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Abstract: The environment of ski resorts is usually complex and changeable, and there are few
characteristic objects in the background, which creates many difficulties for the registration of ski-
resort point cloud datasets. However, in the traditional iterative closest point (ICP) algorithm, two
points need to have good initial positions, otherwise it is easy to get caught up in local optimizations
in registration. Aiming at this problem, according to the topographic features of ski resorts, this
paper put forward a ski-resort coarse registration method based on extraction, and matching between
feature points is proposed to adjust the initial position of two point clouds. Firstly, the feature
points of the common part of the point cloud datasets are extracted based on the SIFT algorithm;
secondly, the Euclidean distance between the feature normal vectors is used as the pairing condition
to complete the pairing between the feature points in the point cloud datasets; then, the feature
point pair is purified by using the included angle of the normal vector; finally, in the process of
coarse registration, the rotation matrix and translation vector between point clouds are solved by
the unit quaternion method. Experiments demonstrate that the proposed coarse registration method
based on the normal vector of feature points is helpful to the smooth completion of the subsequent
fine registration process, avoids the phenomenon of falling into local optimization, and effectively
completes the ski-resort point cloud registration.

Keywords: point cloud; ski-resort registration; rotation and translation matrices; ski resorts

1. Introduction

With the successful holding of the 24th Beijing Winter Olympic Games in 2022, the
enthusiasm of the masses to participate in winter sports has been greatly stimulated and,
for all we know, the more typical winter sport is skiing. Accordingly, scientific research
and participants related to skiing have achieved rapid growth in varying degrees [1–3].

In recent years, because of its high accuracy and efficiency, three-dimensional laser
radar (Light Detection and Ranging, LiDAR) has been widely used in computer vision,
cultural relic protection, reverse engineering and geographic mapping [4–8]. Additionally,
according to the many advantages of LiDAR, it has become a new application direction
to use the UAV LiDAR system to collect high-precision three-dimensional datasets of ski
resorts [9,10], complete three-dimensional real scene reconstruction and realize snow track
information extraction. The acquisition of 3D digital ski resorts is conducive to the daily
maintenance of ski resorts (such as snow making, snow pressing, route planning, etc.) and
the generation of e thvirtual scene in simulated training and entertainment system [11],
which has great application prospects. The effective registration of ski-resort point cloud
datasets collected by different sorties and routes has become an important foundation
and key step of the ski-resort 3D reconstruction. Besides, because of the narrow visual
surface of LiDAR sensor and the high spatial complexity of geographical entities, data
acquisition based on LiDAR technology usually needs to be carried out along multiple
perspectives [12,13], and then accomplishes the comprehensive expression of geographical
entities based on the corresponding registration algorithm.
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According to the different feature search space, the registration process can be sum-
marized as global registration and local registration [14–17]. Global registration is usually
based on local geometric features that can be uniquely matched without assuming an initial
position. These features can be prearranged targets, scanning corners, lines, or planes in the
scene [18]. The registration efficiency is high, but if the geometric conditions are insufficient
and the feature distribution is uneven, the reliability of the registration results will be
reduced. Local registration is to use the original point cloud to optimize the transformation
matrix to obtain high matching accuracy when the position estimation of the two-point set is
known [19]. Among them, the ICP algorithm is one of the most commonly used registration
algorithms because of its simple steps, high precision and good robustness [20,21]. It has
high requirements for the initial position between point clouds, and when the initial value
error is large, it is easy to produce local optimization. Because the ICP algorithm directly
uses the nearest sampling point in the point cloud datasets to establish the corresponding
relationship, it has high requirements for the overlap of point clouds and takes a long
time to search, so it cannot meet the application requirements when the amount of data is
large [22–25].

