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Abstract: This paper investigates the event-triggered fault diagnosis (FD) problem for interval type-2
(IT2) Takagi–Sugeno (T-S) fuzzy networked systems. Firstly, an FD fuzzy filter is proposed by
using IT2 T-S fuzzy theory to generate a residual signal. This means that the FD filter premise
variable needs to not be identical to the nonlinear networked systems (NNSs). The evaluation
functions are referenced to determine the occurrence of system faults. Secondly, under the event-
triggered mechanism, a fault residual system (FRS) is established with parameter uncertainty, external
disturbance and time delay, which can reduce signal transmission and communication pressure.
Thirdly, the progressive stability of the fault residual system is guaranteed by using the Lyapunov
theory. For the energy bounded condition of external noise interference, the performance criterion is
established using linear matrix inequalities. The matrix parameters of the target FD filter are obtained
by the convex optimization method. A less conservative fault diagnosis method can be obtained.
Finally, the simulation example is provided to illustrate the effectiveness and the practicalities of the
proposed theoretical method.

Keywords: fault diagnosis; event-triggered control; interval type-2 Takagi–Sugeno fuzzy model;
nonlinear networked systems; filter

1. Introduction

The networked systems have been widely used because of these many advantages,
their simple physical structure, reduced integration costs, resource sharing, suitable for
installation, expansion and maintenance [1,2]. In order to satisfy the development of
aerospace and smart manufacturing, the networked systems have increasingly strong non-
linearity, uncertainty and complexity [3,4]. New challenges are brought to the control field
to deal with problems such as delay, data packet loss and network bandwidth limitation
caused by network introduction [5–9]. With the development of nonlinear networked
systems, it needs new performance indexes including standard interface modularization,
high reliability, high stability, and so on [10,11].

Fuzzy control is an effective tool for solving nonlinear problems linearization [7,12].
Fault diagnosis (FD) technology plays a vital role in improving the reliability and safety
of complex engineering systems [13,14]. The task of fault diagnosis of the networked
system is to transmit the input and output data of the system to the fault diagnosis unit
through the network, so as to ensure that the stable operation of the system without
fault occurs [6]. The FD methods of networked systems are proposed based on the fuzzy
model [7,15,16]. However, there are bad situations under time-triggered FD such as un-
necessary data transmission, increased network burden, data loss, and greater network
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delay [8]. The event-triggered mechanism has irreplaceable advantages in the network
resource-constrained system. The research on fault diagnosis technology of networked sys-
tems with event-triggered mechanisms has received extensive attention from international
scholars, which has become a hot research issue in the academic community of automatic
control and produced many valuable research results [8,9,15–32].

Different event triggering methods are studied such as the adaptive event-triggering
mechanism [5,10,22,23,27,29,32], the dynamic event triggering mechanism containing inter-
nal dynamic variables [19,28,31], the event triggering mechanism designed by improving
constant thresholds [8,15,16,20,21,25,26]. The fault filtering problem of NCSs with interval
time-varying time lags is studied by using the fuzzy fault detection filter with a generic
structure [17]. The authors in [22] propose a novel adaptive event-triggered fault detection
approach for Markov jump systems, wherein the transition probabilities are not required to
be fully known. The problem of troubleshooting networked systems subject to multiple
factors is discussed [21,23,25,28,30]. The problem of fault detection for stochastic nonlin-
ear generalized networked systems is studied, which is subject to network delay, packet
loss, and asynchronous premise variables [23]. Fault diagnosis problems of NNSs with
communication channels are subject to limited bandwidth and random data loss are inves-
tigated. Time-varying delay, dynamic event triggering mechanism, random nonlinearity
and simultaneous packet loss are considered in building a unified fault detection dynamic
model moment, which is used to solve the fault detection problem [28]. The dissipative
stabilization problem is solved by considering the delay and external disturbance [30].

