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Abstract: In this paper, a novel bearing faulty prediction method based on federated transfer learning
and knowledge distillation is proposed with three stages: (1) a “signal to image” conversion method
based on the continuous wavelet transform is used as the data pre-processing method to satisfy the
input characteristic of the proposed faulty prediction model; (2) a novel multi-source based federated
transfer learning method is introduced to acquire knowledge from multiple different but related
areas, enhancing the generalization ability of the proposed model; and (3) a novel multi-teacher-based
knowledge distillation is introduced as the knowledge transference way to transfer multi-source
knowledge with dynamic importance weighting, releasing the target data requirement and the target
model parameter size, which makes it possible for the edge-computing based deployment. The
effectiveness of the proposed bearing faulty prediction approach is evaluated on two case studies of
two public datasets offered by the Case Western Reserve University and the Paderborn University,
respectively. The evaluation result shows that the proposed approach outperforms other state-of-the-
art faulty prediction approaches in terms of higher accuracy and lower parameter size with limited
labeled target data.

Keywords: knowledge distillation; federated transfer learning; parameter size; knowledge transference;
edge-computing deployment

1. Introduction

Intelligent faulty diagnosis is significantly important in the modern manufacturing
industry as it can greatly reduce the machine maintenance cost and prevent catastrophic
failure in the early stages of production. The current faulty prediction approaches can
be divided into three categories: model based, knowledge based and data-driven based
approaches [1]. With the development of the modern computing ability and storage
capacity, the data-driven based machine faulty prediction approach has been the most used
one. This is entirely based on the acquired historical operating datasets [2].

Deep learning, as a branch of the data-driven approach, has achieved compromising
application prospects in the contemporary industrial system due to its powerful ability
to automatically distinguish the representative and discriminative features from the raw
signal data. Therefore, the deep learning-based faulty prediction method has become a key
research point in both academia and industry. The current deep learning models, including
the DBN (deep belief network), DAE (deep auto-encoder), RNN (recurrent neural network)
and CNN (convolution neural network) have already achieved great success in the machine
faulty prediction area. In order to further promote the machine faulty prediction accuracy in
the application of the modern complex industry, some researchers have designed different
variants and combinations of the deep learning models. Shao et al. [3] combined the CNN
with DBN for capturing both the two-dimensional structure and the periodic characteristics
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of the input data. Chen et al. [4] combined the sparse auto-encoder (SAE) with the deep
belief network where the SAE is used for the multi-sensor feature fusion and the DBN is
used for the machine faulty prediction. In order to enhance the generalization ability of
the prediction model, Xu et al. [5] proposed the LeNet-5 CNN based multi-scale feature
extraction network where features learned from the multiple layers of CNN are extracted
jointly for the bearing fault prediction. Although the deep learning-based faulty prediction
model has achieved practical industrial use, two issues remain:

(1) The training process of the traditional deep learning model requires large amounts
of labeled data; however, in the practical industry, it is extremely costly to acquire
labeled data, especially the labeled data representing the machine faulty condition
which is usually not well preserved.

(2) Since the traditional deep learning model is usually trained on large amounts of
historical datasets, the model training process is usually time consuming due to its
large training data volumes. How to accelerate the training process of the faulty
prediction model remains a challenge.

In order to release the problem of insufficient labeled data and training time con-
sumption, the deep learning approach based on transfer learning has been studied in
recent literature. Transfer learning aims at transferring the knowledge learned from the
related source domain to the target domain which can relax the requirement of the labeled
training data and reduce the training time. Xiao et al. [6] proposed a TrAdaBoost based
transfer learning framework with convolution neural networks for solving the small sample
problem in machinery fault diagnosis. CAO et al. [7] proposed a deep convolution-based
transfer learning for the gear faulty diagnosis with very limited training datasets. Han
et al. [8] proposed a deep transfer neural network with joint distribution adaptation (JDA)
for the intelligent faulty prediction. The proposed approach takes advantage of a pre-
trained network from the source domain and the model is transferred with unlabeled data
to the target domain by using the JDA, solving the problem of insufficient labeled data
in practical industry. WEN et al. [9] proposed novel deep transfer learning (DTL) where
the three-layer sparse auto-encoder is designed for the feature extraction of the raw data
and the maximum mean discrepancy term is used to minimize the discrepancy penalty
between the features from the source domain and the target domain. Despite the deep
learning approaches based on transfer learning proving to be effective in releasing the
data requirement and speeding up the training process of the traditional deep learning
models, it is still questionable whether it is the most appropriate way to directly transfer
the features or parameters from a single source domain model to the target domain model
for the practical faulty prediction problem. Two points need to be further considered:

(1) The performance of the traditional transfer learning model relies on the quality of the
source data and the degree of similarity between the source domain and the target
domain which poses limitations on the generalization ability of the transfer learning
model. How to construct a generalized transfer learning framework that is applicable
to different transfer learning tasks remains a great challenge.

(2) With the increase in the transferred features and parameters from the original model
which contains “knowledge” from different but related source domains, the parameter
scale of the transfer learning model can be very large, causing difficulties for the model
field deployment. How to release the parameter size of the transfer learning model
remains a topic of consideration.