Over the years, a considerable number of researchers and engineers at home and
abroad have made a large number of improvements to the ICP algorithm. Men et al.
changed the selection method of corresponding points by the Euclidean distance of point
to point to the Euclidean distance of point to tangent plane, which improved the accuracy
of registration, but the efficiency is still not high [26]. Koide et al. proposed the iterative
dual correspondence (IDC) algorithm, which integrates the correspondence rules of the
nearest point and matching distance point [27]. When the initial position is far away, IDC
has better convergence than ICP, but when the initial position is close, its accuracy is lower
than the ICP algorithm. Lei et al. put forward the algorithm of iterating the nearest segment
and the nearest patch on the basis of ICP [28]. Firstly, the points in the two datasets are
directly connected or triangulated, and then the corresponding line segment or triangular
patch in the two datasets is found according to certain criteria, and the objective equation
is established to calculate the rotation matrix. However, the stability of the algorithm used
to find the corresponding relation criterion is yet to be verified. Rusu controlled the search
range of the corresponding point set in the pre-divided cube grid, not only considering the
curvature change of the point cloud, but also taking the information such as intensity, color
and texture as the standard of point cloud registration [29].

In conclusion, considering that most registration algorithms converge on the assump-
tion that the initial values of registration parameters are known and good, and when the
initial values are incorrect, the algorithm cannot get the correct results; therefore, how to
determine the initial value of the registration is a key. This paper presents a ski-resort
point cloud registration algorithm based on the Euclidean distance and the included angle
between the normal vectors of feature points. In the coarse registration stage, firstly, SIFT
algorithm is used to extract feature points. Secondly, the Euclidean distance between the
normal vectors of feature points is used as the judgment basis to automatically match the
feature points of the ski-resort point cloud datasets. Then, the feature points are purified
according to the topological relationship, that is, the included angle between the normal
vectors of the feature points. Finally, the unit quaternion method is used to rotate and
translate the two point clouds, so as to provide a good results for the subsequent fine
registration work, which can effectively solve the problem of falling into local optimization
and shorten the time of fine registration.

2. Study Area and Data

The LiDAR datasets used in this paper are acquired through the unmanned aircraft
LiDAR System (RIEGL VUX-1 UAV System). The collection site is located in the Zhangji-
akou Wanlong ski resort, the most famous ski resort in China, near Yanqing District, Beijing
(249 km away from Beijing, 2110.3 m above sea level, more than 200,000 square meters).
The collection time was 12:00 to 14:00 noon, and the temperature of the ski resort was
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−18 °C. Figure 1a shows the environmental conditions of the Wanlong ski resort at the
time of collection, Figure 1b is an aerial picture taken from the air during acquisition, and
Figure 2 is an introduction to the system architecture.

Figure 1. Collection point cloud datasets in the ski resort; (a) shows the environmental condi-
tions of the Wanlong ski resort at the time of collection; (b) is an aerial picture taken from the air
during acquisition.

Figure 2. Structure diagram of point cloud acquisition system, which mainly includes inertial
navigation, DGPS, camera and laser scanning.

The seven ski-tracks of the Wanlong ski resort are all made of artificial snow, with
high hardness. The environment of the snow field is relatively complex, including not only
five main ski tracks, but also two training tracks, as well as trees, riprap, etc. DJI M600
PRO UAV is used as the flight platform with LiDAR, because of its excellent stability and
flight performance, and its endurance time can reach 30 min. In the acquisition process,
the scanning frequency of LiDAR was set to 550 KHz, the overlap rate of sidebands was
20 percent, the flight altitude was 110 m, the flight speed was 5 m/s and a total of two
sorties were flown to complete the data acquisition.

3. Methodology
3.1. Coarse Registration of Point Cloud in Ski Resort

In order to get a good initial position, two pieces of the point cloud of the Wanlong ski
resort need to be coarse-registered before fine registration.

3.1.1. SIFT Algorithm to Extract Feature Points

SIFT is a local feature descriptor proposed by David Lowe in 1999, and in 2004,
has carried on further development and improvement [30–33]. SIFT features keep good
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invariance to rotation, translation, scale scaling, occlusion and brightness change, and are
stable to visual change and affine transformation. In addition, it is especially suitable for
high-speed and efficient matching in massive databases. The principle of SIFT algorithm
can be simply described as: a picture in different scale space L(x, y, σ) is defined as the
convolution of a gauss function G(x, y, σ) and the original picture I(x, y). The relationship
is as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

In Formula (1), (x, y) represents the pixel position of the picture; * is a convolution
operation; σ is the scale space factor.An efficient gauss difference operator D(x, y, σ) is used
for extremum detection to select stable key points, as follows:

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (2)

In Formula (2), k is a constant. The adjacent layers in DoG space are detected, and some
extremum points that are detected together constitute the feature points. By comparing each
pixel with 8 points of the same scale and 18 points of the adjacent scale, the extreme points
of the DoG function can be found. If the DoG operator value of the pixel is an extreme value
in the 26 neighborhood points, this pixel is defined as a feature point. At present, the feature
points are the extreme points in the discrete space. Through the fitting of three-dimensional
surface, the position and scale of feature points are accurately determined, low contrast
feature points and unstable edge points are removed, the matching stability is enhanced
and the anti noise ability is improved.