The existing research has been extensive. However, the complexity of real systems
can no longer be described by simple models. For instance, the membership functions
approaches have been proposed based on the restriction that the membership functions
of the descriptive model of the systems [15,16,21]. When this issue is considered, the
general T-S fuzzy modeling scheme cannot achieve the desired results [15]. The IT2 fuzzy
model was developed because of its good proxy for nonlinear systems with parameter
uncertainty [29–37]. The problem of the FD filtering method is proposed with event-based,
which is the application in IT2 fuzzy theory under the framework of networked time-
delay control systems [29]. Event-triggered dissipation-based control is investigated by
using the IT2 T-S fuzzy theory to describe uncertain nonlinear networked systems [30].
The nonlinear networked system with parameter uncertainty is studied under the event-
triggered mechanism with adaptive discrete H∞ fuzzy filtering described by IT2 T-S fuzzy
model [32]. In [33–38], the FD fighting design, impulse control and discrete control based on
the IT2 fuzzy model are studied. Interval two-type theory is being recognized and studied
by more and more scholars [39,40]. Expanding the application scope of event-driven
technology in the IT2 fuzzy control system is the first motivation for writing this paper.

Then, the FD methods for fuzzy systems have been proposed without considering
the problems of nonlinear perturbation and transmission-limited [13,14]. Reducing the
conservativeness of existing results and redundancy in design is a difficult issue of academic
concern. In summary, solutions to event-driven FD problems are important for NNSs
subject to uncertainties, perturbation, and network-induced delays. The main contributions
of the paper as follows:

(1) A new FD fuzzy filter is designed by using IT2 T-S fuzzy model for generating a
residual signal, which means that the designed FD filter premise variable could be
different from NNSs.

(2) A fault residual system is established by integrating the IT2 fuzzy theory, external
disturbance, event-triggered scheme, time delays and parameter uncertainty.

(3) The stability conditions and the existence conditions of the FD filter are derived
by the form of linear matrix inequalities, as a result of the Lyapunov–Krasovskii
generalized function method providing the basis. Matrix decoupling implements the
transformation of the filter existence conditions with stability analysis.

The rest of this paper is structured as follows. An IT2 fuzzy fault residual system is
given based on the IT2 fuzzy networked control system model, event-triggered scheme,
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and fault diagnosis mechanism in Section 2. Section 3 is the focus of the article and is
intended to discuss and clarify the stability analysis and the design of the filter for the
fault residual system. Section 4 conducts simulations and discusses the validity of the
proposed method. The full paper is summarized, and further research directions are given
in Section 5.

Table 1 shows the abbreviations and notations used in this paper.

Table 1. Explanation of abbreviations and notations.

Symbols Explanatory Notes

FD fault diagnosis
IT2 interval type-2
T-S Takagi–Sugeno
NNSs nonlinear networked systems
FRS Fault Residual System
LMIs Linear matrix inequalities
ZOH Zero-order hold
Rn n-dimensional Euclidean space
P−1 The inverse of matrix P
PT Transpose of matrix P
P < 0(≤ 0) Negative (semi-negative)-definite matrix
P > 0 (≥ 0) Positive (semi-positive)-definite matrix
diag{P, Q, R} Diagonal matrix of P, Q and R
∗ Symmetric term in the matrix
‖·‖ Euclidean norm
L2[0, ∞) The space of square summable infinite vector sequences

2. Problem Formulation
2.1. IT2 T-S Nonlinear Networked Systems

An NNSs is modeled by IT2 T–S fuzzy rules by using state-space representation, its
parameter uncertainty and external perturbations are described.

Plant rule i: IF ι1(x(t)) is G̃i1, ι2(x(t)) is G̃i2, . . . . . . , and ιp(x(t)) is G̃ip, THEN{ .
x(t) = Aix(t) + Biω(t) + B f i f (t)
y(t) = Cix(t) + Diω(t)

(1)

In the IT2 T-S NNSs, Ai, Bi, B f i, Ci, and Di are system matrices. Separately, x(t) ∈ Rnx ,
y(t) ∈ Rny , f (t) ∈ Rn f represents the state vector, measured output, and the fault signal
waiting to be detected, in particular, ω(t) ∈ Rnω is the external disturbance which belongs
to L2[0, ∞). Define ι(x(t)) =

