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Abstract: With flexure-based micro-positioning stages (MPSs) being in high demand for high-
precision applications, the performance and cost of flexure-based MPSs are two issues that urgently
need to be addressed. In addition, the current MPSs are being developed toward complex spatial
configurations, which further precludes monolithic fabrication. To address the aforementioned
issues, modular MPSs using designed standardized modules are introduced in this paper. Firstly, the
motivations are described, followed by the modular design. In addition, a new assembly concept
analogy with composing compounds is proposed for guiding module assembly, including some
proposed planar and spatial configurations. For validation, the static and dynamic performances of
modular MPSs with respect to different modules and materials are presented as case studies. The
proposed modular MPSs can provide better flexibility and functionality for further applications.

Keywords: modular architecture; micro-positioning stage; decoupled stage; parallel mechanism

1. Introduction

Unlike rigid-link mechanisms, flexure-based mechanisms possess considerable advan-
tages, including no wear, no friction, no backlash, and no joint assembly [1–3]. By virtue
of these attributes, compliant mechanisms are widely used in various applications, such
as precision alignment [4], ultra-precision grinding operation [5], high-dexterity medical
devices [6], and scanning probe systems [7].

At present, the requirements for high precision and low cost should be addressed
due to the growing demands for flexure-based MPS [8]. However, compliant MPSs are
traditionally manufactured with a monolithic piece of material using the electrical discharg-
ing machining (EDM) method [9], which is costly in terms of both time and money [10].
In addition, traditional MPSs are tailored to specific tasks with constant working range,
natural frequency, and dimensional size [11]. When a certain compliant beam of MPS is
damaged or task requirements are modified, another new monolithic MPS needs to be
manufactured to meet the new requirements, which results in non-negligible waste of
resources [12]. Most importantly, for the purpose of obtaining multi-functionality, the
current flexure-based MPSs are being developed towards complex spatial configurations,
which further precludes monolithic fabrication [13]. Therefore, to develop reconfigurable
and modular MPSs without degrading performance is worth studying.

From the literature review, it can be observed that the modular method has been
increasingly proposed to develop reconfigurable and self-repairable robotic systems [14],
while only a few researchers have used it to deal with problems faced by flexure-based
mechanisms. C.C. Ng designed a 3-UPU parallel MPS based on a fixed-dimension mod-
ule and varied-dimension module unit for micro-manufacturing assembly and verified
modular architectures which have the same control performance as the monolithic one [15].
J.J. Yu proposed a method to design large displacement flexure-based MPSs based on
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flexure block modules [16]. J. Wang presented a controller with both redundancy resolu-
tion and optimization of null space motion to operate a 5-DOF modular manipulator [17].
B.X. Ding verified the flexibility of the configuration by designing multiple modular MPSs
with limited modules [18]. These previous works designed and assembled some modular
MPSs, while the principle of how to design and assemble modules was neglected. Modular
MPSs are not composed of random modules; they are composed of standardized functional
modules to meet certain task requirements under the guidance of assembly methods. There-
fore, further studying modular MPSs in terms of design and assembly possesses practical
significance for the implementation and application of MPSs.

The main purpose of this paper is to present a modular method for the design, assem-
bly, and simulation of MPSs. Compared with monolithic MPSs, functional requirements
(such as dynamic performance, displacement, DOF, etc.) and non-functional requirements
(such as upgrading, post maintenance, low cost, etc.) can be achieved easily for modular
MPSs. The assembly of modular structure can be regarded as the synthesis of complex
organic composites which can be reconfigured into other types by limited modules. Further-
more, self-reconfiguration, reparation, function upgrading, and performance optimization
can be realized for modular MPSs by replacing or reassembling modules in an efficient way.

The rest of this paper is organized as follows: Section 2 introduces the research
motivations for modular MPSs. Then, design rules and standardization process of modules
are introduced in Section 3, and several MPSs with different DOFs are designed under
assembly guidance in Section 4. In addition, case studies are conducted in Section 5 to
validate the correctness of modular MPSs. Finally, conclusions are made in Section 6.

