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Abstract: This paper investigates the problem of fixed-time attitude consensus tracking control for a
team of multiple rigid-bodies in the presence of unknown uncertainties. A robust exact distributed
fixed-time observer is presented to estimate velocity state of the virtual-leader for the followers
that could not directly access information of the virtual-leader. Subsequently, a novel distributed
fixed-time consensus tracking control law is proposed, by which consensus tracking for a team of
multiple rigid-bodies could be achieved in a fixed-time regardless of any initial system state. When
the proposed control scheme is applied, effects of time-varying disturbances acting on each follower
could drastically be attenuated. Analysis on stability of the closed-loop system is rigorously given
and effectiveness of the proposed control scheme is verified by numerical simulations.

Keywords: fixed-time control; attitude consensus; multiple rigid-bodies; unknown uncertainties

1. Introduction

For a single rigid-body, there was multitudinous literature having investigated attitude
control [1,2] or trajectory control [3–5]. However, when a task of high efficiency and large
scale is required, an individual rigid-body (e.g., an aircraft or a robot) could not be unable
to meet the specific requirements in some situations. Because of the high efficiency and the
reliability of a multi-agent system (MASs), a group of multiple rigid-bodies can provide
a new way to solve the complicated tasks. During the last two decades, cooperative
control of multi-agent systems (MASs) has drawn increasing attention, which could be
attributed to its widespread applications in various fields. For example, attitude and
position synchronization for spacecraft formation flying [6–8], attitude consensus tracking
for multiple rigid-bodies [9–11], distributed formation flying for a team of unmanned aerial
vehicles (UAVs) [12–15], distributed formation control for a set of mobile robots [16,17],
and cooperative guidance for a group of interceptors [18–20]. Among those works, the
consensus control task, aiming at achieving an agreement among agents by using local
information interaction, is often an elementary problem. Thus, numerous literature works
have studied this problem recently.

In Ref. [21], an attitude consensus control scheme was proposed for a group of
spacecraft attitude tracking without angular-velocity measurements. The control torques
are naturally bounded, and the bounds of control torque could be arbitrarily prescribed
through the control gains. In Ref. [22], the output consensus problem was investigated for
a class of high-order nonlinear MASs. Based on a system state transformation, a distributed
linear-like control law with a dynamic gain was proposed by using the agent and its
neighbors output information. In addition, the orders of all considered agents could be
different. In Ref. [23], a new distributed observer-type reduced-order output-feedback
consensus control law was proposed for homogeneous linear MASs. System state consensus
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was achieved, and the consensus conditions were presented. Regarding the consensus
control problem, convergence speed is an important performance reflecting effectiveness
of the proposed algorithm. The above-mentioned literature can only achieve asymptotic
stability, which means that the convergence time is actually infinite. By contrast, finite-time
stability implies faster settling-time and excellent robustness against various uncertainties.

Hence, a finite-time consensus control algorithm could attract more attention. In
Ref. [24], a decentralized observer and a distributed observer were presented to estimate
velocity state of each agent and acceleration of the leader, respectively. Based on the
two finite-time observers, a distributed finite-time control law was proposed for multiple
spacecraft formation flying with a virtual-leader. With the help of homogeneity theory,
semi-global finite-time stability of the overall closed-loop system was rigorously proved.
However, the robustness against uncertainties for each spacecraft is not taken into account.
The authors of Ref. [25] proposed two robust distributed finite-time consensus protocols
for MASs with double-integrator dynamics, in which leaderless and leader-following
scenarios were considered, respectively. In the leader-following situation, a distributed
finite-time observer was proposed to estimate velocity state of the leader. However, the
presented control law is only for single-input single-output (SISO) systems. That is to
say, for any node, the used mathematic model is a SISO system. In Ref. [26], the leader-
following consensus problem was investigated for a class of second-order MASs. Based on a
prescribed finite-time observer and a time-varying disturbance observer, a novel composite
leader-following consensus control law was proposed. Both matched and mismatched
disturbances could strongly be suppressed. It is worth pointing out that there is an obvious
disadvantage of a finite-time consensus control law. If the initial condition is far away from
the origin, the convergence speed of a finite-time algorithm is slower than an exponential
convergence algorithm.

A solution to remove that drawback of a finite-time consensus control is the fixed-time
consensus control. A recent review paper of this research orientation was given in Ref. [27].
In Ref. [28], based on a distributed fixed-time observer, two novel distributed fixed-time
control laws were proposed for MASs with uncertainties acting on each agent. To mitigate
the chattering effect, a boundary-layer method was employed, and a saturation-function
was used to take the place of signum-function when the tracking errors enter the boundary-
layer. Therefore, some performance reductions were paid for the expense of using the
saturation-function. In Ref. [29], two fixed-time sliding-mode observers were presented at
the beginning. Based on the two fixed-time observers, two distributed fixed-time attitude
consensus control laws were proposed for a group of multiple spacecrafts. Required
measurement of angular velocity was used in the first algorithm, whereas this requirement
was removed in the second. With the aid of the two control laws, all spacecrafts are able to
track a time-varying reference attitude, which is only available to a subset of the spacecrafts.

This work considers the fixed-time attitude consensus tracking control problem for a
group of multiple rigid-bodies. Compared with the existing works of fixed-time consensus
control law, the main contributions can be summarized as follows:

• A robust exact distributed fixed-time observer (REDFTO) is proposed to estimate
velocity state of the virtual-leader. Settling-time of the dynamics of estimation error
is independent of the initial conditions. The required computational burden of the
REDFTO is less than some of the existing results [28,29], whereas fixed-time conver-
gence of the estimation error to the origin could be guaranteed.

• Based on the presented REDFTO, a distributed fixed-time consensus tracking con-
trol (DFCTC) law is proposed for leader–follower MASs. Fixed-time convergence
of the consensus tracking errors is proved by means of a modified back-stepping
technique [30]. In the presence of lumped time-varying uncertainty acting on each
agent, compared with the result [31], the settling-time and an ultimately bounded
region are explicitly given.