[
ι1(x(t)), ι2(x(t)), . . . , ιp(x(t))

]T stands for premise variable,
the number of fuzzy sets is p, the IT2 fuzzy set is described as G̃iα, where i = 1, 2, . . . , r, and
α = 1, 2, . . . , p, the firing strength of ith rule is defined as follows [39]:

Wi(x(t)) = [vi(x(t)),
_
vi(x(t))] (2)

where vi(x(t)) =
p
Π

α=1
µ

G̃iα
(ια(x(t))) ≥ 0,

_
vi(x(t)) =

p
Π

α=1

_
µG̃iα

(ια(x(t))) ≥ 0,
_
µG̃iα

(ια(x(t))) ≥
µ

G̃iα
(ια(x(t))) ≥ 0,

_
vi(x(t)) ≥ vi(x(t)) ≥ 0. We can get the IT2 fuzzy model after weight-

ing, as follows: 
.
x(t) =

r
∑

i=1
ρ̃i(x(t))[Aix(t) + Biω(t) + B f i f (t)]

y(t) =
r
∑

i=1
ρ̃i(x(t))[Cix(t) + Diω(t)]

(3)
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where ρ̃i(x(t)) = ρi(x(t)vi(x(t)) + ρ
i
(x(t))vi(x(t)) ≥ 0, meanwhile

r
∑

i=1
ρ̃i(x(t)) = 1,

ρ
i
(x(t)) and ρi(x(t)) are greater than zero, which represent the weighting functions

and satisfying:
ρ

i
(x(t)) + ρi(x(t)) = 1 (4)

Obviously, in the process of NNSs modeling, we define a fuzzy set for the membership
function to describe its uncertainty, which provides a basis for the subsequent design of a
low conservation fault diagnosis filter.

2.2. Event-Triggered FD Filter

Next, an event-triggering mechanism is introduced within the system, which is be-
tween the considered system and FD Filter as shown in Figure 1.
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The current sampled signal must reach the trigger threshold of the event monitoring
terminal before it can be transmitted to the next node. Similar to [34], we can define the
event-triggering mechanism as:

ek
T(t)Λek(t) > εyT(ikh)Λy(ikh) (5)

where ε ∈ [0, 1), ek(t) is the threshold error, which is the key factor that determines whether
the event trigger mechanism occurs, and is obtained by subtracting current sampled data
y(tkh) from the latest transmitted data y(ikh). Λ denotes the positive triggering parameters.

ZOH provides information about the last transmitted data continuously, the input
signal received by the filter can be described as

y(tkh) = y(tkh), t ∈ [tkh + τtk , tk+1h + τtk+1) (6)

The system can be transformed into a new time lag system, which can be directly
analyzed with time lag system theory. Without loss of generality, the holding region of
ZOH is expressed as:

Ω =
[
tkh + τtk , tk+1h + τtk+1

)
=

m
∪
0

Ωl (7)
Ω0 =

[
tkh + τtk , tkh + h + τ

)
Ωi = [tkh + ih + τ, tkh + (i + 1)h + τ), i = 1, 2 . . . , m− 1
Ωm =

[
tkh + mh + τ, tk+1h + τtk+1

) (8)

Define τ(t) = t− ikh, where ikh = tkh + lh, l = 0, 1, . . . , m, and then we can obtain:

0 < τm ≤ τ(t) ≤ h + τ = τM (9)
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Based on the above, y(t) can be rewritten as:

y(tkh) = [y(t− τ(t))− ek(t)] (10)

Remark 1. The introduction of the event triggering mechanism (5) reduces redundant transmission
data and saves network resources.