2. Motivations

In recent years, the modular method has been increasingly proposed for the auto-
motive industry [19], aerospace [20], and home furniture [21]. A modular product can be
reconfigured within a limited time, without much more complexity and without buying or
manufacturing new modules. Thus, the response to changing user requirements in modular
MPSs will be faster than monolithic MPSs. Generally speaking, functional requirements
(including DOF, displacement, natural frequency, and resolution) and non-functional re-
quirements (including low cost, post-maintenance and upgrading, and compact size) must
be addressed, as shown in Figure 1. As mentioned above, monolithic MPSs are tailored for
a specific task, with no function flexibility. However, for the modular method, a product
is divided into a number of parts and sub-parts, which can provide the ability to solve
different requirements easily by combining with different modules. To clarify this point,
the introductions of these requirements are described in the following subsections.
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2.1. Functional Requirements

Functional requirements, also known as performance indicators, refer to the function
that a product must facilitate [22].

For an orientation or positioning application, MPSs with different DOFs are required.
However, with the determined monolithic structure, it can only meet the defined task.
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Furthermore, the XYZ MPS or above DOFs always appear with a complex spatial structure,
which further precludes the use of monolithic fabrication. Hence, the modular MPS with
reconfigurable characteristics can well adapt the DOF requirements for different tasks.

The dynamic performance of a flexure-based MPS is determined by its natural fre-
quency, which is compromised by the workspace requirements [23]. This means that a high
natural frequency for MPSs can only be achieved at the expense of the working range in
monolithic MPSs, such as a millimeter-range flexure-based MPSs at a resonant frequency of
less than 100 Hz. However, modular MPSs can balance the trade-off between the bandwidth
(natural frequency) and working range (stroke) by changing the module material.

The bandwidth indicates responding time, which determines how fast the MPS deals
with the input and is related to the axial stiffness and mass. Meanwhile, monolithic MPSs
are manufactured by a piece of material, and the system bandwidth is ultimately limited
by the physical plant. Based on this, different materials with a high Young’s modulus-to-
density ratio are chosen to make non-functional modules for enlarging the bandwidth of
modular MPSs.

2.2. Non-Functional Requirements

Non-functional requirements can be related to production, selling, and follow-up
service [24].

Time and money are two main factors which need be taken into consideration when
manufacturing an MPS. However, monolithic MPSs are mainly made by EMD, which is a
time-consuming process. Compared with monolithic MPSs, multiple modules of a modular
MPS can be processed at the same time for time saving. In addition, a modular MPS is more
suitable for standardization to reduce manufacturing costs due to its strong adaptability
and repeatability. Furthermore, a huge expense will be saved because the standard modules
are reusable.

Post-maintenance and upgrading reduce the overall cost and ensure the advancement
of the product, respectively. From practical experience, some flexure beams will crack first
due to different fatigue life, resulting in the failure of the whole system. Nevertheless,
monolithic MPSs only can realize maintenance and upgrading by replacing the whole stage,
which leads to a huge cost. In contrast, the self-reparation and function upgrading for
modular MPSs can be realized by replacing certain modules.

In practical applications, a compact size is required for applications such as cell
grasping and medical operations [25]. However, in order to realize micrometer stroke tasks,
an MPS needs an amplification mechanism to compensate for the stroke of PZA, which
increases the size. A modular MPS can add or remove amplification mechanisms. Thus,
the size can be adjusted accordingly. Furthermore, a modular MPS is more suitable to work
in a confined space.

3. Modular Design

Modular MPS refers to a product which can fulfill various functions through the
combination of distinct blocks. During the literature review, we observed that the working
principle of an MPS is a driving force provided by actuators and transmitted by flexible
beams acting on the end effector. Ding et al. divided the modules into beam module, con-
nection module, ground module, and amplification module according to planar MPSs [18],
but not including three-dimensional MPS. The design process of modular MPSs to have
complex spatial structure in this paper is depicted in Figure 2; the modules are classified
as follows:

1. Amplification module: Displacement compensation for actuators.
2. Transmission module: Flexible beam, core modules of MPS.
3. Connection module: Optimizing module assembly.
4. Custom module: Increasing flexibility of stages.
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Furthermore, details of each module are described in the following subsections.

3.1. Amplification Module

In order to compensate for the displacement of actuator, the lever-type amplifier, the
Scott-Russel amplifier, and the bridge-type amplifier are widely used for MPSs. With the
advantages of compact size and symmetric structure, the bridge-type amplifier has been
attracting increasing attention.

Generally speaking, four bridge-type amplifiers based on rectangular and diamond
shapes have been widely adopted for their advantages of compact structure and linear
output. The FEA simulation is conducted to compare their performances in terms of mag-
nification, strain, and natural frequency (as depicted in Figure 3). Compared with the rect-
angular shape, the diamond shape has a larger rotational range (as shown in Figure 3a,b).
Meanwhile, compared with maximum strain, rectangular mechanisms are more prone to
failure under extreme work conditions. Furthermore, lower natural frequency can result
in problems, such as reducing the working bandwidth, increasing structure lagging, and
control difficulty for MPS. The double-beam diamond mechanism has two group parallelo-
gram structures, which reduce the parasitic motion and increase the output displacement.
To achieve a balanced performance, the double-beam diamond amplification mechanism is
adopted to compensate for the PZA displacement.