In order to release the single source domain limitation and the model parameter scale,
a novel hybrid-bearing faulty prediction model based on the federated transfer learning
and knowledge distillation (FTLKD) is proposed in this paper. Dealing with the above two
listed issues, the contribution of this paper is listed as follows:

(1) Dealing with the first issue listed above, several cumbersome models are set up
through offline training on multiple related source domain datasets. Thus, containing
prior knowledge of different source domain datasets;
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(2) Dealing with the second issue listed above, the cumbersome models pretrained on
multiple different but related datasets are used as teacher models during the joint
training process with the student model on the target datasets. This is also called
knowledge distillation. The established teacher models can promote the training effi-
ciency of the shallow structured student model while maintaining its small parameter
size by using the knowledge distillation. The assigned weights of the teacher models
are dynamically changed during the joint training process based on the real time
KL-divergence loss between the corresponding teacher output and the true label.

The rest of this paper is organized as follows: Section 2 briefly reviews the related
research background including the transfer learning, the federated transfer learning and the
knowledge distillation; Section 3 presents the framework and specific technical detail of the
proposed federated transfer learning and knowledge distillation based faulty prediction
approach; Section 4 describes the case study and simulation result of the proposed approach.
Finally, the main contribution and future work is proposed in Section 5.

2. Related Work
2.1. Transfer Learning and Federated Transfer Learning

The transfer learning aims at building an effective prediction model for an application
with a limited quantity of labeled datasets in a target domain by leveraging rich labels
from a different but related source domain, as shown in Figure 1. Provided that a learning
task Ts is in the source domain Ds and a prediction task TT is in the target domain DT, the
source knowledge obtained from the Ts in Ds is transferred to solve a new but related TT in
DT more efficiently and effectively, where TT 6= Ts and DT 6= Ds.
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Recent decades have witnessed the tremendous success in applying transfer learning
in areas such as image recognition and sentiment analysis [10]. The prediction accuracy
of the transfer learning model in the target domain relies on how related the pretrained
source domain is; it is hard to find a source domain which contains enough labeled data to
pretrain a prediction model of being applicable in different target domains [10]. Therefore,
it is almost impossible to find a perfect source-target domain pair [11]. In order to fully
explore the source domains of the related tasks, the notion of integrating the federated
learning with the transfer learning is proposed. This enables the transfer learning to benefit
from the federated learning based on the knowledge propagation of multiple sources of
the data federation of the same industry [11,12].

The federated learning is usually regarded as the decentralized machine learning. This
is closely related to multi-party preserving machine learning [13]. The federated learning
can be categorized into two types: namely, vertical federated learning and horizontal
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federated learning with the illustration of sample complementation and feature comple-
mentation, respectively, as shown in Figure 2. The federated transfer learning enables
complementary knowledge to be shared and transferred across multiple federated do-
mains and it can be used as the extension of the conventional transfer learning task [14,15].
Recently, in order to enhance the diversity of the transfer learning, some researchers have
applied federated transfer learning for practical applications. Ju et al. [16] applied fed-
erated transfer learning on the EEG (electroencephalographic) signal classification of the
brain–computer interface, proving the better domain adaptation ability of the proposed
federated transfer learning framework. Wang et al. [17] proposed a software heterogeneous
defect prediction method based on federated transfer learning. The proposed federated
transfer learning framework not only solves the problem of insufficient labels but also
builds models to match the different distribution of private data. Sharma et al. [18] pro-
posed a novel federated transfer learning framework for the knowledge integration of the
scattered datasets across different organizations. These researchers have shown the great
potential of the federated transfer learning in the field of knowledge integration, as well as
the knowledge complementation of the transfer learning.
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2.2. Knowledge Distillation

The concept of knowledge distillation (KD) was first introduced by Hinton and
Dean [19] as a model compression framework which releases the parameter size of the deep
learning model by constructing a teacher-student paradigm where the student network
is trained to capture the information contained not only in the hard version of the true
label, but also in the softer version of the teacher’s output. Different from the ordinary
transfer learning, the knowledge distillation accomplishes the knowledge transference
tasks by altering the loss function of the student model to follow the output of the teacher
model [20]. The traditional KD framework compresses one or several cumbersome net-
works (teachers) into a student network with a shallow structure. The framework of the
conventional knowledge distillation can be categorized into two types: single teacher-based
knowledge distillation and multi-teacher-based knowledge distillation [19,21–24].

2.2.1. Single Teacher-Based Distillation

Let Ti be the output probability of the ith neuron of the teacher model with softmax

activation Ti =
exp(ZT

i )
∑j exp (ZT

j )
, where ZT

i is the output value of the ith neuron before the softmax

layer and j denotes the total number of the output neurons. The output probability of
the ith neuron of the student model with softmax activation can be expressed in the same



Machines 2022, 10, 376 5 of 24

way as Si =
exp(ZS

i )
∑j exp (ZS

j )
. When the teacher model is used to instruct the student model, the

relaxation parameter Γ(Γ ≥ 1) is introduced to the softmax layer of both networks to soften
the output probability during the training process, as shown in Equation (1):

TΓ
i =

exp (
ZT

i
Γ )

∑j exp (
ZT

i
Γ )

, SΓ
i =

exp (
ZS

i
Γ )

∑j exp (
ZS

i
Γ )

(1)

Let the PS be the parameter of the student network and the network can be trained to
optimize the loss function, as shown in Equation (2):