Summarizing the previous discussion, the IT2 fuzzy FD filter is modeled by IT2 T–S
fuzzy rules:

Filter Rule j: IF ϕ1(x(t)) is Õj1, ϕ2(x(t)) is Õj2, . . . . . . , and ϕq(x(t)) is Õjq, THEN{ .
xF(t) = ÂjxF(t) + B̂jy(t)
rF(t) = ĈjxF(t) + D̂jy(t)

(11)

in which, Âj, B̂j, Ĉj, and D̂j are FD filter gain matrices. xF(t) ∈ Rnx , y(t) ∈ Rny , and
rF(t) ∈ Rnr represent the state vector, the output, and residual output vector of the event-
triggered FD filter. The fuzzy set is Õjβ, j = 1, 2, . . . , s, β = 1, 2, . . . , q, q is the number of

fuzzy sets. ϕ(x(t)) =
[
ϕ1(x(t)), ϕ2(x(t)), . . . , ϕq(x(t))

]T are the premise variables. The
firing strength of jth rule is expressed by interval sets:

Kj(x(t)) = [κ j(x(t)), κ j(x(t))] (12)

with κj(x(t)) =
q
Π

β=1
µ

Õjβ
(ϕβ(x(t))) ≥ 0, κj(x(t)) =

q
Π

β=1
µÕjβ

(ϕβ(x(t))) ≥ 0, µÑjλ
(ϕλ(x(t))) ≥

µ
Ñjλ

(ϕλ(x(t))) ≥ 0, κj(x(t)) ≥ κj(x(t)) ≥ 0, κj(x(t)) and κj(x(t)) represent, the bounds of

membership, where µ
Ñjλ

(ϕλ(x(t))) and µÑjλ
(ϕλ(x(t))) represent the bounds of the mem-

bership function, respectively. The event-triggered FD filter is designed as:
.
xF(t) =

r
∑

j=1
φ̃j(x(t))[ÂjxF(t) + B̂jy(t)]

rF(t) =
r
∑

j=1
φ̃j(x(t))[ĈjxF(t) + D̂jy(t)]

(13)

where φ̃j(x(t)) = φ
j
(x(t))κ j(x(t)) + φj(x(t))κ j(x(t)) ≥ 0,

r
∑

j=1
φ̃j(x(t)) = 1, while

φj(x(t)) ≥ 0 and φ
j
(x(t)) ≥ 0 are nonlinear functions used to represent the uncertainty of

the FD filter, satisfying
φ

j
(x(t)) + φj(x(t)) = 1 (14)

For the convenience of the following writing, using ρ̃i, φ̃j instead of ρ̃i(x(t)), φ̃j(x(t)).

Remark 2. The FD filter (13) proposed has two advantages. Firstly, the model has higher accuracy
by using IT2 T-S fuzzy theory to describe uncertainty effectively. Secondly, the FD filter is more
general as the object’s affiliation function and the fuzzy rules are not shared with the FD filter.

2.3. Fault Residual System (FRS)

In this section, the fault residual system is developed based on models (3) and (13).
The fault diagnosis problem is simplified to the problem of asymptotic tracking of resid-
uals and faults. Combination the ETS (5), and defining with ξ(t) =

[
xT(t) xT

F (t)
]T ,
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ω(t) =
[

ωT(t) f T(t) ωT(t− d(t))
]T , re(t) = rF(t)− f (t), the FRS can be represented

as: 
.
ξ(t) =

r
∑

i=1

r
∑

j=1
ρ̃iφ̃j

[
Aijξ(t) + BijHξ(t− τ(t)) + Bωijω(t)− Beijek(t)

]
re(t) =

r
∑

i=1

r
∑

j=1
ρ̃iφ̃j

[
Cijξ(t) + DijHξ(t− τ(t)) + Dωijω(t)− Deijek(t)

] (15)

Aij =

[
Ai 0
0 Âj

]
, Bij =

[
0

B̂jCi

]
, Bωij =

[
Bi B f i 0
0 0 B̂jDi

]
, Beij =

[
0
B̂j

]
,Cij =

[
0 Ĉj

]
,

Dij =

[
D̂jCi

0

]
, Dωij =

[
0 −I D̂jDi

]
, Deij = D̂j, H =

[
I 0

]
.

