation process of this algorithm is complicated, and the speed is slow. Rosten
et al. proposed the features from accelerated segment test (FAST) algorithm [2]. FAST is
a corner-detection method that can quickly extract feature points. It uses a 16-pixel circle
around the candidate point, p, to classify whether the candidate point is a corner. The most
significant advantage of this method is high computational efficiency, but FAST is not a fea-
ture descriptor, so it must be combined with other feature descriptors. Bay et al. proposed
the speeded-up robust features (SURF) algorithm [3]. SURF is a fast and high-performance
scale- and rotation-invariant feature point detector and descriptor that combines the Hes-
sian matrix and the Haar wavelet. The SURF descriptor only uses a 64-dimensional vector,
which reduces the time required for feature calculation and matching. Leutenegger et al.
proposed the binary robust invariant scalable keypoints (BRISK) algorithm [4]. The BRISK
algorithm usually uses the FAST algorithm to detect the image’s feature points quickly, then
individually samples the grayscale of each keypoint neighborhood and obtains a 512-bit bi-
nary code by comparing the sampled grayscale. BRISK has low computational complexity,
good real-time performance, scale invariance, rotation invariance, and anti-noise ability
but poor matching accuracy. Rublee et al. proposed the oriented FAST and rotated BRIEF
(ORB) algorithm [5], which combines the FAST and BRIEF [6] algorithms, making it both
a feature detector and a feature descriptor. The length of the ORB feature descriptor is
generally a binary string of 128, 256, or 512. The contribution of ORB is that it adds fast and
accurate direction components to the FAST and efficient calculation for the BRIEF features
so that it can realize real-time calculation. However, it is not scale-invariant and is sensitive
to brightness. Alahi et al. proposed the fast retina keypoint (FREAK) algorithm [7]. FREAK
is not a feature detector, and it can only be applied to the keypoints that other feature
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detection algorithms have detected. FREAK is inspired by the human retina, and its binary
feature descriptors are computed by efficiently comparing image intensities for retinal
sampling patterns.

(2) Point cloud feature extraction and representation

Johnson et al. proposed a 3D mesh description called spin images (SI) [8]. SI computes
2D histograms of points falling within a cylindrical volume utilizing a plane that “spins”
around the normal of the plane. Frome et al. proposed regional shape descriptors called 3D
shape contexts (3DSC) [9]. 3DSC directly extends 2D shape contexts [10] to 3D. Rusu et al.
designed the point feature histograms (PFH) algorithm [11,12], which calculates angular
features and constructs corresponding feature descriptors by observing the geometric
structure of adjacent points. One of the biggest bottlenecks of using the PFH algorithm is
computational efficiency for most real-time applications. In order to improve the calculation
speed, Rusu et al. developed the fast point feature histogram (FPFH) algorithm [13], which
is a representative, handwritten 3D feature descriptor. It provides similar feature-matching
results with reasonable computational complexity. Tombari et al. proposed a local 3D
descriptor for surface matching called the signature of histograms of orientations (SHOT)
algorithm [14,15]. SHOT allows for simultaneous encoding of shape and texture, forming a
local feature histogram. Steder et al. developed normal aligned radial feature (NARF) [16],
a 3D feature point detection and description algorithm. Guo et al. proposed rotational
projection statistics (RoPS) [17], a local feature descriptor for 3D rigid objects based on
rotational projection statistics that it is sensitive to occlusions and clutter. In addition, many
other high-performance 3D point cloud features have emerged in recent years, including
B-SHOT [18], Frame-SHOT [19], LFSH [20], 3DBS [21], 3DHoPD [22], TOLDI [23], BSC [24],
BRoPH [25], and LoVS [26], among others.

(3) Image and point cloud feature fusion

Rehman et al. proposed a method to fuse the local binary pattern, wavelet moments,
color autocorrelogram features of RGB data, and principal component analysis (PCA) fea-
tures of the corresponding depth data [24]. Khan et al. proposed an RGB-D data feature
generation method based on color autocorrelograms, wavelet moments, local binary pat-
terns, and PCA [27]. Alshawabkeh fused image color information with point cloud linear
features [28]. Chen et al. achieved point cloud feature extraction by selecting three pairs of
two-dimensional images and three-dimensional point cloud feature points, calculating the
transformation matrix of the image and point cloud coordinates and establishing a mapping
relationship [29]. Li et al. proposed a voxel-based local feature descriptor, used a random
forest classifier to fuse point cloud RGB information and geometric structure features, and
finally constructed a classification algorithm of color point cloud [30]. With the development
of artificial intelligence technology, many feature extraction and fusion technologies based on
deep learning technology have emerged, such as those presented in [31–34]. These methods
require a large amount of data to train network models, and obtaining these extensive training
sample data may be difficult under some application conditions. Therefore, in this paper, we
discuss the traditional feature extraction and fusion methods.