LKD(PS) = (1− λ)L1
(
ytrue, S

)
+ λL2

(
TΓ, SΓ

)
(2)

As defined in Equation (2), during the training process of the single teacher-based
distillation, the loss function of the student model consists of two stages where L1 and
L2 refer to the two-stage loss functions, respectively, and λ is an adaptive parameter of
balancing the importance between both stages. It should be noted that the loss function
L1 in Equation (2) enforces the student network to follow the hard labels of the ground
truth while the loss function L2 enforces the student network to learn from the softened
output of the teacher network. The single teacher-based knowledge distillation framework
is illustrated, as shown in Figure 3:
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2.2.2. Multi-Teacher-Based Knowledge Distillation

The loss function of the student network of the multi-teacher-based knowledge distil-
lation can be shown in Equation (3):

LKD(WS) =
k

∑
i=1

wi∗Li(Ti, S) (3)

where k denotes the number of teachers and Li denotes the loss function between the
student output and the softened label of the ith teacher output. The importance of teachers
are balanced by the adaptive weight parameters of wi , i ∈(1,k) based on certain evaluation
metrics. During the collaborative training process, the student model follows a group of
softened labels provided by an ensemble of teachers rather than the ground truth hard label.
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3. Proposed Method
3.1. Data Preprocessing

In order to satisfy the input characteristic of the CNN model, the “signal to image”
conversion method based on the continuous wavelet transform (CWT) is used as the data
pre-processing method in this paper, as shown in Equation (4):

CWTf(α,β) = 〈f(t),ψα,β(t)〉 = |α|−
1
2

∫ +∞

−∞
f(t)ψ(

t− β
α

)dt (4)

Given an arbitrary signal function f(t) ∈ L2(R), the continuous wavelet transform
CWTf (α,β) can be expressed as the inner product between the f(t) and the baseline
wavelet function ψα,β(t), which can be achieved by the adjustment of scale and translation,
reflecting the similarity between the signal and the wavelet. ψ(t) denotes the conjugate of
the baseline wavelet signal ψ(t). The baseline wavelet signal can be used for accurately
capturing the non-stable characteristic of the raw signal. Among all the most used base-
line wavelets such as the Haar, Meyer, Mexican Hat and the Morlet, the Morlet wavelet
has proved to be effective for representing the faulty symptom of the bearing vibration
signal [25,26] which is used as the target wavelet in this paper. The expression function of
the Morlet wavelet function can be expressed as shown in Equation (5):

ψ(t) = exp
(
−a2t2/2

)
cos(πt) (5)

where the parameter “a” controls the shape of the Morlet wavelet and can be used for
balancing the resolution between the time domain and the frequency domain. Since the
Morlet wavelet transform can fully capture the signal characteristic and can achieve better
resolution in both the time and frequency domain, the continuous Morlet Fourier transform
is adopted in this paper for the conversion of the one-dimensional vibration signal to the
two-dimensional time-frequency spectrum image. The specific process of the Morlet based
“Signal to image” conversion is illustrated as shown in Figure 4. First, the window length
is selected as 1024 according to the experiment of previous literature [27–30] where the
1024 continuous signal points are randomly selected each time from the raw signal. Second,
the selected 1024 signal points are converted into a 1024∗S time-frequency spectrum by
using the continuous Morlet wavelet transform which consists of coefficient matrices. The
parameter “S” denotes the value of the scale factor α ranging from 1 to S. Finally, the
time-frequency spectrum is presented in the form of a gray-scale image.

Although more signal information can be obtained if the scale size is large enough, it is
hard for the CNN to process the 1024∗S image due to its computation complexity. A simple
bicubic-based interpolation-based compression method is used for shortening the image
size. The size of the gray-scale image varies due to the different signal data volumes. The
CWT based “Signal to Image” conversion method has already been proven to be effective
in the literature [5].
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3.2. Proposed FTLKD Frame Work
3.2.1. Multi Teachers Establishment Based on Federated Transfer Learning

In this section, the proposed federated transfer learning framework is proposed for the
establishment of multiple teacher models. As shown in Figure 5, several offline cumbersome
CNN models are first pretrained on multiple datasets that are collected from multiple
related areas. After the pretrained CNN models reach certain accuracy on their own
datasets, the shallow layer of the offline CNN models are transferred to several standby
teacher models containing different related knowledge.
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3.2.2. Multi Sources Knowledge Transference Based on Knowledge Distillation

After multiple teachers are established by the federated transfer learning stated in
Section 1, the established teachers containing the generalized knowledge of multiple related
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datasets are used as “teachers” to “guide” the student model. As shown in Figure 6, the
target datasets are used for the joint training and testing of the multiple cumbersome teach-
ers as well as the shallow structured student model. The teacher models are optimized by
the hard labels provided by the datasets while the student model is optimized by multiple
softened labels provided by several teacher models. The Kull-back Leibler divergence loss
of the teacher model is defined here as shown in Equation (6):

DKL(Y||P̂) =
1
n
∗

n

∑
h=1

N

∑
i=1

(
Yi

h

)
∗ log

(
Yi

h

P̂i
h

)
(6)