3.2. Transmission Module

The transmission module is the core module for modular MPSs, which can be regarded
as a translational joint or multiple rotational joints for transmitting force and motion.
Flexure-based beams, including distributed compliance beams and lumped compliance
beams, are suitable choices for transmission modules [26]. FEA simulation is conducted
to compare their performances in terms of working displacement, parasitic displacement,
and natural frequency (as shown in Figure 4). Compared with other flexure beams, the
distributed single-beam possesses the largest displacement in working direction, which
indicates the better flexibility performance. However, the parasitic motion of the flexure-
beam significantly deteriorates the precision of MPS. Thus, the lumped double-beam can
be selected for high precision tasks for the benefits of lowest parasitic motion and largest
natural frequency. Overall, taking all aspects into consideration, the transmission module
is designed in a distributed double-beam form.
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Generally speaking, connection methods include bonding, welding, bolt connection,
and so on. The bonding method cannot meet the working requirements under high-
frequency, high-speed, and heavy-load conditions. The welding method not only results in
modular MPSs changing into monolithic MPSs, but also limits the use of multiple materials.
The bolt connection method has the advantage of providing large fastening force between
different modules. It is also suitable for standardization with low cost.

During the literature review, we observed that Gandhi et al. proposed an assembly
guideline for flexure-based mechanisms [27]. However, the fastening force variation on
the bolts deteriorate positioning precision due to the warping deformation of the flexible
beam. To prevent this phenomenon, these standard interfaces are arranged in rigid parts on
each module (as shown in Figure 5a). Simulations of assembled double-beam transmission



Machines 2022, 10, 421 6 of 16

modules are depicted in Figure 5b,c. With regard to the simulation results, the deformation
of the guiding mechanism mainly appears in compliant beams. Thus, it can be regarded as
a monolithic mechanism, without affecting the performance of the flexure beam.
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3.3. Connection Module

Modular MPSs can be realized by connecting each function module with a standard
interface. However, a low ratio in module utilization and poor performance may occur.
Therefore, a Z-type connection module (ZTCM) and a T-type connection module (TTCM)
with the same volume and mass are introduced to increase flexibility in assembling MPSs.
To further validate their pure connection function, comparison studies are performed for
the guiding mechanism (as shown in Figure 6a). In addition, the FEA simulations of
static and dynamic performance of Z-type and T-type guiding mechanisms are depicted
in Figure 6b,c, respectively. The deviations in static and dynamic performance are listed
in Table 1. It can be seen that the difference in displacement is 0.01 µm, with 259.3 µm
motion range. The maximum difference of natural frequency is 1.8 Hz, which appears in
the fifth mode. Hence, the distinction of ZTCM and TTCM can be ignored. Specifically, the
function of ZTCM and TTCM is to increase the assembly flexibility without affecting the
performance of the MPS.
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3.4. Custom Module

A custom module is designed to meet different user requirements. Although minimiz-
ing the number of unique parts helps to ensure accurate and repeatable fabrication, the use
of custom modules can further expand the diversity of modular configurations, such as
developing a planar mechanism into a spatial mechanism.
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Table 1. Deviation between the ZTCM-based mechanism and the TTCM-based mechanism of static
performance and dynamic performance.

Objects ZTCM TTCM Deviation

Total displacement 259.34 µm 259.35 µm 0.01 µm
Mode-1 139.8 Hz 139.8 Hz 0 Hz
Mode-2 577.59 Hz 577.4 Hz 0.19 Hz
Mode-3 912.88 Hz 911.92 Hz 0.96 Hz
Mode-4 1255.4 Hz 1255.5 Hz 0.1 Hz
Mode-5 1555.5 Hz 1553.7 Hz 1.8 Hz
Mode-6 1792 Hz 1792.2 Hz 0.2 Hz