This paper is organized as follows: preliminaries, some lemmas, problem statements
and design objective are given in Section 2 after introduction in Section 1. In Section 3,
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an REDFTO is proposed. Subsequently, a DFCTC law is proposed for leader-following
MASs. Rigorous analysis on the fixed-time convergence is given by means of a modified
back-stepping method. Numerical simulations are given to verify the proposed method in
Section 4 following by the conclusions in Section 5.

2. Preliminaries and Problem Statements
2.1. Notations and Graph Theory

Some notations are given in the beginning. An n-elements natural number set Λ
represents Λ = {1, 2, · · · , n}. The set of all positive real numbers is represented by R+.
| · | refers to the absolute value function. ‖ · ‖ represents the Euclidean norm of a vec-
tor. sign(·) denotes the signum function. The Kronecker product between two matri-
ces is expressed by the operator ⊗. For any column vector ∀x ∈ Rn, sign (x) denotes
sign (x) = [sign(x1), · · · , sign(xn)]T . For a given real number a ∈ R+ and any column vec-
tor ∀x ∈ Rn, define sgna(x) = [sgna(x1), · · · , sgna(xn)]T and |x|a = [|x1|a, · · · , |xn|a]T ,
where sgna(xi) = sign(xi) |xi|a, i ∈ Λ. λmin(·) and λmax(·) represent the maximum eigen-
value and minimum eigenvalue of a matrix, respectively. 1n denotes 1n = [1, · · · , 1]T ∈ Rn,
and 0n denotes 0n = [0, · · · , 0]T ∈ Rn. For any vector ∀x = [x1, · · · , xn]T ∈ Rn, its cor-
responding diagonal matrix is expressed as diag{x} = diag{x1, · · · , xn}. x× describes a
skew-symmetric matrix x× ∈ R3×3 as such

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (1)

for any three-dimensional column vector ∀x = [x1, x2, x3]
T ∈ R3.

For an MAS, assuming that each agent is a node, information communication topology
of the n-agents is denoted by a weighted graph G = {V , E , A}. V = {νi, i ∈ Λ} is the set
of vertices, E ⊆ V × V is the set of edges, and A = [aij] ∈ Rn×n is the weighted adjacency
matrix of graph G with nonnegative elements. For the i-th agent (node) νi, an edge in G
is denoted by a two-element pair (νi, νj) ∈ E , which indicates that there is an information
exchange channel from node νi to node νj. All neighbors of node νi are described as a set
Ni = {νj : (νi, νj) ∈ E}, and the out-degree of node νi is defined as di = ∑n

j=1 aij. For an
edge (νi, νj) ∈ E , the corresponding weighted element in matrix A is aij > 0; meanwhile,
(νi, νj) /∈ E also means aij = 0. Note that each diagonal element of the matrix A is equal to
zero, i.e., aii = 0.

If G is undirected, it follows that (νi, νj) ∈ E ⇔ (νj, νi) ∈ E ; it is also indicated that
aij = aji, which means the weighted adjacency matrix A is a symmetric matrix. Laplacian
matrix L of the weighted graph G is described as L = [lij] = D − A, L ∈ Rn×n, where
degree matrix D of the graph G is denoted as D = diag{d1, · · · , dn}. For any two nodes
νi and νj, if there exists at least one path between them, the graph G is called a connected
graph. It must be pointed out that only an undirected graph is considered in this paper.

If there exists a leader (or a virtual-leader) for the MAS, the leader could be labeled
as 0. G denotes an augmented graph with the vertex set V = V ⋃ ν0. The information
exchange channel between the leader and a follower is directed. There are only edges from
the leader to some followers, but there is no edge from any follower to the leader. The
connection weight between the leader and the u-th follower is denoted by bi, i ∈ Λ. If the
leader is connected to the i-th follower, bi > 0; otherwise, bi = 0. In addition, the weighted
matrix B means B = diag{b1, · · · , bn}.

2.2. Some Lemmas

Lemma 1 ([24]). Given a real number α ∈ (0, 1], for ∀x ∈ R, ∀y ∈ R, the following inequality

|sgnff(x)− sgnff(y)| ≤ 21−ff|x− y|ff (2)

holds.
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Lemma 2 ([32]). Provided some constants c > 0, d > 0, for ∀x ∈ R, ∀y ∈ R and for ∀γ > 0,
inequality

|x|c|y|d ≤ c
c + d

γ|x|c+d +
d

c + d
γ−

c
d |y|c+d (3)

holds.

Lemma 3 ([33]). If a constant 0 < p < 1, for ∀xi ∈ R, i = 1, · · · , m, the following inequality
holds:

(|x1|+ · · ·+ |xm|)p ≤ |x1|p + · · ·+ |xm|p (4)

Lemma 4 ([24]). If a constant p > 1, for ∀xi ∈ R, i = 1, · · · , m, the following inequality holds:

(|x1|+ · · ·+ |xm|)p ≤ mp−1(|x1|p + · · ·+ |xm|p) (5)

Lemma 5 ([28]). For a dynamic system ẋ = f (t, x), x ∈ Rn, x(0) = x0, if there exists a
Lyapunov-function V(·) satisfying

V̇(·) ≤ −aVα − bVβ, 0 < α < 1, β > 1, a, b ∈ R+ (6)

the state x will converge to zero in a fixed-time. This also implies that the settling-time T(x0) is
bounded by a constant Tmax, which could be expressed as

T(x0) ≤ Tmax =
1
a

1
1− α

+
1
b

1
β− 1

(7)

2.3. Problem Statements

Consider a group of multiple rigid-bodies. Attitude dynamics for the i-th agent, which
is similar to the model in Ref. [34], could be expressed by the Euler-angle representation as