The least square fitting is carried out by using the DoG function in Taylor quadratic
expansion:

D(X) = D +
∂DT

∂X
X +

1
2

XT ∂2D
∂X2 (3)

where X = (x, y, σ)T . If Equation (3) are equal to zero, we can get the offset of the
extreme point:

X̂ = −∂2D−1

∂X2
∂D
∂X

(4)

where X̂ = (x, y, σ)T is the relative offset of the interpolation center. If the offset of any
dimension is not less than 0.5 (that is x, y, or σ), this indicates that the interpolation center is
already at other adjacent points, and the current critical point must be changed. Therefore,
X̂ is used to calibrate the coordinates of the original feature points, and then the new
coordinates after position correction are obtained.

3.1.2. Feature Point Matching of Point Cloud Datasets

After the feature points of the common part of the two point clouds are extracted, the
feature points would be matched, and the Euclidean distance between the normal vectors is
used to judge the similarity of the feature points in the cloud. Then, the Euclidean distance
between the normal vector ni of the point cloud and nj of the feature points of the target
cloud is calculated, and the two points with the smallest Euclidean distance are selected
by comparing each other. If the preset threshold τ(τ > 0) is greater than the minimum
distance,then the nearest point pairs of the normal Euclidean distance between the feature
points in the target and source point clouds are feature pairs. If the threshold is reduced, the
number of matching point pairs will decrease, but the stability of matching will increase.

It should be noted that the normal vector of each feature points can be divided into
positive and negative. Therefore, In order to keep the direction of the normal vector
of the scanned object surface consistent, all the normal vectors are adjusted to satisfy
ni · nj < 0(i 6= j), so that the matching of feature points is more accurate.
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The solution of normal vectors are based on the surface of points, ski-resort point
cloud datasets are discrete points, and the information recorded in point clouds is the 3D
coordinates of each independent point. Therefore, in order to obtain the normal vector of
each feature point, the points within a certain radius near the point are fitted to the surface,
and the normal vector of the target point is obtained on the basis of the fitting surface. The
calculation process is as follows:

(1) For the n points (xi, yi, zi), i = 1, 2, · · · , n to be fitted, the fitted plane equation is:

ax + by + cz = d, d > 0 (5)

where a, b, c should satisfy a2 + b2 + c2 = 1. In addition, the distance from any point
(xi, yi, zi) to the plane is:

di = |axi + byi + czi − d| (6)

(2) In order to obtain the best fitting plane, to meet the needs of the least squares, it
is necessary to obtain the minimum sum of squares of all distances between each point

and the plane, e =
n

∑ d2
i → min, so that the problem of finding the normal vector can be

transformed into that of finding the extremum:

f =
n

∑ d2
i − µ(a2 + b2 + c2 − 1) (7)

(3) Taking the partial derivative of f with respect to four unknown parameters d, a, b, c,
and then getting the unknown parameter d:

d = a

n

∑
i=1

xi

n
+ b

n

∑
i=1

yi

n
+ c

n

∑
i=1

zi

n
(8)

(4) The distance from any point to the plane can be rewritten as:

d =

∣∣∣∣∣∣∣∣∣a
xi −

n

∑
i=1

xi

n

+ b

yi −

n

∑
i=1

yi

n

+ c

zi −

n

∑
i=1

zi

n


∣∣∣∣∣∣∣∣∣ (9)

Let x̄ =

n

∑
i=1

xi

n , ȳ =

n

∑
i=1

yi

n , z̄ =

n

∑
i=1

zi

n , thereby:

di = |a(xi − x̄) + b(yi − ȳ) + c(zi − z̄)| (10)

(5) Finding the partial derivative of formula (10) with respect to a, b and c :

∂ f
∂a

= 2
n

∑
i=1

(a(xi − x̄) + b(yi − ȳ) + c(zi − z̄))(xi − x̄)− 2µa (11)