Equation (6) denotes the Kull-back Leibler divergence loss of the teacher model where
Yi

h denotes the i-th element of h-th sample of the label vector; P̂i
h denotes the ith element

of the h-th sample of the output vector; N denotes the vector length and n denotes the
sample number. The K-L divergence result obtained by each teacher is normalized into 0–1
as shown in Equation (7) where j (j > 1) denotes the teacher number and DKLi denotes the
K-L divergence loss of the ith teacher of the current epoch:

xi =
DKLi

∑
j
i=1 DKLi

, αi =
1− xi
j− 1

(7)

Since the K–L divergence value has the inverse relationship with the performance of
the teacher model, the parameter αi is defined here as the assigned weight of the ith teacher
during the distillation process which denotes the averaging normalized K–L divergence
loss of the other (j− 1) teachers.
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3.2.3. Teacher Balancing Based on KL Divergence

In this section, several teacher models are established for the weighted distillation of
the student model during the training or testing process of the target datasets. The weights
of the teacher models are determined according to the KL divergence loss of the current
epoch of the teacher model. Since the softened output of the teacher model can provide
more information for the student model so that the student model will not be over-fitted,
the student models in this paper are guided by several softened teacher outputs. The
specific distillation process is illustrated as shown in Equation (8):

PΓ
Ti
= softmax

(aTi

Γ

)
, PΓ

S = softmax
(aS

Γ

)
(8)

where the aTi denotes the pre-softmax output vector of the teacher model; aS denotes the
pre-softmax output vector of the student model. A relaxation parameter Γ > 1 is introduced
to soften the signal arising not only from the teacher output but also from the student
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output. The student network is trained by a group of softened teacher outputs with weight
assignments as shown in Equation (9):

LKD(WS) =
j

∑
i=1
αi∗K(PΓ

Ti
, PΓ

S) (j > 1) (9)

where K(∗) denotes the KL divergence distance between the softened corresponding
teacher output and the softened student output. Parameter j denotes the total number
of the guided teachers and the dynamic assigned weight αi of the ith teacher is updated
according to the KL divergence loss of the ith teacher model in the current epoch which
has already been defined in Equation (6).

The KL divergence distance K(∗) in Equation (9) is defined here as shown in Equation (10)
where yi

T and yi
S denotes the ith element of the output vector of the teacher model and the

student model. The parameter N denotes the vector length of the output vector

K(yT , yS) =
N

∑
i=1

yi
S ∗ log (

yi
T

yi
S
) (10)

The overall flowchart of the proposed methodology is illustrated in Algorithm 1.

Algorithm 1: General procedure of the proposed faulty prediction methodology

Input: Given the source datasets XS(xs, ys) for the offline establishment of the teacher models
and the target datasets Xt

(
xt, yt) for the cooperative training of the teacher models and the

student model.
Output: The trained student model and the faulty prediction result.
Step 1: Generate the training datasets and the testing datasets
Obtain the two-dimensional gray scale images of the one-dimensional time series signal by using
the “signal-to-image” conversion method based on the “Continuous Wavelet Transform” as
shown in Figure 4.
Step 2: Construct the teacher models by using the federated transfer learning
2.1: Randomly initializing several offline CNNs and pretraining these offline CNNs on the
corresponding given source datasets XS(xs, ys). After these offline CNN models finish training on
their own source datasets, their optimized weight “W” and bias ”b” can be obtained by solving

the minimum of the loss metric H
(

ytrue, ˆypre

)
using the Adam method.

2.2: Establishing the corresponding teacher model by transferring the shallow layers of the
pretrained offline CNN to the standby teacher models as shown in Figure 5, while the parameters
of the other layers are randomly initialized.
Step 3: Multi-teacher-based knowledge distillation
3.1: Constructing the proposed teacher-student distillation framework as shown in Figure 6.
3.2: Fine-tuning the teacher models on the training set of the target datasets Xt

(
xt, yt) and

calculating the KL divergence loss of the teacher model as shown in equation (6)
3.3: Dynamically update the assigned weight of teacher models during the distillation process
based on the KL divergence loss of different teacher models, respectively, after each epoch as
shown in equation (7).
3.4: Distilling the student model by calculating the weighted loss function between the teacher
softened outputs and the student softened output as shown from equations (8) to (10).
Step 4: Analysis of teacher models and the student model
4.1: Optimizing the student model through the cooperative training process by using the game
strategy proposed in the literature [31,32] on the training set of the target datasets Xt

(
xt, yt)

during step 3 and achieve the optimized student model.
4.2: Evaluating the testing accuracy of teacher models and the student model on the testing set of
the target datasets Xt

(
xt, yt).

Step 5: Evaluate the proposed teacher-student distillation framework.
Validate the performance of the obtained student model with a different teacher-student
distillation framework and output the faulty prediction results.
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4. Case Studies and Experimental Result Discussion
4.1. Case Study I Bearing Faulty Prediction of the Electro-Mechanical Drive System
4.1.1. Data Description and Experimental Set Up

The performance of the proposed bearing fault prediction method is evaluated on the
bearing fault datasets of the electro-mechanical drive system provided by the Paderborn
University [33]. The mechanical set up of the testing rig is illustrated as shown in Figure 7
which is composed of five components marked from 1 to 5 namely a test motor; a measuring
shaft; a bearing module; a flywheel and a load motor. The condition monitoring signal
used in this paper is collected from the current signal of the motor. The current signal is
measured by a LEM-CKSP 15-NP current transducer.. Then, the measured signal is filtered
by a 25 kHz low-pass filter and converted from an analogue to a digital signal with the
sampling rate of 64 kHz. The measurement systems are illustrated as shown in Figure 8.
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Figure 8. The measurement system of the experiment.