ω̇i = J−1
i [τi + τdi(·)−ω×i Jiωi]

χ̇i = Q−1
i ωi

Qi =

 1 0 − sin θi
0 cos φi sin φi cos θi
0 − sin φi cos φi cos θi

 (8)

where χi = [φi, θi, ψi]
T is the attitude vector. φi, θi and ψi are the rolling-angle, pitching-

angle, and heading-angle, respectively. Ji ∈ R3×3 is the inertial tensor matrix; ωi ∈ R3 is an-
gular velocity of the body-fixed frame with respect to the inertial frame. τi = [τφ,i, τθ,i, τψ,i]

T

is the control input torque, and τdi(·) is the lumped uncertainty acting on the i-th rigid-body.
Set xi = χi, vi = χ̇i, and ui = Π−1

i τi, where Πi = JiQi. Then, Equation (8) becomes{
ẋi = vi

v̇i = di(·) + ui, i = 1, · · · , n
(9)

where di(·) = Π−1
i τdi(·) − Π−1

i JiQ̇iχ̇i − Π−1
i (Qiχ̇i)

×Πiχ̇i. In this second-order MAS,
xi ∈ Rm, vi ∈ Rm are the state vector and its first time derivative; ui ∈ Rm is the control
input and di(·) ∈ Rm represents the uncertainty. The attitude command profile [χT

0 , χ̇T
0 ]

T

could be denoted as a virtual-leader expressed as{
ẋ0 = v0

v̇0 = u0
(10)

where x0 = χ0, v0 = χ̇0, and u0 is angular acceleration of the virtual-leader. For the MAS (9)
and (10), a definition about fixed-time consensus tracking should be presented as follows:
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Definition 1 (Fixed-Time consensus tracking [27]). Design a distributed control law
ui = fu(xi, xj, vi, vj), j ∈ Ni for each follower νi, i ∈ Λ in (9) and (10). For any initial states
[xi(t0), vi(t0)] ∈ R2m and any bounded acceleration of the virtual-leader, if there exists a uniformly
bounded time interval Tmax > 0 such that xi(t) = 0, vi(t) = 0, t > Tmax, the closed-loop MAS is
said to be fixed-time consensus tracking. Moreover, the max settling-time Tmax is independent of
the initial states.

Then, the attitude consensus tracking control objective for a team of rigid-bodies (9)
could be stated as such. For the MAS (9) and (10), find a distributed control law that could
make the attitude and its first time derivative of each rigid-body [χT

i , χ̇T
i ]

T follow a given
command profile [χT

0 , χ̇T
0 ]

T in the presence of the lumped uncertainty τdi(·) including
internal perturbations and external disturbances. Moreover, the consensus tracking errors
of each rigid-body could converge to a bounded region around the origin in a fixed-time.

3. Fixed-Time Consensus Tracking Control for Multiple Rigid-Bodies with
Lumped Uncertainties

For the attitude consensus tracking control objective, two conditions, which are given
as below, must be satisfied.

Assumption 1. The augmented graph G of the MAS (9) and (10) is connected. Moreover, ac-
celeration of the virtual-leader is bounded, i.e., ‖v̇0‖ = ‖u0‖ ≤ A0, where the constant A0 is
a boundary.

Assumption 2. For each follower of the MAS (9) and (10), the uncertainty acting on each agent is
bounded as ‖di(·)‖ ≤ D0, i ∈ Λ, where the constant D0 is a boundary.

Remark 1. Indeed, the conditions required in Assumptions 1 and 2 are very common. In a practical
engineering situation, the uncertainty may be parameter perturbations, unmodeled dynamics,
or external disturbances including payload variations, environmental disturbance, etc. All of
those kinds of uncertainties are bounded in the practical situations and so is acceleration of the
virtual-leader. Consequently, applicability of the proposed control scheme could be enhanced.

Because information of the virtual-leader ν0 could only be accessed by a subset of the
followers, a REDFTO is proposed for the followers, which could not access information from
the virtual-leader, to obtain an accurate estimation of velocity state of the virtual-leader ν0.

The REDFTO is presented as

˙̂vi = −c1sign (εi)− c2sgnβ(εi) (11)

where εi = ∑j∈Ni
aij(v̂i − v̂j) + bi(v̂i − v0), i ∈ Λ, β > 1 and v̂i is an estimation of v0 for the

i-th agent. c1 ∈ R+, c2 ∈ R+ are two constants to be determined. The first main result of
this paper could be summarized as:

Theorem 1. Consider the observer (11) for the i-th agent. If the parameter c1 and c2 satisfy
c1 >

√
nA0, c2 > 0, the estimation error v̄i = v̂i − v0 will be steered to zero in a fixed-time.

Proof. It is easily obtained that

εi = ∑
j∈Ni

aij(v̂i − v̂j) + bi(v̂i − v0) =
n

∑
j=1

lijv̄j + biv̄i (12)

In view of (11), the dynamic equation of v̄i is derived as

˙̄vi = −c1sign (εi)− c2sgnβ(εi)− v̇0 (13)
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Choose a Lyapunov-function candidate as

V0(v̄) =
1
2

v̄TP0v̄ (14)

where v̄ = [v̄T
1 , · · · , v̄T

n ]
T , P0 = (L + B)⊗ Im. Differentiating V0(v̄) along (13) yields

V̇0 = v̄TP0 ˙̄v

≤ −c1(P0v̄)Tsign(P0v̄)− c2(P0v̄)Tsgnβ(P0v̄) +
√

nA0‖P0v̄‖
(15)

where the Holder inequality is used. Note that

(P0v̄)Tsign(P0v̄) ≥ ‖P0v̄‖

(P0v̄)Tsgnβ(P0v̄) ≥ n
1−β

2 m
1−β

2 ‖P0v̄‖1+β
(16)

where Lemma 4 is used. Inserting (16) into (15) leads to

V̇0 ≤ −(c1 −
√

n A0)‖P0v̄‖ − c2n
1−β

2 m
1−β

2 ‖P0v̄‖1+β

≤ −(c1 −
√

n A0)