Let ∆xi = xi − x̄, ∆yi = yi − ȳ, ∆zi = zi − z̄, it can be transformed into:

∂ f
∂a

= 2
n

∑
i=1

(a∆xi + b∆yi + c∆zi)∆xi − 2µa (12)

In addition,
∂ f
∂b

= 2
n

∑
i=1

(a∆xi + b∆yi + c∆zi)∆xi − 2µb (13)
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∂ f
∂c

= 2
n

∑
i=1

(a∆xi + b∆yi + c∆zi)∆xi − 2µc (14)

(6) Combining Equation (12) to (14), it can be rewritten as:∑ ∆xi∆xi ∑ ∆xi∆yi ∑ ∆xi∆zi
∑ ∆xi∆yi ∑ ∆yi∆yi ∑ ∆yi∆zi
∑ ∆xi∆zi ∑ ∆yi∆zi ∑ ∆zi∆zi

a
b
c

 = µ

a
b
c

 (15)

Therefore, (a, b, c)T is the normal vector of the point in the plane.
If a feature point is selected from the target ski-resort datasets and its normal vector is

(aj, bj, zj)
T , the formula is the Euclidean distance between two normal vectors:

dij =
√
(ai − aj)2 + (bi − bj)2 + (ci − cj)2 (16)

3.1.3. Purification of Feature Points

The threshold set in the feature point pairing cannot completely and correctly cor-
respond to the feature points one by one, and the phenomenon of false matching cannot
be avoided. In theory, as long as 3 pairs of correct matching point pairs are extracted, an
accurate rotation and translation matrix of ski-resort point cloud datasets can be obtained.
However, if one pair of feature points is mismatched, there will be a great difference be-
tween the calculated transformation matrix and the actual transformation matrix. Therefore,
in order to further improve the accuracy of the rotation matrix and translation vector, it is
necessary to further purify the paired feature point pairs.

Currently, the most common algorithm for matching point refinement is the RANSAC
algorithm (random sample consensus, RANSAC), which iterates through a set of observa-
tions containing outliers to estimate the parameters of the mathematical model. In addition,
the point cloud datasets can be divided into valid data and invalid data. The RANSAC
algorithm builds different models based on different data, the data satisfies the model, it
is valid data; otherwise, it is invalid data. The results demonstrate that the model data
obtained by this algorithm is robust and the parameters estimated by this algorithm are
relatively accurate. However, the model fitted by this algorithm is different for different
data every time, so it is not suitable for complex point cloud scene. Moreover, no upper
limit is set on the number of iterations of the computational model. If the number of
iterations is limited, the result may not be optimal or even wrong. Therefore, this paper
adopts a matching point purification algorithm based on the included angle of the normal
vector between the feature point pairs as the evaluation quantity. The included angle
of normal vector between adjacent point clouds is affected by the slope value of the sur-
face. The greater the slope, the greater the included angle. On the contrary, the smaller
the slope, the smaller the included angle. The specific relationship is shown in Figure 3.
Although the source ski-resort datasets and the target ski-resort datasets are in different
spatial coordinate systems, their spatial topological relationship should be consistent. In
addition to translation changes, there should also be a rotation relationship between the
corresponding point clouds, and the included angle between the normal vectors should
meet a certain mathematical relationship. Therefore, a threshold G is set in advance for the
angle between the feature points and the normal vector to eliminate the mismatched points,
so as to achieve the effect of purification.

For any pair of feature points A and B, their normal vectors are nA and nB, respectively.
The greater the difference between the normal vectors, the smaller the cosine value of the
included angle, and the smaller nA · nB . Therefore, the threshold G is set according to the
cosine of the included angle between the normal vectors, and the point pairs whose product
of the normal vectors is less than G are regarded as mismatched points and eliminated.

nA · nB > G (17)
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Figure 3. The influence of the included angle between adjacent normal vectors on the slope in this
region; (a) the larger angle of the normal vector of the point cloud in the local region indicates that the
region is more undulating; (b) the small change of the normal vector angle indicates that the region is
relatively flat.