3. Feature Extraction and Matching

The specific process of the proposed feature point extraction and fusion method is as
follows. First, the feature points of the RGB image are extracted, and the corresponding
image feature descriptor is established. Three classical image feature points are selected in,
namely SIFT, SURF, and ORB feature points. Then, according to the pixel correspondence
between RGB and depth images, the depth image is transformed into a point cloud. The
features of the three-dimensional point cloud corresponding to the image feature points
are extracted, i.e., the PFH and FPFH features. Finally, the image feature descriptor and the
point cloud feature descriptor are spliced into a fusion descriptor.
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3.1. RGB-D Camera Calibration

It is worth mentioning that the depth image is generally obtained by a depth camera,
and the RGB image is generally taken by an RGB camera. Due to differences in camera
hardware technology, the size of the RGB image and that of the depth image is often differ-
ent. Therefore, RGB-D camera calibration must be carried out to obtain the transformation
matrix between the RGB camera and the depth camera. The specific calibration principle is
as follows.

A schematic diagram of the RGB-D camera coordinate system is shown in Figure 2.
It is assumed that the world coordinate system is OW − XWYW ZW ; the RGB camera coor-
dinate system and the depth camera coordinate system are ORGB − XRGBYRGBZRGB and
ODepth − XDepthYDepthZDepth, respectively; and the corresponding image pixel coordinate
systems are orgb − urgbvrgb and odepth − udepthvdepth, respectively. The position of a world

point, PW =
[
XW YW ZW 1

]T , in the RGB camera and the depth camera coordinate
system are shown in the following formula.{

PRGB =
[

RRGB tRGB
]
PW= TRGBPW

PDepth =
[

RDepth tDepth
]
PW= TDepthPW

, (1)
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The positional relationship between the RGB camera and the depth camera can be
represented by the transformation matrix, TDepth2RGB, as follows:

PRGB = TRGBT−1
DepthPDepth =

[
RRGBR−1

Depth tRGB −RRGBR−1
DepthtDepth

]
PDepth,

= TDepth2RGBPDepth =
[

RDepth2RGB tDepth2RGB
]
PDepth

(2)

The camera coordinate system can be converted to the camera image pixel coordinate
system by the following equation.

prgb =

 urgb
vrgb

1

 = 1
ZRGB

KRGBPRGB

pdepth =

 udepth
vdepth

1

 = 1
ZDepth

KDepthPDepth

, (3)

where KRGB and KDepth represent the intrinsic parameter matrix of the RGB camera and
the depth camera, respectively. By combining Equations (2) and (3), the depth image pixel
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coordinate system can be converted into the RGB image pixel coordinate system, as shown
in the following equation.

prgb =
ZDepth

ZRGB
KRGBTDepth2RGBK−1

Depthpdepth, (4)

where ZDepth is the depth value measured by the depth camera, and KRGB, KDepth, and
TDepth2RGB can be obtained by the Zhang camera calibration method [35]. Through Equa-
tion (4), we can obtain the projection of the depth data in the RGB image pixel coordinate
system. However, because the depth image size is usually different from the RGB image
size, the depth image size is generally kept consistent with the RGB image size through the
sampling method in the RGB image pixel coordinate system.

3.2. Feature Extraction from RGB Maps

(1) SIFT

The process of SIFT feature point extraction and representation is shown in Figure 3a.
After determining the location of the feature point, SIFT takes 4× 4 subregion blocks around
the feature point (each subregion block is 4 × 4 pixels), calculates the gradient amplitude
and direction of each subregion, divides the gradient direction into eight intervals, and
counts each subregion into an eight-dimensional subfeature histogram. The subfeature
histograms of 4 × 4 subregion blocks are combined to form a 128-dimensional SIFT feature
descriptor. A schematic diagram is shown in Figure 3b.
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representation process; (b) SIFT descriptor generation process.