√
2λmin(P2

0 )

λmax(P0)
V

1
2

0 − c2n
1−β

2 m
1−β

2

(
2λmin(P2

0 )

λmax(P0)

) 1+β
2

V
1+β

2
0

(17)

From Lemma 5, it is easily known that, if c1 >
√

nA0, c2 > 0, the estimation errors v̄
will converge to zero in a fixed-time T1, which could be estimated as

T1 ≤
2

cd1
+

1
cd2

2
β− 1

cd1 = (c1 −
√

n A0)

√
2λmin(P2

0 )

λmax(P0)
, cd2 = c2n

1−β
2 m

1−β
2

(
2λmin(P2

0 )

λmax(P0)

) 1+β
2

(18)

This also implies that the settling-time T1 is independent of the initial condition v̄(0).
The proof is complete.

Remark 2. For the leader-following consensus control problem, different distributed observers [24,25,28,29]
are designed to estimate information of the leader. Different from the finite-time distributed
observers [24,25], settling-time of the REDFTO (11) could be determined in advance. Compared
with the fixed-time distributed observers [28,29], the REDFTO only used a higher-order term
sgnβ(εi), β > 1 and a discontinuous term sign (εi) of the distributed estimation error εi. How-
ever, considering about observers presented in Ref. [28,29], an additional lower-order term of
the distributed estimation error was used. Hence, when the proposed REDFTO is employed, the
utilization of hardware resources could to some extent be reduced. It must be pointed out that, for
the follower with bi > 0, the REDFTO is not needed in that the follower could access all states of
the virtual-leader directly.

With the help of REDFTO (11), a DFCTC law for MAS (9) and (10) is proposed as such

ui = −c4 sgn2α1−1
{

sgn
1

α1 [(vi − v̂i) + λ sgnα2(εi)] + c
1

α1
3 εi

}
− c5 sgnα1+α2−1

{
sgn

1
α1 [(vi − v̂i) + λ sgnα2(εi)] + c

1
α1
3 εi

}
− λα2 diag{|εi|α2−1}ηi

(19)
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where εi = ∑j∈Ni
aij(xi − xj) + bi(xi − x0), ηi = ∑j∈Ni

aij(vi − vj) + bi(vi − v0), and 0 <
α1 < 1. Set the consensus tracking errors x̃i, ṽi for the i-th agent as x̃i = xi − x0, ṽi = vi − v0
respectively, and introduce an auxiliary variable wi = ṽi + λ sgnα2(εi), where α2 > 1.

When t > T1, from Theorem 1, it is proved that v̂i = v0, i ∈ Λ. Hence, it follows that
ṽi = vi − v0 = vi − v̂i. Then, during the time t > T1, stability analysis for the closed-loop
system (9), (10) and (19) is carried out via a modified back-stepping method, which could
be divided into two steps.

Step 1. Consider a Lyapunov-function candidate

V1(x̃) =
1
2

x̃TP0 x̃ (20)

where x̃ = [x̃T
1 , · · · , x̃T

n ]
T ∈ Rmn, the matrix P0 is defined in (14). Similarly, set ṽ =

[ṽT
1 , · · · , ṽT

n ]
T ∈ Rmn, w = [wT

1 , · · · , wT
n ]

T ∈ Rmn, ε = [εT
1 , · · · , εT

n ]
T ∈ Rmn, and u =

[uT
1 , · · · , uT

n ]
T ∈ Rmn. Taking the first time derivative of V1 yields

V̇1 = x̃TP0ṽ = x̃TP0w− λx̃TP0sgnα2(ε) (21)

Choosing a virtual control w∗ = −c3sgnα1(ε), (21) becomes

V̇1 = −c3εTsgnα1(ε)− λεTsgnα2(ε) + εT(w−w∗)

≤ −c3εTsgnα1(ε)− λεTsgnα2(ε) + 21−α1
n

∑
i=1

m

∑
k=1
|εik| |ξik|α1

≤ −c3εTsgnα1(ε)− λεTsgnα2(ε) + ĉ31εTsgnα1(ε) + ĉ41ξTsgnα1(ξ)

ĉ31 =
21−α1

1 + α1
, ĉ41 =

21−α1 α1

1 + α1

(22)

where Lemma 2 is used.
Step 2. Choose the following Lyapunov-function candidate:

V(·) = V1(·) + V2(·)

V2(·) =
n

∑
i=1

V2i, V2i =
m

∑
k=1

V2i,k(·)

V2i,k(·) =
∫ wik

w∗ik
sgn2−α1

(
sgn

1
α1 (ι)− sgn

1
α1 (w∗ik)

)
dι

(23)

From the third line of (23), the first time derivative of V2i,k(·) can be expressed as

V̇2i,k(·) = sgn2−α1(ξik)ẇik + (2− α1)c
1

α1
3 ε̇ik

∫ wik

w∗ik

∣∣∣∣sgn
1

α1 (ι)− sgn
1

α1 (w∗ik)
∣∣∣∣1−α1

dι

≤ sgn2−α1(ξik)ẇik + (2− α1)21−α1 c
1

α1
3 |ξik|ε̇ik

(24)

where Lemma 1 and ξik = sgn
1

α1 (wik) − sgn
1

α1 (w∗ik) are used. Introduce two constants:

dm = maxi∈Λ

{
bi + ∑j∈Ni

aij

}
, am = maxi,j∈Λ{aij}. It is easily observed that

ε̇ik =

[
∑

j∈Ni

aij(wik − wjk) + biwik

]

− λ

[
∑

j∈Ni

aij(sgnα2(εik)− sgnα2(εjk)) + bisgnα2(εik)

]

≤ dm|wik|+ am

n

∑
l=1
|wlk|+ λ

(
dm|εik|α2 + am

n

∑
l=1
|εlk|α2

) (25)
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Applying (25) into (24) yields