3.1.4. Point Cloud Coordinate Transformation

When the feature points of the source ski-resort datasets and the target ski-resort
datasets are matched one by one, the translation and rotation matrix should be calcu-
lated by using the feature point pairs. The commonly used three-dimensional coordinate
transformation method obtains seven parameters by using the Boolean model, including
three coordinate translation parameters, three angular rotation parameters and one scale
parameter. Because the point cloud registration does not involve the size transformation of
the point cloud scale, only the first six parameters are used to translate and rotate the source
point cloud. However, this method contains the unstable error after linearization, the error
of conversion parameter can be ignored only in the case of small angle conversion, and
the precision cannot meet the requirement of conversion when the coordinate conversion
angle is large. Therefore, the unit quaternion method is selected in this paper, which is
more suitable for large angle three-dimensional coordinate transformation.

Quaternions are proposed by 1843, whose essence is a simple hypercomplex consisting
of 1 real part unit and 3 imaginary part units [34–36]. When using the unit quaternion
method to convert the three-dimensional coordinates of the point cloud, the common part
of the two point clouds must be found, the rotation matrix and the translation vector of the
overlapping part of ski-resort point cloud datasets must be obtained, so as to be applied to
the conversion of the whole part of the source ski-resort datasets. The specific conditions
for its use are: (1) The common parts A and B of the ski-resort point cloud datasets are
selected, respectively, and the number of point clouds in A and B are equal; (2) the point
cloud of A and B should meet the one-to-one correspondence, which means that Ai and Bi
represent the same point in different coordinate systems. In the former part, the feature
points of the common part of the source ski-resort datasets and the target ski-resort datasets
are matched one by one, and the matching point pair can meet the requirements of the unit
quaternion method. The specific algorithm of the unit quaternion method is as follows:

(1) Calculation the center of gravity of A and B point clouds, respectively, and the
center of gravity coordinates are ZA and ZB.

ZA =
1
N

NA

∑
i=1

Ai

ZB =
1
N

NB

∑
i=1

Bi

(18)

In Formulae (18), NA and NB are the number of point clouds in A and B, respectively.
The number of points in two point clouds is required to be equal, as NA = NB.
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(2) Calculation the covariance matrix of A and B:

R(x) =
1
n

n

∑
i=1

[(Ai − ZA)(Bi − ZB)
T ] (19)

The covariance matrix obtained by Formula (19) can form a 4 × 4 symmetric matrix,
Q(R):

Q(R) =
[

tr(R(x)) ∆T

∆ R(x) + R(x)T + tr(R(x))I3

]
(20)

where tr(R(x)) is the trace of covariance matrix tr(R(x)); ∆ = [A23 A31 A12]
T , and

Aij = (R(x)− R(x)T)ij; I3 is a unit matrix of 3 × 3.
(3) The eigenvalues and eigenvectors of the symmetric matrix Q(r) are calculated and

the eigenvectors corresponding to the largest eigenvalues are the rotation transformation
vector qR = [q0 q1 q2 q3]

T . It should be noted that in the unit quaternion, q0 > 0, and
q2

0 + q2
1 + q2

2 + q2
3 = 0.The rotation matrix R(qR) can be calculated from qR:

R(qR) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (21)

(4) After obtaining the rotation matrix, the translation matrix qT can be solved:

qT = ZA − R(qR)ZB (22)

The rotation matrix R(qR) and the translation matrix qT are the transformation re-
lationship between the source ski-resort datasets and the target ski-resort datasets. The
rotation and translation matrix can be used to adjust the three-dimensional coordinates
of the source point cloud, which provides a better initial position for the subsequent
fine registration.

3.1.5. Overall Process of Coarse Registration Algorithm

Step 1: Identify the common overlaps A and B between the ski-resort point cloud datasets.
Step 2: The common points of A and B are extracted by the SIFT algorithm.
Step 3: Calculate the normal vectors of the feature points and unify their direction.
Step 4: Calculate the Euclidean distance between the normal vector of a feature point

in A and the normal vector of all feature points in B, and select the two closest points. If
the distance ratio is less than the threshold, the two points with the smallest distance will
be matched.

Step 5: According to the spatial topological relationship of the point cloud, the included
angles of the normal vectors between the matched feature points are calculated. According
to the mathematical relationship, if it is larger than the set threshold, it will be regarded as
the mismatching point and be rejected.