The target of this section is to design the FD filter (13) and triggering mechanism (5)
such that the FRS (15) satisfies asymptotically stable with the H∞ performance indicators.
In the meantime, the following conditions are satisfied:

(1) When ω̃(t) = 0, the FRS (15) is considered to be asymptotically stable.
(2) Under the condition of zero initial, re(t) contents ‖re(t)‖2 < γ‖ω̃(t)‖2, where γ > 0

bring about H∞ performance level.

2.4. FD Mechanism

Define the following FD mechanism.

J(t) =
{∫ t

0 rT
F (s)rF(s)ds

} 1
2

Jth = sup
w∈L2, f=0

{∫ Td
0 rT

F (s)rF(s)ds
} 1

2
(16)

where J(t) is the residual evaluation function, and Jth is the threshold, Td represents the
limited length of evaluation time. The fault detection mechanism is as follows:{

J(t) > Jth ⇒ with f aults⇒ alarm
J(t) ≤ Jth ⇒ no f aults.

(17)

Lemma 1. (Schur complement) [41] For the given matrix S =

[
S11 S12
S21 S22

]
< 0, where

S ∈ Rr∗r,S21 = ST
12, the following three sets of conditions and inequalities hold and are equivalent:

(1) S < 0;
(2) S11 < 0, S22 − ST

12S−1
11 S12 < 0;

(3) S22 < 0, S11 − ST
12S−1

22 S12 < 0.

Lemma 2. [42] For real matricesZ, X, Y with appropriate dimensions, in which the is symmetric,
then

Z + XK(t)Y + YTK(t)XT < 0 (18)

for all KT(t)K(t) ≤ I, there exists ε > 0, such that:

Z + εXXT + ε−1YTY < 0

Lemma 3. [43] Given a symmetric and positive matrix R̃, inequality (18) holds:

−
∫ t

t−τ

.
θ

T
(s)W̃

.
θ(s)ds ≤ 1

τ

 θ(t)
θ(t− τ(t))

θ(t− τ)

T −R̃ R̃ 0
∗ −2R̃ R̃
∗ ∗ −R̃

 θ(t)
θ(t− τ(t))

θ(t− τ)

 (19)
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Remark 3. It is worth noting that the fault residual system is built via IT2 T-S fuzzy model,
considering the event-triggered communication mechanisms, disturbances and network time delays.
In the existing work, there is less research on the IT2 T-S fuzzy network control system FD filtering
with event triggering, which is one of the innovative points in this section.

3. Main Conclusion
3.1. Stability Analysis

In this subsection, the following improvements will be made in the stability analysis
process to reduce the system conservativeness. First, a new Lyapunov–Krasovskii function
with fourfold integration is constructed; second, Wirtinger’s inequality is applied to process
the integral term, which is in the time derivative of the Lyapunov–Krasovskii function;
third, a relaxation matrix is introduced to deal with the premise variable mismatch problem.

Theorem 1. For given scalars 0 < ε < 1, 0 < τm ≤ τM, γ > 0, and the membership
functions satisfying w̃j − ψjm̃j ≥ 0(0 < ψj ≤ 1), if IT2 FRS (15) is asymptotically stable,
and achieving the expected H∞ performance level γ, then there exists parameter matrix P > 0,
Qi (i = 1, 2), Si > 0 (i = 1, 2), Ri > 0 (i = 1, 2, 3), Ti > 0 (i = 1, 2), Λi > 0 (i = 1, 2),
Âj, B̂j, Ĉj, D̂j and Wi > 0, (i = 1, 2, . . . , r), meanwhile, the following inequalities exist in the
appropriate dimensions:

Ξij −Wi < 0 (20)

ψiΞii − ψiWi + Wi < 0 (21)