V̇2i,k(·) ≤ sgn2−α1(ξik)ẇik + (2− α1)21−α1(c
1

α1
3 dm|wik| |ξik|

+c
1

α1
3 am|ξik|

n

∑
l=1
|wlk|+ c

1
α1
3 λdm|εik|α2 |ξik|+ c

1
α1
3 λam|ξik|

n

∑
l=1
|εlk|α2

) (26)

According to Lemma 2, it is easily obtained that

dmc
1

α1
3 |wik| |ξik|

≤ dmc
1

α1
3 |wik − w∗ik| |ξik|+ dmc

1+ 1
α1

3 |εik|α1 |ξik|

≤ dm21−α1 c
1

α1
3 |ξik|α1+1 +

dmα1

α1 + 1
|εik|α1+1 +

dm

α1 + 1
cα1+1

3 |ξik|α1+1

(27)

In the same vein, it is also obtained that

amc
1

α1
3 |ξik|

n

∑
l=1
|wlk|

≤ am21−α1 c
1

α1
3

α1

α1 + 1

n

∑
l=1
|ξlk|α1+1 + n am21−α1 c

1
α1
3

1
α1 + 1

|ξik|α1+1

+
amα1

α1 + 1

n

∑
l=1
|εlk|α1+1 +

n am

α1 + 1
cα1+1

3 |ξik|α1+1

λdmc
1

α1
3 |εik|α2 |ξik| ≤ dm

α2

α2 + 1
|εik|α2+1 + λα2 dm

1
α2 + 1

c
α2
α1
3 |ξik|α2+1

λamc
1

α1
3 |ξik|

n

∑
l=1
|εlk|α2 ≤ am

α2

α2 + 1

n

∑
l=1
|εlk|α2+1 + n λα2 am

1
α2 + 1

c
α2
α1
3 |ξik|α2+1

(28)

Inserting (27) and (28) into (26) results in

V̇2i,k(·) ≤ sgn2−α1(ξik)ẇik

+ ĉ32|εik|α1+1 + ĉ33

n

∑
l=1
|εlk|α1+1 + ĉ34|εik|α2+1 + ĉ35

n

∑
l=1
|εlk|α2+1

+ ĉ42|ξik|α1+1 + ĉ43

n

∑
l=1
|ξlk|α1+1 + ĉ44|ξik|α2+1

(29)

where
ĉ32 = (2− α1)21−α1

dmα1

α1 + 1
, ĉ33 = (2− α1)21−α1

amα1

α1 + 1

ĉ34 = (2− α1)21−α1 dm
α2

α2 + 1
, ĉ35 = (2− α1)21−α1 am

α2

α2 + 1

ĉ42 = (2− α1)21−α1

(
dm21−α1 c

1
α1
3 +

dm

α1 + 1
cα1+1

3

+n am21−α1 c
1

α1
3

1
α1 + 1

+
n am

α1 + 1
cα1+1

3

)
ĉ43 = (2− α1)21−α1 am21−α1 c

1
α1
3

α1

α1 + 1

ĉ44 = (2− α1)21−α1

(
λα2 dm

1
α2 + 1

c
α2
α1
3 + n λα2 am

1
α2 + 1

c
α2
α1
3

)

(30)
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Therefore, it can be derived from (29) that

V̇2i(·) ≤ sgn2−α1(ξT
i )ẇi + ĉ32εT

i sgnα1(εi)

+ ĉ33

n

∑
l=1

εT
l sgnα1(εl) + ĉ34εT

i sgnα2(εi) + ĉ35

n

∑
l=1

εT
l sgnα2(εl)

+ ĉ42ξT
i sgnα1(ξ i) + ĉ43

n

∑
l=1

ξT
l sgnα1(ξ l) + ĉ44ξT

i sgnα2(ξ i)

(31)

This also means that

V̇2(·) ≤ sgn2−α1(ξT)ẇ + (ĉ32 + n ĉ33)ε
Tsgnα1(ε)

+ (ĉ34 + n ĉ35)ε
Tsgnα2(ε) + (ĉ42 + n ĉ43)ξ

Tsgnα1(ξ) + ĉ44ξTsgnα2(ξ)
(32)

Choose a fixed-time control law as

u = −c4 sgn2α1−1(ξ)− c5 sgnα1+α2−1(ξ)− λα2 diag{|ε|α2−1}P0ṽ (33)

where c4, c5, λ are some constants to be determined later. Then, the second main result of
this paper is presented as follows:

Theorem 2. Consider the closed-loop system (9), (10) and (19), during the time t > T1. Provided
that Assumptions 1 and 2 are satisfied, there exist some constants c0, c3, c4, and λ such that
the consensus tracking errors of the closed-loop system are bounded. Furthermore, the consensus
tracking error of each agent will be steered into a set Si in a fixed-time. The set Si, in which the
origin is included, is expressed as

Si =

{
(x̃i, ṽi) : ‖x̃i‖ = ‖xi − x0‖ ≤

√
2n ds2

ζ
,

‖ṽi‖ = ‖vi − v0‖ ≤
(

2
(2−α1) (1−α1)

2 + c3c
α1
2

v

)
(mn)

1−α1
2 d

α1
2

s2 + λ c
α2
2

v d
α2
2

s2

} (34)

where ζ = min{aij, bi, i, j ∈ Λ}, cv = min
{

2λmin(P2
0 )

λmax(P0)
, 2α1−1

}
, and ds2 = 1

cv

(
2ρ
c0

) 2
2α1−1 , ρ =

√
n (D0 + A0). In addition, the settling-time is bounded by a constant T2

T2 ≤
1

cd3

2
1− α1

+
1

cd4

2
α2 − 1

cd3 =
c0

2
c

α1+1
2

v cd4 = c0 (mn)
1−α2

2 c
α2+1

2
v

(35)

Proof. The following proof is divided into two parts: (1) Convergence of the consensus
tracking errors is analyzed; (2) The globally attractive region is pointed out, and hence an
estimation for the tracking error boundary of each agent could be presented.