4. Assembly of Modules

As mentioned above, one of the benefits of using modular architecture is that it can
provide a variety of configurations. Assembling a modular MPS is similar to composing
a molecular structure, as depicted in Figure 7. Regarding carbon atoms, many inorganic
and organic compounds can be composed with hydrogen and oxygen atoms by chemical
bonds. Meanwhile, regarding the designed modules with a standardized interface, such
as transmission modules, many flexure-based components can be assembled by bolt con-
nections. The C60 is realized by connecting carbon atoms, as for (B2)4. Furthermore, with
the difference between 12C and 14C in physical properties, 14C has been widely used in
isotope labeling tasks. Meanwhile, the static and dynamic performance can be adjusted by
changing transmission modules from B to 1B or 2B. Furthermore, in order to validate the
flexibility of the modular method, one-DOF, two-DOF, and three-DOF MPSs are assembled
using the aforementioned designed modules.
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4.1. One-DOF Mockups

In practical experience, neither molecules nor modular MPSs can be arbitrarily com-
posed of atoms or modules; they require guidance for combination or assembly. Several
one-DOF MPSs with guiding functions are assembled using different modules, as shown
in Figure 8. Firstly, the function adjustment of one-DOF MPS can be achieved by the
replacement of B, 1B, or 2B. The resolution and motion range are two contradicting indices
for PZA-actuated MPS, but this issue can be solved effectively by modular MPSs. For
example, the motion range can be enlarged by reconfiguring B2 to B3A to compensate for
the PZA displacement with an amplification module; vice versa, the resolution can be
enhanced for B3A by removing the amplification module.
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4.2. Two-DOF Mockups

From the literature review, we observed that two-DOF MPSs play a key role in nan-
otechnology applications. However, owing to the monolithic structure, the proposed MPS
can only meet the specific task.

Some totally decoupled two-DOF parallel MPSs are composed as depicted in Figure 9,
involving the basic blocks discussed in Section 4.1. Therefore, the attributes of modular two-
DOF MPSs mainly depend on the basic blocks. The function adjustment can be achieved
by replacing the transmission modules to meet different tasks.

4.3. Decoupled Parallel XYZ MPS Mockup

In recent years, MPSs with complex geometry structures have received much atten-
tion. For example, E.U. John designed a XYZ parallel kinematic flexure mechanism with a
motion range of 10 mm × 10 mm × 10 mm, guided by a constraint map [28]. However,
the monolithic fabrication results in huge cost. Regarding their configuration, a geometric
decoupled parallel XYZ MPS with standardized modules is assembled in this subsection.
Regarding the assembly of the MPS, the module library, including ground and electro-
magnetism custom modules, is shown in Figure 10a. Firstly, the function of parallel XYZ
MPSs is mainly determined by the B2Z2 basic block; the assembly for the single direction
is shown in Figure 10b. According to the static and dynamic requirements, there are nine
alternative mechanisms for each single direction. Secondly, with the help of ZTCM and
TTCM, the size of an XYZ MPS can be adjusted. Finally, the selection of custom module is
based on the size of the ground module and the electromagnetism module.
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A 3D model of flexure-based decoupled parallel XYZ MPS is shown in Figure 10c, and
the simulation results of X, Y, and Z axes are depicted in Figure 10d–f, respectively.

4.4. Zθ × θy MPS Mockup

To prevent sensitive objects, such as small and light optical devices from the micro-
vibration, a novel compact and modular Zθ × θy MPS based on the well-known tripod
parallel configuration is proposed. Regarding the assembly of the MPS, the module library
(including column and triangle stage custom modules) is depicted in Figure 11a. The
ZTCM-based guiding mechanism is the basic block for assembling the Zθ× θy MPS, which
is fixed by the column module, as shown in Figure 11b. In addition, the workspace and the
rotation range can be altered by replacing transmission modules.

In addition, the 3D model of Zθ × θy MPS is shown in Figure 11c. When the outputs
in three directions are same, the stage can realize translational motion along the Z direction,
as shown in Figure 11f, and the stage rotates around the X or Y axis for different output
modes, as shown in Figure 11d,e.
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Figure 11. Flexure-based Zθ × θy MPS: (a) module library; (b) assembly of modules; (c) display
of the 3D model of flexure-based Zθ × θy MPS; (d–f) simulation results. 1, transmission modules;
2, Z-type connection modules; 3, bolts; 4, I-type connection modules; 5, amplification modules;
6, column and triangular custom modules.

5. Case Studies

To verify the feasibility of modular MPS, several totally decoupled parallel XY MPSs
are analyzed via ANSYS software. Here, monolithic MPS is named Mon-str, while other
modular MPSs with different transmission modules are named (1B3A)4, and (2B3A)4,
respectively, as shown in Figure 12. The properties of adopted materials are listed in Table 2.
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The material of the bolts is 45# steel, while the rest of Mon-str, (B3A)4, (1B3A)4, and (2B3A)4
are made of aluminum alloy AL7075-T651. Further, (B3A)4 can be classified as (B3A)4-AL,
(B3A)4-45, or (B3A)4-PLA based on the module materials.
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Table 2. The properties of materials.