ψjΞij + ψiΞji − ψiWj − ψjWi + Wi + Wj < 0, i < j (22)

for Ξij =

[
Ξ11

ij Ξ12
ij

∗ Ξ22
ij

]
,

in which Ξ11
ij =

[
Φ11

ij Φ12
ij

∗ Φ22
ij

]
, where Φ11

ij =


Φ11 HT R1 0 0 HT R3
∗ −2R1 R1 0 0
∗ ∗ Φ33 R2 0
∗ ∗ ∗ −2R2 0
∗ ∗ ∗ ∗ −2R3

,

Φ12
ij =


0 PBij −PBeij −PBωij
0 0 0 0
0 0 0 0

R2 0 0 0
R3 0 0 0

, Φ22
ij =


Φ66 0 0 0
∗ εCT

i Λ2Ci 0 Φ79
∗ ∗ −Λ1 0
∗ ∗ ∗ Φ99

,

Φ11 = PAij + AT
ij P + HT(Q1 + Q2)H − HT(R1 + R3)H, Φ33 = −Q1 − R1 − R2, Φ66 = −Q2 − R3,

Φ79 = εCT
i Λ2

[
0 0 Di

]
, ∆τ = τM − τm,Φ99 = −γ2 I + ε

[
0 0 Di

]TΛ2
[

0 0 Di
]
,

Ξ12
ij =



τm√
2

ST
1 ϕ1

∆τ√
2

ST
2 ϕ1 τmRT

1 ϕ1 ∆τRT
2 ϕ1 τMRT

3 ϕ1
τ2

m√
6

TT
1 ϕ1

∆τ2
√

6
TT

2 ϕ1 Cij

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

τm√
2

ST
1 ϕ2

∆τ√
2

ST
2 ϕ2 τmRT

1 ϕ2 ∆τRT
2 ϕ2 τMRT

3 ϕ2
τ2

m√
6

TT
1 ϕ2

∆τ2
√

6
TT

2 ϕ2 Dij

− τm√
2

ST
1 ϕ3 − ∆τ√

2
ST

2 ϕ3 −τmRT
1 ϕ3 −∆τRT

2 ϕ3 −τMRT
3 ϕ3 − τ2

m√
6

TT
1 ϕ3 −∆τ2

√
6

TT
2 ϕ3 −Deij

τm√
2

ST
1 ϕ4

∆τ√
2

ST
2 ϕ4 τmRT

1 ϕ4 ∆τRT
2 ϕ4 τMRT

3 ϕ4
τ2

m√
6

TT
1 ϕ4

∆τ2
√

6
TT

2 ϕ4 Dωij


Ξ22

ij = diag
{
−S1 −S2 −R1 −R2 −R3 −T1 −T2 −I

}
,

ϕ1 = HAij, ϕ2 = HBij, ϕ3 = HBeij, ϕ4 = HBωij.
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Proof. For the FRS (15), construct the following Lyapunov–Krasovskii function:

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) (23)

where
V1(t) = ξT(t)Pξ(t),

V2(t) =
∫ t

t−τm
ξT(s)HTQ1Hξ(s)ds +

∫ t
t−τM

ξT(s)HTQ2Hξ(s)ds,

V3(t) = τm
∫ t

t−τm

∫ t
s

.
ξ

T
(v)HT R1H

.
ξ(v)dvds + (τM − τm)

∫ t−τm
t−τM

∫ t
s

.
ξ

T
(v)HT R2H

.
ξ(v)dvds

+τM
∫ t

t−τM

∫ t
s

.
ξ

T
(v)HT R3H

.
ξ(v)dvds

,

V4(t) =
∫ 0
−τm

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTS1H

.
ξ(s)dsdλdθ +

∫ −τm
−τM

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTS2H

.
ξ(s)dsdλdθ,

V5(t) = τm
∫ 0
−τm

∫ 0
θ

∫ 0
λ

∫ t
t+k

.
ξ

T
(s)HTT1H

.
ξ(s)dsdkdλdθ

+(τM − τm)
∫ −τm
−τM

∫ 0
θ

∫ 0
λ

∫ t
t+k

.
ξ

T
(s)HTT2H

.
ξ(s)dsdkdλdθ

.

and P = PT > 0, Qi > 0, Si > 0, Ti > 0, i = 1, 2, Rj > 0, j = 1, 2, 3.
Along the trajectory of the FRS (15), the time derivative of V(t) is:

.
V(t) =

.
V1(t) +

.
V2(t) +

.
V3(t) +

.
V4(t) +

.
V5(t) (24)

where
.