1. Combining (22) with (32) and using (33) lead to

V̇(·) ≤ sgn2−α1(ξT)(d− 1n ⊗ v̇0)

− (c3 − ĉ31 − ĉ32 − n ĉ33)ε
Tsgnα1(ε)− (λ− ĉ34 − n ĉ35)ε

Tsgnα2(ε)

− (c4 − ĉ41 − ĉ42 − n ĉ43)ξ
Tsgnα1(ξ)− (c5 − ĉ44)ξ

Tsgnα2(ξ)

(36)
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where d = [d1, · · · , dn]T ∈ Rmn. Choose the parameters c3, c4, c5 and λ as such

c3 ≥ ĉ31 + ĉ32 + n ĉ33 + c0

c4 ≥ ĉ41 + ĉ42 + n ĉ43 + c0

c5 ≥ ĉ44 + c0, λ ≥ ĉ34 + n ĉ35 + c0

(37)

where c0 is an arbitrary positive constant determined by the designer. Thus, (36)
becomes

V̇(·) ≤ sgn2−α1(ξT)(d− 1n ⊗ v̇0)− c0

[
εTsgnα1(ε) + ξTsgnα1(ξ)

]
− c0

[
εTsgnα2(ε) + ξTsgnα2(ξ)

]
≤ ρ

(
εTε + ξTξ

) 2−α1
2 − c0

(
εTε + ξTξ

) α1+1
2 − c0 (mn)

1−α2
2

(
εTε + ξTξ

) α2+1
2

(38)

where ρ =
√

n (D0 + A0). Considering λmin(P2
0 )‖x̃‖2 ≤ εTε, 2V1(x) ≤ λmax(P0)‖x̃‖2

and V2(·) ≤ 21−α1 ξTξ, it follows that

2λmin(P2
0 )

λmax(P0)
V1(·) ≤ εTε, 2α1−1V2(·) ≤ ξTξ

cvV(·) ≤
(

εTε + ξTξ
) (39)

where cv = min
{

2λmin(P2
0 )

λmax(P0)
, 2α1−1

}
. Inserting the second line of (39) into (38) yields

V̇(·) ≤ − c0

2

[(
εTε + ξTξ

) 2α1−1
2 − 2ρ

c0

](
εTε + ξTξ

) 2−α1
2

− c0

2
c

α1+1
2

v V
α1+1

2 − c0 (mn)
1−α2

2 c
α2+1

2
v V

α2+1
2

(40)

When
(
εTε + ξTξ

) 2α1−1
2 > 2ρ

c0
, (40) becomes

V̇(·) ≤ − c0

2
c

α1+1
2

v V
α1+1

2 − c0 (mn)
1−α2

2 c
α2+1

2
v V

α2+1
2 (41)

which indicates that [εT , ξT ]T will converge to the set

∆1 =

{
(ε, ξ) :

(
εTε + ξTξ

) 2α1−1
2 ≤ 2ρ

c0

}
in a fixed-time T2. Furthermore, the settling-

time is bounded by

T2 ≤
1

cd3

2
1− α1

+
1

cd4

2
α2 − 1

cd3 =
c0

2
c

α1+1
2

v cd4 = c0 (mn)
1−α2

2 c
α2+1

2
v

(42)

2. Consider a set ∆2 = {(ε, ξ) : V(·) ≤ ds2}, where ds2 = 1
cv

(
2ρ
c0

) 2
2α1−1 . It is easily seen

that ∆1 ⊂ ∆2. If an element [εT , ξT ]T ∈ ∆1, from (39), it can be observed that

cvV(·) ≤
(

εTε + ξTξ
)
≤
(

2ρ

c0

) 2
2α1−1

(43)

which means that the element [εT , ξT ]T ∈ ∆2, and ∆1 ⊂ ∆2.
Because the augmented graph G is connected, for any node νi, there exists at least a
path Li from νi to the leader ν0, i.e., Li : νi = νi1 , νi2 , · · · , νir , ν0, where νir is directly
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connected with ν0. Thus,
√

ζ‖xi − x0‖ ≤
√ai1i2‖xi1 − xi2‖ + · · · +

√air−1ir‖xir−1 −
xir‖+

√
bir‖xir − x0‖, where ζ = min{aij, bi, i, j ∈ Λ}. Note that

2V1(x̃) = x̃TP0 x̃

=
n

∑
i=1

(
bi‖xi − x0‖2 +

n

∑
j

1
2

aij‖xi − xj‖2

)
(44)

The similar formulation can be seen in Ref. [25]. For the path Li, it can be observed that√
ζ‖xi − x0‖ =

√
ζ‖(xi1 − xi2) + · · ·+ (xir−1 − xir ) + (xir − x0)‖

≤ √ai1i2‖xi1 − xi2‖+ · · ·+
√

air−1ir‖xir−1 − xir‖+
√

br‖xir − x0‖

≤
√

r
√

ai1i2‖xi1 − xi2‖2 + · · ·+ air−1ir‖xir−1 − xir‖2 + br‖xir − x0‖2

≤
√

r

√√√√ n

∑
i=1

(
bi‖xi − x0‖2 +

n

∑
j

1
2

aij‖xi − xj‖2

)
=
√

r
√

2V1 ≤
√

2n ds2

(45)

where inequality(√
ai1i2‖xi1 − xi2‖+ · · ·+

√
air−1ir‖xir−1 − xir‖+

√
br‖xir − x0‖

)2

≤ r2−1
(

ai1i2‖xi1 − xi2‖
2 + · · ·+ air−1ir‖xir−1 − xir‖

2 + br‖xir − x0‖2
) (46)

is used.
Inserting ξik = sgn

1
α1 (wik)− sgn

1
α1 (w∗ik) into V2i,k(·) leads to

(ι− w∗ik)
1

α1 ≤ 2
1

α1
−1
(

sgn
1

α1 (ι)− sgn
1

α1 (w∗ik)
)