Step 6: Use the unit quaternion method to calculate the rotation matrix and translation
vector. If the calculated quaternion does not meet q0 > 0 and q2

0 + q2
1 + q2

2 + q2
3 = 0, return

to step (2) until the requirements are met.
Step 7: Apply the obtained rotation and translation matrix to the source ski-resort

point clouds.

3.2. Fine Registration

After coarse registration, the point clouds of the ski-resort datasets have acquired
a good initial position. On this basis, ICP iterative algorithm is introduced to improve
the effect of fine registration [37,38]. The ICP algorithm calculates the motion parameters
(rotation and translation) according to the geometric features between the source ski-resort
datasets and the target ski-resort datasets, and then transforms the data with these motion
parameters to get the new ski-resort point cloud datasets; in order to continue to determine
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the registration point cloud between the new correspondence, repeat the above process.
The rotation and translation of ski-resort datasets will not stop until the minimum objective
function meets the least square theorem. At this time, the registration effect is the best. The
objective function is expressed as follows:

f (T · R) = 1
n

n

∑
i=1
‖Pi − (Qi · T · R)‖2 (23)

where, T and R represent translation and rotation parameters, respectively; Pi and Qi
represent the target ski-resort datasets and source ski-resort datasets, respectively.

4. Results and Discussion

In order to verify the effectiveness of the above algorithm for the point cloud registra-
tion of ski resort, this paper takes two groups of laser-point cloud datasets from different
locations of the Wanlong ski resort for the registration test. The algorithm in this paper is
implemented by C++, and the program running environment is Intel core i5-9400f, DDR4
16 GB, 1080Ti and Windows 10. In order to quantitatively evaluate the registration accuracy
of the algorithm, the root mean square error (RMSE) is defined to represent the difference
between the features of the same name. The calculation formula is as follows:

Re =

√
1
N ∑‖pi − qi‖2 (24)

In Formula (24), N is the number of overlapping points of two points to be registered
after Euclidean transformation; pi, qi are the points of the overlapping region after Euclidean
transformation.

In the verification process, the two groups of ski resort point clouds datasets are
registered, respectively, and the threshold of feature point matching is set to 0.05, and the
threshold of matching point pair purification is set to 0.8. The method proposed in this
paper and ICP are used to register points, respectively; the registration results are shown in
Figure 4 and the rotation matrix and translation vector are shown in Table 1.

Figure 4. The position distribution among the source point clouds in the first group of Wanlong
ski resort.
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Table 1. The rotation and translation matrix of the first group of ski-resort point clouds calculated
based on the method proposed in this paper.

Rotation Matrix Translation Vector

R

0.999 −0.010 0.005

T

4.644
0.010 0.999 0.002 −4.868
−0.005 −0.002 0.999 3.819

0 0 0 1.000

According to the intersity information in the scalar field of the snow point clouds and
the specific color scale, the experimental point cloud datasets are colored into different
colors. Figure 4 represents the position distribution among the source point clouds in
the first group of Wanlong ski resort, and Figure 5a is the registration results using the
ICP, where red marked areas indicate poor registration results with significant obliquity
and deviation, Figure 5b is the registration result by the method proposed in the paper.
Additionally, the rotation matrix R and translation matrix T are also calculated, the Table 1
is the result of R and T, using the method proposed in this paper.

Figure 5. Registration results using different methods in group one: (a) Registration result by ICP;
(b) registration result by the method proposed in the paper.

Figure 6 is the position distribution among the source point clouds in the second group
of Wanlong ski resort, Figure 7a is the registration results using the ICP, where blue marked
areas indicate poor registration results with significant obliquity and deviation; Figure 7b
is the registration result by the proposed algorithm.

Figure 6. The position distribution among the source point clouds in the second group of Wanlong
ski resort.
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Figure 7. Registration results using different methods in group two: (a) Registration result by ICP;
(b) registration result by the method proposed in the paper.

In addition, the rotation matrix R and translation matrix T are also calculated; the
Table 2 is the result of R and T using the method proposed in this paper. The actual
registration results demonstrate that this group of rotation translation matrix can realize
the effective registration between the test ski-resort point cloud datasets.

Table 2. The rotation and translation matrix of the second group of ski-resort point clouds calculated
based on the method proposed in this paper.