(12) SURF

The process of SURF feature point extraction and representation is shown in Figure 4a.
After determining the position of the feature point, SURF takes 4 × 4 subregion blocks
around the feature point and rotates them to the main direction of the feature points. Each
subregion counts the Haar wavelet features of 25 pixels in the horizontal and vertical
directions to obtain the sum of horizontal values, the sum of vertical values, the sum
of absolute horizontal values, and the sum of absolute vertical values. The four feature
quantities of the 4 × 4 subregion blocks are then combined to form a 64-dimensional SURF
feature descriptor. A schematic diagram is shown in Figure 4b.
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(3) ORB

The process of ORB feature point extraction and representation is shown in Figure 5a.
After determining the position of the feature point, ORB selects a 31 × 31 image block with
the feature point as the center, rotates it to the main direction, and then randomly selects
N pairs of points in this block (N is generally 128, 256, or 512). For point pairs A and B,
a binary result is achieved by comparing the average size of the grayscale in the 5 × 5
subwindow around the two points and comparing N pairs of points to obtain a length N
binary feature descriptor. A schematic diagram is shown in Figure 5b.
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3.3. Feature Extraction from Point Cloud

(1) PFH

PFH parameterizes the spatial difference between a reference point and its neighbor-
hood to form a multidimensional histogram describing the geometric properties of the
point neighborhood. The multidimensional space where the histogram is located provides
a measurable information space for feature expression and is robust to pose, sampling
density, and noise of 3D surfaces. As shown in Figure 6a, pq represents the sampling point
(red). The scope of PFH is a sphere with pq as the center and radius r. Other points in the
scope contribute to the PFH of pq(blue). After obtaining all the neighboring points in the k
neighborhood of sampling point pq, a local coordinate system, uvw, is established at Pq, as
shown in Figure 6b, where pk represents a neighborhood point, and nq and nk represent
the normal at pq and pk, respectively.
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Each angle eigenvalue is divided into five intervals. All adjacent points in the K 
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In Figure 6b, the angle eigenvalues of α, ϕ, and θ are as follows.
α = v · nk

ϕ = u ·
(

pk−pq

)
‖pk−pq‖

θ = arctan(w · nk, u · nk),

(5)

Each angle eigenvalue is divided into five intervals. All adjacent points in the K
neighborhood are combined in pairs to form a new point pair, and the times of α, ϕ, and θ
values of the point pair falling in each angle interval are counted. Finally, a 125-dimensional
point feature histogram is obtained.

(2) FPFH

As a simplified algorithm of PFH, the FPFH algorithm maintains good robustness and
recognition characteristics. It also improves the matching speed and achieves excellent
real-time performance by simplifying and reducing the computational complexity. The
specific calculation process of FPFH is as follows:

1. For each sample point, the three angle eigenvalues are calculated between the point
and each point in its K neighborhood, and each angle eigenvalue is divided into 11
intervals, so a 33-dimensional simplified point feature histogram (SPFH) is obtained;

2. The K-neighborhood points of each point are calculated to form their SPFH;
3. The final FPFH is calculated with the following formula:

FPFH
(

pq

)
= SPFH

(
pq

)
+

1
k

k

∑
i=1

1
ωi

SPFH(pk), (6)

where ωi represents the weight coefficient, which is generally expressed by the distance
between sampling points pq and pk.

A schematic diagram of the FPFH affected area is shown in Figure 7.

3.4. Feature Fusion

Due to the varying data types of different descriptors, we propose different descriptor
fusion methods for different types of feature descriptors.

(1) SIFT and SURF feature descriptors, as well as those of PFH and FPFH are floating-
point descriptors. For this kind of floating-point feature descriptor, we propose
direct splicing of the normalized point cloud feature descriptors after the normalized
image feature descriptors to form the fusion feature descriptors SIFTPFH, SIFTFPFH,
SURFPFH, and SURFFPFH.

(2) The image feature descriptor of ORB is a binary string, and the point cloud feature
descriptors of PFH and FPFH are floating-point descriptors. In order to maintain the
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respective feature-description ability of binary descriptors and floating-point descrip-
tors, the data types of the two descriptors are kept unchanged and combined into a
tuple, thereby obtaining the fusion feature descriptors of ORBPFH and ORBFPFH.
Because the norm of PFH or FPFH is minor, to increase the weight of point cloud
features, we usually multiply a coefficient to make the norm of PFH or FPFH after
multiplication close to the length of ORB features.
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Figure 8 shows an RGB-D image in the Yale-CMU-Berkeley (YCB) dataset, and
Figures 9–11 show the feature points and different fusion feature histograms of the RGB-
D image.
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As can be seen from the above figures, the fusion of the two feature descriptors expands
the descriptor’s length, enriches the descriptor information, strengthens the constraints of
the descriptor, and makes it more special.