‖w−w∗‖2 ≤ 2(2−α1) (1−α1)
n

∑
i=1

m

∑
k=1

Vα1
2i,k ≤ 2(2−α1) (1−α1) (mn)1−α1 Vα1

2

≤ 2(2−α1) (1−α1) (mn)1−α1 dα1
s2

(47)

On the other side, ṽ = (w−w∗)− c3sgnα1(ε)− λ sgnα2(ε) implies

‖ṽ‖ ≤ ‖w−w∗‖+ c3‖sgnα1(ε)‖+ λ ‖sgnα2(ε)‖

≤ ‖w−w∗‖+ c3(mn)
1−α1

2

(
εTε + ξTξ

) α1
2
+ λ

(
εTε + ξTξ

) α2
2

(48)

Substituting the third line of (47) into (48) results in

‖vi − v0‖ ≤
(

2
(2−α1) (1−α1)

2 + c3c
α1
2

v

)
(mn)

1−α1
2 d

α1
2

s2 + λ c
α2
2

v d
α2
2

s2 (49)

It is obvious that, if the state vector [xT
i , vT

i ]
T satisfies inequalities (45) and (49),

[xT
i , vT

i ]
T ∈ Si will be met at the same time.

The proof is complete.

Then, consider the MAS (9), (10) and (19) operating in the time interval t ∈ [0, T1].
What needs to be done is that the boundedness for each agent states must be guaranteed.
Stability analysis of the closed-loop system (9), (11) and (19) is very cumbersome when
the system operates in the time interval t ∈ [0, T1]. Therefore, a simpler linear distributed
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control (LDC) law is employed to take the place of (19). During t ∈ [0, T1], the adopted
LDC law is presented as

ui = − ∑
j∈Ni

aij(xi − xj)− c6vi (50)

Concerning the closed-loop system (9), (10), and (50), the states of each agent are
bounded during t ∈ [0, T1]. Choose another Lyapunov-function candidate as

V3(x, v) =
1
2

xTP1x +
1
2

vTv (51)

where x = [x1, · · · , xn]T ∈ Rmn, v = [v1, · · · , vn]T ∈ Rmn, and P1 = L⊗ Im. Differentiat-
ing V3(·) along (9), (10) and (50) results in

V̇3(·) = −c6vTv + vTd

≤ −[(c6 −
1
2
)vTv− 1

2
n D2

0 ]
(52)

When ‖v‖ ≥
√

n
2 c6−1 D0, V̇3 is negative-definite. This also indicates that ‖vi‖ ≤

‖v‖ ≤ bv, where bv = min{v(0),
√

n
2 c6−1 D0}, v(0) is the initial value of v. It follows that

‖ẋi‖ ≤ ‖vi‖ ≤ bv (53)

which implies that

‖xi‖(t) ≤ bvt + ‖xi‖(0) ≤ bvT1 + ‖xi‖(0), t ∈ [0, T1) (54)

Therefore, in accordance with (54) and ‖vi‖ ≤ bv, it could be observed that, if c6 ≥ 1
2 ,

the state vector [xT
i , vT

i ]
T of the i-th agent is bounded in the time interval t ∈ [0, T1].

Ultimately, combining the DFCTC law (19) with the LDC law (50), a distributed
attitude consensus tracking controller for the i-th rigid-body of the MAS (9) is formulated as

ui = − ∑
j∈Ni

aij(χi − χj)− c6χ̇i, 0 ≤ t < T1

ui = −c4 sgn2α1−1
{

sgn
1

α1 [(vi − v̂i) + λ sgnα2(εi)] + c
1

α1
3 εi

}
− c5 sgnα1+α2−1

{
sgn

1
α1 [(vi − v̂i) + λ sgnα2(εi)] + c

1
α1
3 εi

}
− λα2 diag{|εi|α2−1}ηi, t ≥ T1

τi = Πiui

(55)

where εi = ∑j∈Ni
aij(χi − χj) + bi(χi − χ0), vi = χ̇i, ηi = ∑j∈Ni

aij(χ̇i − χ̇j) + bi(χ̇i − χ̇0).
v̂i is the estimation of χ̇0 for the i-th rigid-body, where the REDFTO (11) is used.

Remark 3. For second-order MASs in the presence of uncertainties, different robust distributed
fixed-time consensus control laws have been proposed [28,29,31]. In comparison with those works,
some significant improvements are acquired in Theorem 2. In Ref. [28,29], to mitigate chattering
effects, the saturation-function and boundary-layer techniques are used, which will degrade perfor-
mance on control precision of the closed-loop system. For the proposed DFCTC law, by properly
choosing the parameter 1

2 < α1 < 1, continuous control signals are obtained without use of the
saturation-function technique. In Ref. [31], the settling-time could not be explicitly estimated
due to employment of the bi-limit homogeneity technique. In Theorem 2, by means of the modified
back-stepping technique and the adding of a power integrator technique [32], the settling-time could
be explicitly given. Moreover, as is stated in Theorem 2, the ultimate boundary of the consensus
tracking error for each agent is explicitly provided.
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Remark 4. Seeing that the settling-time T1 of REDFTO could be prescribed by the designer, the
control strategy, which switches from (50) to (19) when t > T1, is entirely feasible. A similar
strategy could be found in Ref. [25,35]. However, in Ref. [25,35], the control strategy is actually
difficult to implemented. Because the presented observer in Ref. [25,35] is finite-time convergence,
the settling-time is dependent on the initial value, which may be unknown beforehand. This
deficiency can be improved in this paper.

Remark 5. It must be pointed out that estimation of T2 is more conservative due to the use of
inequality (25). Some improvements are needed in future work.