The collected conditional monitoring data consist of four health statuses: namely
the healthy, inner-race faulty, outer-race faulty and the combined faulty. All the data are
collected under the operating conditions ranging from load 0 to 3 with the parameter
settings as shown in Table 1. The data collected under load 0 to 2 are regarded as the related
source datasets with rich samples of 1000 in both training and testing datasets in each,
respectively, while the data collected under load 3 are regarded as the target datasets with
limited samples of 100 in both training and testing datasets, respectively. Each sample
contains the randomly selected 1024 time series signal points. The related source datasets
are used for the pretraining of the teacher models while the target datasets are used for
the knowledge distillation and testing evaluation of teachers and the student. The data
arrangement is illustrated as shown in Table 2:
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Table 1. The operating parameters of the four operating conditions.

Loads Rotational Speed
[Rpm]

Load Torque
[Nm]

Radial Force
[N] Name of Setting

0 1500 0.7 1000 N15_M07_F10
1 900 0.7 1000 N09_M07_F10
2 1500 0.1 1000 N15_M01_F10
3 1500 0.7 400 N15_M07_F04

Table 2. The data arrangement of teachers and the student.

Motor Load
(HP)

Data Sample Quantity
(Training/Testing) Datasets Assignment

Load 0 1000/1000 Datasets for
Teacher I

Load 1 1000/1000 Datasets for
Teacher II

Load 2 1000/1000 Datasets for
Teacher III

Load 3 100/100 Target datasets for
Teachers & Student

4.1.2. Data Preprocessing

The one-dimensional time series current signal is transformed to the two-dimensional
time-frequency spectrum through the continuous wavelet transform with the scale factor
“S” of 200 which is set according to the data volumes [5]. The time-frequency spectrum
is converted to the 16 ∗ 16 gray-scale image by using the bicubic interpolation. As shown
in Figure 9, there is obvious distinguishable difference among these converted images of
different health conditions, indicating the effectiveness of the data preprocessing method
used in the literature [5] also being applicable in case study I of this paper.
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4.1.3. Offline CNN Models Set Up Based on Offline Training

In this section, three cumbersome offline CNN models are pretrained on their source
datasets collected under the load conditions of load 0–2, respectively. The configuration of
the teacher model is illustrated as shown in Table 3. The blocks of B1–B3 are the convolution
blocks with six layers in each and they are used for hierarchical feature learning, while
the last block of B4 is the faulty prediction block with the Flatten and Soft-max layers.
The established cumbersome CNN models are pretrained on their own datasets and the
training accuracy curves are illustrated as shown in Figure 10a–c. All of the established
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offline CNN models can converge with limited epochs and reach above 95% on their own
datasets in terms of training and testing accuracy.
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Table 3. The specific configuration of the cumbersome private model.

Block Layer
Number

Layer
Type

Kernel
Size

Kernel
Number Stride Padding

B1

1 Conv 3 ∗ 3 32 1 Same
2 BN - - - -
3 Conv 3 ∗ 3 32 1 Same
4 BN - - - -
5 Conv 3 ∗ 3 32 2 Same
6 BN - - - -

B2

7 Conv 3 ∗ 3 64 1 Same
8 BN - - - -
9 Conv 3 ∗ 3 64 1 Same

10 BN - - - -
11 Conv 3 ∗ 3 64 2 Same
12 BN - - - -

B3

13 Conv 3 ∗ 3 128 1 Same
14 BN - - - -
15 Conv 3 ∗ 3 128 1 Same
16 BN - - - -
17 Conv 3 ∗ 3 128 2 Same
18 BN - - - -
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Table 3. Cont.

Block Layer
Number

Layer
Type

Kernel
Size

Kernel
Number Stride Padding

B4
19 FC 1000 - - -
20 Dense 32 - - -
21 Softmax 4 - - -

4.1.4. Teacher Establishment Based on Federated Transfer Learning

After the cumbersome private models finished offline training on their own datasets
with the expected convergence accuracy, the shallow block “B1” of the offline CNN models
is transferred to the online teacher models as shown in Figure 11, which is used for the
following knowledge distillation. The established online teacher models are trained on the
target training sets of Load 3 as illustrated in Figure 12. The KL divergence loss of the three
established teachers are close to zero within the limited epochs, indicating the learning
ability of the established teacher models on the target datasets.
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4.1.5. Knowledge Transference Based on Knowledge Distillation

In this case study, the three established teacher models are used for the knowledge
transference and knowledge distillation of the student model. The configuration of the
student model is illustrated as shown in Table 4 which has only one six-layer convolution
block and one three-layer faulty prediction block. The student model is guided by the
output of three teachers and the overall weighted loss function of the student model in this
case study is illustrated as shown in Equation (11):

LKD(WS) = α1∗K(P20
T1

, P20
S ) + α2∗K(P20

T2
, P20

S ) + α3∗K(P20
T3

, P20
S ) (11)