3.5. Feature Matching

The data types of the SIFTPFH, SIFTFPFH, SURFPFH, and SURFFPFH feature de-
scriptors are floating point. Therefore, the Euclidean distance is used as the feature point
similarity evaluation index, and the specific formula is as follows.

d(h1, h2) =

√
n

∑
i=1

(h1i − h2i)
2, (7)

where h1 = (h11, . . . , h1n) and h2 = (h21, . . . , h2n) are the feature descriptors to be registered.
As mentioned earlier, the ORBPFH or ORBFPFH feature descriptor is a tuple in which

the Hamming distance of the ORB descriptor is calculated, the Euclidean distance of the
PFH or FPFH descriptor is calculated, and the two distances are added to obtain the final
feature distance; the specific formula is as follows. The calculation process of the Hamming
involves comparing whether each bit of the binary feature descriptor is the same. If not,
add 1 to the Hamming distance.

d(h1, h2) =
n1

∑
i=1

isBitEqual(h1i, h2i) +

√
n

∑
i=n1+1

(h1i − h2i)
2, (8)
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where isBitEqual(h1i, h2i) indicates whether the bit is the same, its definition is as follows,n1
represents the length of the ORB feature descriptor, and n represents the total length of the
ORBPFH or ORBFPFH feature descriptor.

isBitEqual(h1, h2) =

{
0, h1 = h2
1, h1 6= h2

, (9)

Then, the rough registration of the feature point is realized based on the Fast Library
for Approximate Nearest Neighbors (FLANN) algorithm. Finally, the random sample
consensus (RANSAC) algorithm is used to accurately register feature points.

4. Experiment and Results

The performance of the proposed feature extraction and fusion method is verified on
the RGB-D datasets of YCB and Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI). The specific index parameters characterizing the performance of the
descriptor are the number and time of feature extraction, the number and time of feature
matching, and the matching failure rate. The definition of the matching failure rate (MFR)
is as follows.

MFR = N f ailure/Ntotal , (10)

where N f ailure represents the number of matching failed frames, and Ntotal represents the
total number of frames.

The image resolution of the RGB-D image is 640 × 480. After the depth image is
transformed into a point cloud, there are about 300,000 points. Such a colossal point cloud
will consume many computing resources and time when calculating the normal vector and
PFH/FPFH descriptor. Therefore, the point cloud is downsampled to keep the number
of points in the range of 2000 to 5000, ensuring calculation accuracy and reducing the
calculation time.

The sample image of the YCB dataset is shown in Figure 12, and its indices are shown
in Table 1. A sample image of the KITTI dataset is shown in Figure 13, and its indices
are shown in Table 2. In Tables 1 and 2, Ne indicates the number of extracted feature
points, Nm indicates the number of matched feature points, Te indicates the time of feature
extraction, Tm indicates the time of feature matching, and Ta indicates the total time.
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Figure 12. Test images in the YCB 0024 dataset. (a) 000001-color; (b) 000050-color.

Tables 1 and 2 show that the time of feature extraction and registration are ordered as
follows: image features <image features + FPFH <image features + PFH. In particular, it is
worth noting that the consumption time of ORBFPFH is less than that of SURF and SIFT,
indicating that ORBFPFH has the potential to be applied in a real-time system.
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Table 1. Test results of the YCB 0024 dataset.

Descriptor
Ne

Nm Te (ms) Tm (ms) Ta (ms)
1st Img 2nd Img

SIFT 400 400 129 309 19 328
SIFTPFH 400 400 111 848 19 867

SIFTFPFH 400 400 117 418 15 433
SURF 961 991 245 286 31 317

SURFPFH 961 991 182 2425 49 2474
SURFFPFH 961 991 199 523 31 554

ORB 421 433 103 2 11 13
ORBPFH 421 433 160 698 9 707

ORBFPFH 421 433 145 108 9 117
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Table 2. Test results of the KITTI fire dataset.

Descriptor
Ne

Nm Te (ms) Tm (ms) Ta (ms)
1st Img 2nd Img

SIFT 400 321 37 309 34 343
SIFTPFH 400 321 26 741 34 775

SIFTFPFH 400 321 32 433 34 467
SURF 1347 1169 51 286 49 335

SURFPFH 1347 1169 29 2726 65 2791
SURFFPFH 1347 1169 40 562 49 611

ORB 347 220 47 2 28 30
ORBPFH 347 220 36 378 26 404

ORBFPFH 347 220 38 88 25 113

Taking the first frame in the YCB 0024 dataset as a reference frame, the failure rates of
feature matching between the first 200 frames, the first 280 frames, and the first 300 frames
in the dataset and the reference frame is counted. The results are shown in Table 3. Taking
the first frame in the KITTI fire dataset as the reference frame, the failure rates of fea-
ture matching between the first 100 frames, the first 125 frames, and the first 150 frames
in the dataset and the reference frames are counted. The results are shown in Table 4.
In Tables 3 and 4, failed Nm indicates the number of failed matching frames. The matching
results of different fusion features are available in the Supplementary Materials.