Rotation Matrix Translation Vector

R

1.010 −0.010 0.007

T

119.057
0.010 1.010 0.003 78.767
−0.007 −0.003 1.010 −3.616

0 0 0 1.000

Then, the registration results of the proposed method and ICP method are compared
in terms of the number of point cloud datasets, processing time and RSME. The results are
shown in the Table 3. It can be observed from the Table 3 that the number of point clouds
of the first group of ski resort is 234,644 points. Under the same hardware conditions,
the processing time of ICP method is 61.526 s, while the method proposed in this paper
only takes 16.951 s; similarly, the RMSE of this group of data processed by ICP method is
1.619 m, while the RMSE obtained by our method is only 0.511.

Table 3. Comparison of the registration results between the proposed method and ICP method.

Name of
Points

Number of
Points

Process Time /s RSME /m

ICP Method Proposed Method ICP Method Proposed Method

Group one 234,644 61.526 16.951 1.619 0.511
Group two 212,977 41.235 10.962 1.596 0.447

In Figures 6 and 7, when comparing the registration results of the ICP method and
proposed method, we can find that there is obvious deviation in the results of ICP reg-
istration, and the results of the normal vector registration is better. This proves that the
method proposed in this paper is more accurate than the ICP method in registration. In
addition, in Table 1, it can be easily found that when processing the same set of data, the
method proposed in this paper is more efficient in both the processing time and mean
square error than the direct use of the ICP method. In conclusion, the proposed approach
on the registration precision and registration efficiency is superior to directly using the
ICP algorithm.

In addition, in order to further verify the effectiveness of the algorithm, the comparison
is carried out from the dimension of the real error , that is, the real distance between the
marked points is compared horizontally with the distance between the marked points in
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the registered three-dimensional model, and the measurement error is recorded. Taking
the second group of ski-resort point cloud datasets as an example, five marker points are
selected, namely A, B, C, D and E, and their distribution in the image and the point cloud
is shown in Figure 8.

Figure 8. The distribution of marker points in the visible light image of the ski resort and the
three-dimensional point cloud after registration: (a) the distribution in the visible top view; (b) the
distribution in point cloud model.

For the five marked points in Figure 8, two methods of field measurement with the
meter ruler and three-dimensional measurement with point cloud processing tool are
used successively.

In order to reduce the influence of error factors, the interval sampling measurement is
carried out between the marked points (A, B, C, D and E) and the target marked points in
turn. The measurement results are counted in Table 2 (here, it is considered that the field
measurement value with the meter ruler is the true value).

Table 4 shows the error analysis and statistics of measuring the real distance, and
measured the distance between marked points by tape measurement and point cloud
measurement. From the analysis of the results in Table 4, it can be observed that with
the increase in measuring distance, the proportion of measuring error will be reduced to
a certain extent, and the error range is basically within 5 cm; the good adaptability and
anti-noise performance of the proposed method in dealing with the point cloud in ski
resorts are further verified.

Table 4. Statistical table for error analysis of measuring distance between mark points in differ-
ent ways.

Marked Points Target Points True Distance /m Measured Distance /m Error Value /m

A C 17.224 17.252 0.028
E 37.805 37.844 0.039

B D 18.462 18.456 0.006
E 30.868 30.835 0.033

C A 17.224 17.270 0.046
E 20.725 20.698 0.027

D A 38.225 38.252 0.027
B 18.462 18.432 0.030

E A 37.805 37.839 0.034
C 20.725 20.701 0.024

5. Conclusions and Future Work

According to the complex environment of the Wanlong ski resort, this paper sets
the threshold of the Euclidean distance and included angle between the adjacent normal
vectors of point clouds, which can effectively accomplish the valid registration of the cloud
point datasets of the ski resort. This composite registration method can extract the feature
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points by SIFT, pair them according to the Euclidean distance between normal vectors
of points, set the included angle threshold for further purifying the feature point pairs,
calculate the rotation and translation matrix, and finally, complete the fine registration
with ICP. The results demonstrate that the proposed composite registration algorithm on
paper is more accurate and effective than the direct ICP. The future work will focus on the
research of the fine registration method of the point cloud datasets of ski resort, and expect
to complete the automation of the whole registration process. Additionally, we will further
study the snow characteristics to improve the theoretical foundation for the introduction of
more efficient registration methods.
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