4. Simulations

Consider a team of five rigid-bodies, which includes a virtual-leader. The information
interaction is depicted in Figure 1, where the weighted adjacency matrix A and B are
expressed as

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

, B =


0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 2

 (56)

1

2

3

4

01 1

1

Virtual leader

Followers

1

2

2

Figure 1. Communication topology of the augmented graph.

To further illustrate the proposed control scheme, two control principle block-diagrams
are presented as below:

When the running time is during the time-interval t ≤ T1, a control scheme is shown
in Figure 2. When the running time is during the time-interval t ≥ T1, a control scheme is
depicted in Figure 3. Note that, if the follower could access all states of the virtual-leader
directly (i.e., the parameter bi > 0), the REDFT observer is not necessary.

To show the superiority of the proposed DFCTC law, a comparison study is carried out
between the proposed DFCTC and the finite-time consensus algorithm (FTCA) for leader–
follower MASs. The compared algorithm was proposed by the authors of [25], which
has several properties similar to the proposed DFCTC, e.g., robustness against unknown
uncertainties and high control accuracy.

Sensors of 
the i-th
agent

i
x

i
uj

x

i


States of the 
i-th agent

The i-th
agent

The i-th LDC 
controller

Neighbors of the 
i-th agent 

i
N

Figure 2. Control principle block-diagram of the presented LDC law.
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Sensors of 
the i-th
agent

i
x

i
uj

x
î



i


States of the 
i-th agent

The i-th
agent

The i-th REDFT 
observer

The i-th DFCT 
controller

Neighbors of the 
i-th agent 

i
N

ĵ


Figure 3. Control principle block-diagram of the proposed DFCTC law.

Parameters of REDFTO (11) are listed in Table 1. Parameters of the proposed DFCTC
law and the compared FTCA law are listed in Table 2. According to (18) and Table 1,
convergence time T1 of the REDFTO (11) is T1 = 0.66.

Table 1. Parameters of the REDFTO.

Parameter c1 c2 β

Value 16 200 1.5

Table 2. Parameters of the DFCTC and the FTCA.

Controller Parameters

DFCTC λ c3 c4 c5 c6 α1 α2
2 2 80 80 2 0.8 1.1

FTCA k1 k2 p
80 1.8 5/4

The reference attitude acceleration profile is set to u0 = [cos t, sin t, 1
2 (cos t + sin t)]T ,

rad/s2. The lumped disturbances acting on each rigid-body are set to d1(·) = d2(·) =
d3(·) = d4(·) = [cos 0.5t, sin 0.5t, cos 0.5t + sin 0.5t]T , rad/s2. Simulation results are shown
in Figures 4–9.
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0 1 2 3 4 5 6

time(s)

-0.5

0

0.5

1

ra
d
/
s

← t=0.66

agent 1 agent 3

(c) estimation errors of v̂i,2

0 1 2 3 4 5 6

time(s)

-0.5

0

0.5

1

1.5

2

ra
d
/
s

← t=0.66

agent 0 agent 1 agent 3

(d) estimation of v0,2 (i.e., θ̇0)
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Figure 4. Estimation errors of the REDFTO for agents i = 1 and i = 3.
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Figure 5. Cont.
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Figure 5. Consensus tracking errors for agent i = 1.
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Figure 9. Control signals and disturbances for agents i = 1, 3.

In Figure 4a,c,e, it could be seen that estimation errors of the REDFTO converge to
zero in a fixed-time. Therefore, the REDETOs for i = 1, i = 3 could estimate velocity state
of the virtual-leader exactly after t = 0.66, which could be easily seen in Figure 4b,d,f.

Note that, during the time interval t ∈ [0, 0.66), the used control law is the LDC law
expressed in the first line of (55). When the time is greater than 0.66, the used control law
is the DFCTC expressed in the second line of (55) (the blue lines) or the FTCA proposed
in [25] (the red lines). As illustrated in Figures 5–8, when the proposed DFCTC is adopted,
the attitude consensus tracking is achieved in a fixed-time. Obviously, convergence speed
of the DFCTC is faster than that of the FTCA. The reason is that the settling-time of the
DFCTC is independent of the initial conditions. However, settling-time of the FTCA is
dependent of the initial conditions.

In Figure 9, it is easily observed that the value of the control signal ui is almost equal to
the opposite value of the disturbance δi(·) after the time t = 3.0 s. What this means is that
the control signal could largely compensate the disturbance when the consensus tracking
errors enter a small bounded set around the origin. Note that the overall disturbance δi(·),
which is expressed as δi(·) = di(·) − v̇0, consists of two parts: uncertainty di(·) acting
on the i-th rigid-body and acceleration of the virtual-leader v̇0. ui,1, ui,2, ui,3 are three
components of ui (i.e., ui = [ui,1, ui,2, ui,3]

T), and δi,1, δi,2, δi,3 are three components of δi
(i.e., δi = [δi,1, δi,2, δi,3]

T).
In Figure 9, at the time instant t = T1 = 0.66 s, the control signals are slightly larger.

This is because the control law is switched from the LDC law to the DFCTC law at the time
instant t = 0.66 s.

5. Conclusions

The attitude consensus tracking problem has been investigated for a group of multiple
rigid-bodies with time-varying uncertainty acting on each agent. The reference command
profile has been seen as a virtual-leader, and a REDFTO used to estimate velocity state of
the virtual-leader has been developed. Subsequently, a DFCTC law has been proposed.
Fixed-time convergence of the tracking errors to a bounded region including the origin has
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been analytically proved. In the simulation section, a comparison case study confirms the
effectiveness and superiority of the proposed control scheme.

However, there are some limitations with the proposed DFCTC law. As stated in
Remark 5, estimation of the convergence time T2 is more conservative. From the simulation
results, when in the time interval t < T1, the DFCTC law is not used. These two limitations
must be improved in the future work.
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