As shown in Tables 3 and 4, the feature-matching failure rate of the fused feature
descriptors SIFTPFH and SIFTFPFH is much higher than that of SIFT, indicating that
point cloud feature descriptors PFH and FPFH reduce the feature representation ability
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of SIFT. The feature-matching failure rate of the fused feature descriptors SURFPFH and
SURFFPFH is similar to that of SURF, indicating that the point cloud feature descriptors
PFH and FPFH are not very helpful for improving the feature-representation ability of
SURF. The feature-matching failure rates of the fusion feature descriptors ORBPFH and
ORBFPFH are lower than those of ORB. On the test dataset, ORBPFH reduces the matching
failure rate by 4.66~16.66% compared with ORB, and ORBFPFH reduces the false-matching
rate by 9~20% compared with ORB, indicating that point cloud feature descriptors PFH
and FPFH improve the feature-representation ability of orb descriptors. Some examples of
successful registration of ORBPFH and ORBFPFH but failed registration of ORB are shown
in Figures 14 and 15.

Table 3. Failure rate of feature matching in the YCB 0024 dataset.

Descriptor Failed Nm MFR

Total
frames 200 280 300 200 280 300

SIFT 0 0 1 0% 0% 0.33%
SIFTPFH 0 3 11 0% 1.07% 3.67%

SIFTFPFH 2 20 32 1% 7.14% 10.67%
SURF 0 29 45 0% 10.36% 15%

SURFPFH 0 25 40 0% 8.93% 13.33%
SURFFPFH 0 36 53 0% 12.86% 17.67%

ORB 0 36 51 0% 12.86% 17%
ORBPFH 0 0 1 0% 0% 0.33%

ORBFPFH 0 0 0 0% 0% 0%

Table 4. Failure rate of feature matching in the KITTI fire dataset.

Descriptor Failed Nm MFR

Total
frames 100 125 150 100 125 150

SIFT 1 10 24 1% 8% 16%
SIFTPFH 8 32 57 8% 25.60% 38%

SIFTFPFH 6 23 48 6% 18.40% 32%
SURF 16 41 66 16% 32.80% 44%

SURFPFH 19 44 69 19% 35.20% 46%
SURFFPFH 23 48 73 23% 38.40% 48.67%

ORB 11 36 53 11% 28.80% 35.33%
ORBPFH 4 26 46 4% 20.80% 30.67%

ORBFPFH 2 19 23 2% 15.20% 15.33%

The above results show that the feature extraction and fusion method proposed in this
paper is suitable for fusing PFH and FPFH features with ORB features, offering a novel
approach for RGB-D image matching.
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Figure 14. Example of successful registration of ORBPFH and ORBFPFH but failed registration of
ORB. (a) ORB registration of frames 1 and 227 in the YCB 0024 dataset. (b) ORBPFH registration of
frames 1 and 227 in the YCB 0024 dataset. (c) ORBFPFH registration of frames 1 and 227 in the YCB
0024 dataset.
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Figure 15. Examples of successful registration of ORBPFH and ORBFPFH but failed registration of
ORB. (a) ORB registration of frames 1 and 92 in the KITTI fire dataset. (b) ORBPFH registration of
frames 1 and 92 in the KITTI fire dataset. (c) ORBFPFH registration of frames 1 and 92 in the KITTI
fire dataset.

5. Conclusions

To effectively fuse image and depth information and improve feature-matching accu-
racy of RGB-D images, a robust image feature extraction and fusion method based on image
feature and depth information fusion is proposed in this paper. The proposed method di-
rectly splices the image feature point descriptor with the corresponding point cloud feature
descriptor to obtain the fusion descriptor of feature points. The fusion feature descriptors
are constructed according to the SIFT, SURF, and ORB image feature descriptor and the



Machines 2022, 10, 456 15 of 16

PFH and FPFH point cloud feature descriptor. The performance of the fusion features
is tested in the RGB-D dataset of YCB and KITTI. On the test dataset, ORBPFH reduces
the matching failure rate by 4.66~16.66%, ORBFPFH reduces the matching failure rate by
9~20%, and ORBFPFH has potential for real-time application. The test results show that
the robust feature extraction and fusion method proposed in this paper is suitable for the
fusion of ORB features with PFH and FPFH features and can improve the ability of feature
representation and registration, representing a novel approach for RGB-D image matching.

Supplementary Materials: The following supporting information can be downloaded at: https://
doi.org/10.6084/m9.figshare.19635075.v2, Figures: The matching results of different fusion features.
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