Material Types Density (kg/m−3) Young’s Modulus (GPa) Poisson’s Ratio

AL7075-T651 2820 72 0.33
45# steel 7890 209 0.269

PLA 1240 2.15 0.35

5.1. Simulation of Motion Range

The motion range determines the workspace of an MPS. With the same inputting force
in the X and Y direction, the FEA simulation results of Mon-str, (B3A)4-AL, (1B3A)4, and
(2B3A)4 are shown in Figure 13a,b, respectively. The results listed in Table 3 indicate that
the X and Y direction have same output displacement due to the decoupling structure.
It can be concluded that with the same materials, Mon-str and (B3A)4-AL have the same
displacement, while (1B3A)4 has maximum displacement due to its low stiffness. The
motion range of the MPS can be adjusted by changing the materials of modules, compared
with (B3A)4, (B3A)4-PLA, and (B3A)4-45. Therefore, modular MPSs can be regarded as
another form of monolithic MPSs, and their reconfigurable characteristic lets them adapt to
different requirements easily.
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Machines 2022, 10, 421 13 of 16

Table 3. Analysis results of different decoupled parallel XY MPSs.

Object Direction Mon-Str (B3A)4-AL (B3A)4-45 (B3A)4-PLA (1B3A)4 (2B3A)4

Displacement
(µm)

X 523.98 558.42 234.69 2265.2 902.92 127.01
Y 526.52 558.27 234.94 2264.7 902.93 126.92

5.2. Simulation of Harmonic Response

The dynamic response is desired to be as high as possible for designing the flexure-
based MPS. Taking the working mode of XY MPS into consideration, the first two resonance
frequencies in the X and Y directions are discussed, and obtained frequency results are
listed in Table 4. In addition, the six decoupled parallel XY MPSs are analyzed using
ANSYS, and the harmonic responses testing from 100 Hz to 250 Hz with 150 steps are
plotted in Figure 14.

Table 4. The natural frequency of different decoupled parallel XY MPSs.

Mode Mon-Str (B3A)4-AL (B3A)4-45 (B3A)4-PLA (1B3A)4 (2B3A)4

1 163.77 Hz 164.75 Hz 178.68 Hz 109.75 Hz 132.31 Hz 237.41 Hz
2 164.87 Hz 164.73 Hz 178.60 Hz 109.75 Hz 132.45 Hz 237.47 Hz
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Figure 14. Comparation of dynamic response of end-effort structure of MPS: (a–f) along the X, Y, and
Z axes about Mon-str, (B3A)4-AL, (B3A)4-45, (B3A)4-PLA, (1B3A)4, and (2B3A)4, respectively.

Firstly, when the input frequency is 165 Hz, the displacement in X, Y, and Z axes
of Mon-str is larger than (B3A)4-AL, as shown in Figure 14a,b. Hence, with the same
structure characteristic, the modular MPS possesses less displacement at the resonant
frequency. Next, the harmonic response of (B3A)4 with different materials is depicted in
Figure 14b–d, which indicates that a high natural frequency can be achieved by (B3A)4-45,
and (B3A)4-PLA is not suitable for tasks requiring high dynamic response. Finally, the
simulation results of (B3A)4-AL, (1B3A)4, and (2B3A)4 with different transmission modules
are shown in Figure 14b,e,f. The dynamic performance of modular MPS can be improved
by using distributed double-beam transmission modules. Considering the above analysis,
the dynamic behaviors of modular MPSs can be improved by changing module materials
or reconfiguration.

6. Conclusions

This paper employs the modular method to design flexure-based MPSs which can
meet various functional and non-functional requirements efficiently. The design process for
modular MPSs is described, and four modules with standard interfaces are presented. To
validate the flexibility of the modular method, various planar and spatial modular configu-
rations assembled with functional modules are presented. Furthermore, FEA simulation
is conducted to investigate the motion range and dynamic performance with decoupled
modular parallel XY MPSs. The results demonstrate that monolithic and modular MPSs
with the same dimensional parameters exhibit the same performance, and the output
displacement and harmonic response of MPSs can be effectively enhanced by changing
module materials. In our future work, performances of modular MPSs will be studied by
experimental validation.
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