As shown in Equation (10), the parameters α1,α2 and α3 denote the assigned weight
of the three teacher models, respectively, which is dynamically changed according to the
real time KL divergence distance between the teacher output and the true labels. The tem-
perature parameter Γ is set for the value of 20 and the function K(∗) denotes KL divergence
between the softened student output and the corresponding teacher output. The specific
knowledge distillation process is illustrated as shown in Figure 13a,b. Figure 13a denotes
the dynamic weight change of three teachers within 60 epochs. It can be found that the
weights of three teachers are dynamically updated after each epoch. The assigned weights
of teacher I and teacher III are significantly higher than the weight of teacher II, although
they are similar to each other. Therefore, it can be concluded that in case study I, the source
datasets of Load 0 and Load 2 have a similar related degree with the target datasets of Load
3, while the source datasets of Load 1 have a comparatively lower related degree with the
target datasets of Load 3. Figure 13b denotes the KL divergence loss between the student
model and three teachers within the maximum epoch number of 60th and the overall
weighted loss of the student model which has already been represented in Equation (10).
The KL divergence distance between each teacher output and the student output and
the overall weighted loss of the student model are close to 0 within the maximum epoch,
indicating the effectiveness of the proposed weighted knowledge distillation approach.
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4.1.6. Model Evaluation

After the proposed approach finishes the knowledge distillation process, the three
established teacher models and the student model are validated on the testing set of the
target datasets and the testing accuracy is illustrated as shown in Figure 14. All three
teacher models and the student model can reach an accuracy above 95%. The experiment is
repeated ten times and the average testing accuracy, the parameter size and the average KL
divergence loss of three teacher models and the student model is illustrated as shown in
Table 5. It should be noted that although the student model does not have the best behavior
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among all the models in terms of average accuracy, the student model has a comparatively
smaller parameter size and a lower average KL divergence loss.

Table 4. The configuration of the student model.

Block Layer
Number

Layer
Type

Kernel
Size

Kernel
Number Stride Padding

S1

1 Conv 3 ∗ 3 32 1 Same
2 BN - - - -
3 Conv 3 ∗ 3 32 1 Same
4 BN - - - -
5 Conv 3 ∗ 3 32 2 Same
6 BN - - - -

S2
7 FC 1000 - - -
8 Dense 32 - - -
9 Softmax 4 - - -
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Table 5. The average accuracy, average KL divergence loss and the parameter size of three teachers
and the student.

Model Average Accuracy
(%) Parameter Number Average KL

Divergence Loss

Teacher I 94.58% 4,677,924 3.59
Teacher II 98.13% 4,677,924 0.77
Teacher III 95.44% 4,677,924 0.47

Student 96.69% 1,142,764 0.02

4.1.7. Comparison with Other Distillation Frameworks

In order to further evaluate the effectiveness of the proposed approach, multiple knowl-
edge distillation frameworks with different arrangement of teachers and source datasets are
introduced for comparison. The specific detail is illustrated in Table 6. As shown in Table 6,
case I is the knowledge distillation framework proposed in the paper where the student
model is guided by three teachers; cases II–IV represent the framework where the students
are guided by only two teachers; cases V–VII represent the framework where the students
are guided by only one teacher, which is the same as the single teacher-based distillation
referred in Section 2. The single teacher-based distillation regulation used for comparison
here is illustrated as shown in Equation (12), where the DKL(QT

∣∣∣∣ytrue) denotes the KL
divergence loss of the teacher model in the current epoch. The DKL (QT

∣∣∣∣ytrue)max denotes
the maximum KL divergence distance of the teacher model within the 60 epochs. In case
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VIII, there is no teacher guidance and the student model is directly trained and tested on
the training/testing set of the target datasets that were collected under Load 3.

LKD(WS) = λ ∗ H(ytrue, PS) + (1− λ) ∗ H
(

PΓ
Ti

, PΓ
S

)
, λ =

DKL(QT ||ytrue)

DKL (QT ||ytrue)max
(12)

The student models trained by each case are evaluated on the testing set of the target
datasets with a different knowledge distillation framework, as shown in Figure 15. The
student model guided by three teacher models in case I has the highest testing accuracy
on the target datasets (approximately 95%); the student models guided by two teachers
in cases II–IV have a testing accuracy of approximately 90%; the student models guided
by only one teacher in cases V–VII have a testing accuracy of approximately 80%; the
student model with no teacher guidance in case VIII has the lowest testing accuracy of
approximately 65%. The reason for this should be that the student model guided by more
teachers can obtain more diversity prior knowledge from the related source domain areas
which can promote the learning ability of the student model on target datasets.

The experiment is repeated 10 times. The average testing accuracy and the average
KL divergence loss of the student models of different cases are illustrated in Table 7. The
student model that was guided by more teachers can obtain a higher accuracy and lower
KL divergence loss, indicating the effectiveness of the combination of the federated transfer
learning and knowledge distillation.

Table 6. Details of guiding teachers used for knowledge distillation in different cases.

Method Teacher
Number

Datasets I
(Load 0)

Datasets II
(Load 1)

Datasets III
(Load 2)

Case I 3 Teacher 1 Teacher 2 Teacher 3
Case II 2 Teacher 1 Teacher 2
Case III 2 Teacher 2 Teacher 3
Case IV 2 Teacher 1 Teacher 3
Case V 1 Teacher 1
Case VI 1 Teacher 2
Case VII 1 Teacher 3
Case VIII 0 No teacher
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Table 7. The average accuracy and KL divergence loss of student models on target testing datasets
under different cases.

Method Average Testing Accuracy Average KL Divergence Loss

Case I 96.69% 0.02
Case II 88.07% 0.048
Case III 87.65% 0.051
Case IV 87.05% 0.093
Case V 77.73% 0.339
Case VI 80.47% 0.675
Case VII 79.35% 0.474
Case VIII 62.19% 10.115

4.1.8. Comparison with Other Machine Learning Models

The proposed federated transfer learning and knowledge distillation network which
consists of three teacher models and one student model are compared with other traditional
machine learning approaches such as BPNN, SVM, DAE and DBN. The experiment is
arranged as follows: The student model has the prior knowledge of being guided by
three teachers; teachers I–III have the prior knowledge of being pre-trained on datasets
I–III of case study I. The traditional machine learning models of DAE, BPNN, DBN, SVM
and CNN do not have prior knowledge and are directly trained and tested on the target
datasets. It should be noted that the CNN used as the traditional machine learning model
has the same structure as the teacher model. The comparison experiment is repeated
ten times and the mean accuracy and the KL divergence loss are illustrated as shown
in Table 8. It can be found that the student model and three teacher models with prior
knowledge can achieve a higher testing accuracy and lower testing loss on the target
datasets when compared with other traditional machine learning models. The problem is
that it is hard for traditional machine learning models to perform well on small sampled
datasets without prior knowledge, indicating the importance of prior knowledge under the
limited labeled data.

Table 8. The comparison with other machine learning models.

Method Prior Knowledge Average Testing
Accuracy

Average Testing Loss
(KL Divergence Loss)

Student model Guided by three
teachers 96.69% 0.02

Teacher I Pre-trained on
Datasets I 94.58% 3.59

Teacher II Pre-trained on
Datasets II 98.13% 0.77

Teacher III Pre-trained on
Datasets III 95.44% 0.49

DAE No prior knowledge 91.31% 14.27
BPNN No prior knowledge 81.31% 10.66
DBN No prior knowledge 89.17% 15.31
SVM No prior knowledge 82.62% 15.94

CNN (Structure of
teacher model) No prior knowledge 87.66% 15.12

4.2. Case Study II: Bearing Faulty Prediction for Reliance Electric Motor
4.2.1. Data Description and Experimental Set Up

In case study II, the proposed faulty prediction methodology is evaluated on the
bearing faulty datasets offered by the Case Western Reserve University (CWRU) Bearing
Center [34]. The vibration signal datasets being tested here are collected from the drive-end
of a 2-hp reliance electric motor under load conditions ranging from 0 to 3 with five inner-
race conditional statuses of Normal; Faulty diameter 0.007; Faulty diameter 0.014; Faulty
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diameter 0.021 and Faulty diameter 0.028, respectively. The data arrangement is illustrated
as shown in Table 9.

Table 9. The data arrangement of teachers and the student of case study II.

Rotating Speed (rpm) Data Sample Quantity
(Training/Testing) Datasets Assignment

Load 0 (1730 rpm) 1000/1000 Datasets for teacher I
Load 1 (1750 rpm) 1000/1000 Datasets for teacher II
Load 2 (1772 rpm) 1000/1000 Datasets for teacher III
Load 3 (1797 rpm) 100/100 Datasets for teacher IV

4.2.2. Data Preprocessing

The one-dimensional current signal is transformed to the two-dimensional gray scale
image through the continuous wavelet transform with the scale factor “S” of 200. As shown
in Figure 16, there is also a distinguishable difference among the different conditional
statuses of case study II. Since case study I is the prediction of the faulty type of different
components while case study II is the prediction of the faulty severity of a certain compo-
nent, the proposed approach proved to be applicable for the faulty prediction tasks of not
only faulty type, but also of faulty intensity.
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4.2.3. Private Models Establishment Based on Offline Private Training

The three cumbersome models are set up and pre-trained on the private datasets of
loads 0–2, respectively. As shown in Figure 17a–c, the established private models in case
study II can also converge within limited epochs and reach an accuracy of approximately
100% on their own datasets in terms of training and testing accuracy.

4.2.4. Teacher Establishment Based on Federated Transfer Learning

After the cumbersome private models finish offline training on their own private
datasets, the shallow layers of the cumbersome private models are transferred to the low
layer of the online teacher models as the transfer process of case study I which has already
been illustrated in Figure 10. As illustrated in Figure 18, the three established online teacher
models are trained on the target training set of Load 3. In addition, the KL divergence
loss of the three online teachers is close to zero within the limited epochs, indicating the
learning ability of the established teacher models in case study II.
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Figure 17. The offline pretrain of cumbersome private models on their own datasets on case study II:
(a) Private model I (Load 0); (b) Private model II (Load 1); (c) Private model III (Load 2).
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4.2.5. Knowledge Transference Based on Knowledge Distillation

As in case study I, the three established teacher models are used for the knowledge
transference and knowledge distillation of the student model whose configuration has
already been illustrated in Table 4 of case study I. The dynamic curve of the assigned
weights of the three teachers, the KL divergence loss of the teacher-student, and the overall
weighted loss are illustrated as shown in Figure 19a,b. As shown in Figure 19a, there is
no obvious difference among the three teachers in terms of the assigned weight of case
study II. Therefore, it can be concluded that the source domain datasets of Loads 0–2 have
a similar related degree with the target datasets of Load 3 in case study II which is different
from case study I. The KL divergence loss of the three teacher-student pairs and the overall
weighted loss of the student model are illustrated in Figure 19b. It can be found that all
the curves are close to zero within the maximum epoch range of 60, indicating that the
proposed knowledge distillation approach is also applicable in case study II.
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4.2.6. Model Evaluation

After completing the knowledge distillation process, the three established teacher
models and the student model are performed on the testing set of the target datasets of
case study II. As shown in Figure 20 and Table 10 in case study II, the student model
outperforms the three teacher models in terms of both the average prediction accuracy and
the average KL-divergence loss with a smaller parameter size.
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Table 10. The average accuracy and the parameter size of three teachers and the student.

Model Average Accuracy
(%) Parameter Size Average KL

Divergence Loss

Teacher I 95.12% 4,677,924 2.63
Teacher II 94.63% 4,677,924 3.59
Teacher III 94.81% 4,677,924 5.73

Student 99.83% 1,142,764 0.076

4.2.7. Comparison with Other Distillation Frameworks

The simulation result of the comparison study of case study II is illustrated as shown
in Figure 21 and Table 11. The performance of the student model becomes better with the
increase in teacher models, indicating the effectiveness of introducing the multi sources
federated transfer learning into the knowledge distillation.
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Table 11. The average accuracy and KL divergence loss of student models on the target testing
datasets under different cases.

Method Average Accuracy Average KL Divergence Loss

Case I 99.83% 0.076
Case II 93.04% 0.094
Case III 90.04% 0.171
Case IV 91.07% 0.114
Case V 78.08% 1.154
Case VI 82.01% 1.782
Case VII 76.27% 2.796
Case VIII 58.74% 12.919

4.2.8. Comparison with Other Machine Learning Models

Similar to Section 4.1.8, the comparison experiment with other machine learning
models is repeated ten times. The mean accuracy and the KL divergence loss is illustrated
as shown in Table 12. In case study II, under the limited labeled dataset, the student model
and three teacher models with prior knowledge can achieve higher testing accuracy and
lower testing loss on the target datasets when compared with other traditional machine
learning models.

Table 12. The comparison with other machine learning models.

Method Prior Knowledge Average Testing
Accuracy Average Testing Loss

Student model Guided by three
teachers 99.83% 0.076

Teacher I Pre-trained on load 0 95.12% 2.63
Teacher II Pre-trained on load 1 94.63% 3.59
Teacher III Pre-trained on load 2 94.81% 5.73

DAE No prior knowledge 78.45% 10.38
BPNN No prior knowledge 86.58% 11.56
DBN No prior knowledge 87.55% 9.92
SVM No prior knowledge 81.45% 6.21

CNN (structure of
teacher model) No prior knowledge 90.45% 7.18
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5. Contribution and Future Work
5.1. Main Contribution of This Paper

In this paper, a novel hybrid-bearing faulty prediction method based on the federated
transfer learning and knowledge distillation is proposed. The main contributions of this
paper can be summarized as follows:

(1) The “signal to image” conversion method based on the continuous wavelet transform
in the literature [5] is introduced to the data pre-processing of this paper which
can well represent the information of machine health conditions contained in the
raw signal.

(2) Proposing a novel federated transfer learning framework (FTL) which contains prior
knowledge from multiple different but related source domain areas. Several cumber-
some models are pretrained on the datasets of multiple related areas, contributing
different knowledge for the knowledge compensation of the transfer learning. The
performance of the federated transfer learning model will not rely on a single source
domain, enhancing the model’s generalization ability.

(3) Proposing a novel multi-teacher-based knowledge distillation (KD) framework. The
student model is guided by several teachers and the teacher models are dynami-
cally weighted based on the real time KL divergence loss between the teacher output
and the true label. The student model can obtain knowledge from different teach-
ers with a lower parameter size which can be applicable for the edge computing-
based deployment.

The two case studies illustrated in this paper show that the student model trained
by the proposed knowledge distillation framework can obtain higher testing accuracy on
target datasets with lower KL divergence loss and a smaller parameter size.

5.2. Future Work of This Paper

Although the proposed approach has made some achievements, three limitation issues
still require consideration in our future work:

(1) In this paper, the proposed federated transfer model is constructed based on the set
up of multiple teacher models; however, it is laborious and costly to pretrain multiple
teachers from different but related areas. Moreover, the weight assignment of the
teacher models will become complicated with the increase in teacher models;

(2) In this paper, the “Knowledge” learned by multiple teacher models from multiple
related datasets are more likely to represent the basic features of multiple datasets.
Further, the whole process of knowledge learning and knowledge transference is
entirely based on the black-box theory, indicating that it is not able to be explained.

(3) In this paper, the proposed bearing faulty prediction only offers the conditional predic-
tion of the bearing status. However, it has not been extended to the determination of
the maintenance strategy which might be more meaningful to the practical industry.

In the future, some simplifying methods will be introduced to the proposed approach
for the enhancement of the model’s flexibility. Moreover, the explainable AI will be explored
and adopted in the proposed faulty prediction method. Further, the explainable AI will be
utilized for a deeper analysis regarding the creation of an appropriate maintenance strategy.
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