V1(t) = 2ξT(t)P
.
ξ(t),

.
V2(t) = ξT(t)HT(Q1 + Q2)Hξ(t)− ξT(t− τm)HTQ1Hξ(t− τm)− ξT(t− τM)HTQ2Hξ(t− τM),
.

V3(t) =
.
ξ

T
(t)HT

[
τ2

mR1 + (τM − τm)
2R2 + τ2

MR3

]
H

.
ξ(t)− τm

∫ t
t−τm

.
ξ

T
(s)HT R1H

.
ξ(s)ds

−(τM − τm)
∫ t−τm

t−τM

.
ξ

T
(s)HT R2H

.
ξ(s)ds− τM

∫ t
t−τM

.
ξ

T
(s)HT R3H

.
ξ(s)ds

,

.
V4(t) = τ2

m
2

.
ξ

T
(t)HTS1H

.
ξ(t) + (τM−τm)2

2

.
ξ

T
(t)HTS2H

.
ξ(t)−

∫ 0
−τm

∫ t
t+θ

.
ξ

T
(s)HTS1H

.
ξ(s)dsdθ

−
∫ −τm
−τM

∫ t
t+θ

.
ξ

T
(s)HTS2H

.
ξ(s)dsdθ

,

.
V5(t) = τ4

m
6

.
ξ

T
(t)HTT1H

.
ξ(t) + (τM−τm)4

6

.
ξ

T
(t)HTT2H

.
ξ(t)

−τm
∫ 0
−τm

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTT1H

.
ξ(s)dsdλdθ − (τM − τm)

∫ −τm
−τM

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTT2H

.
ξ(s)dsdλdθ

.

The integral term in
.

V3(t), which we treat by applying Lemma 3, yields

− τm

∫ t

t−τm

.
ξ

T
(s)HT R1H

.
ξ(s)ds ≤

 Hξ(t)
Hξ(t− τ1(t))
Hξ(t− τm)

T −R1 R1 0
∗ −2R1 R1
∗ ∗ −R1

 Hξ(t)
Hξ(t− τ1(t))
Hξ(t− τm)

 (25)

− (τM − τm)
∫ t−τm

t−τM

.
ξ

T
(s)HT R2H

.
ξ(s)ds ≤

 Hξ(t− τm)
Hξ(t− τ2(t))
Hξ(t− τM)

T −R2 R2 0
∗ −2R2 R2
∗ ∗ −R2

 Hξ(t− τm)
Hξ(t− τ2(t))
Hξ(t− τM)

 (26)

− τM

∫ t

t−τM

.
ξ

T
(s)HT R3H

.
ξ(s)ds ≤

 Hξ(t)
Hξ(t− τ3(t))
Hξ(t− τM)

T −R3 R3 0
∗ −2R3 R3
∗ ∗ −R3

 Hξ(t)
Hξ(t− τ3(t))
Hξ(t− τM)

 (27)

Furthermore, in a bid to obtain stability conditions with low conservativeness, the
following slack matrix is introduced:

r

∑
i=1

r

∑
j=1

m̃i(m̃j − w̃j)Wi = 0, Wi = WT
i , (i = 1, 2, . . . , r) (28)
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From (23) to (28), we can obtain
r
∑

i=1

r
∑

j=1
m̃iw̃jΞij

=
r
∑

i=1

r
∑

j=1
m̃i(m̃j − w̃j + ψjm̃j − ψjm̃j)Wi +

r
∑

i=1

s
∑

j=1
m̃iw̃jΞij

=
r
∑

i=1
m̃2

i (ψiΞii − ψiWi + Wi)

+
r−1
∑

i=1

r
∑

j=i+1
m̃im̃j(ψjΞij − ψjWi + Wi + ψiΞji − ψiWj + Wj) +

r
∑

i=1

r
∑

j=1
m̃i(w̃j − ψjm̃j)(Ξij −Wi)

(29)

under w̃j − ψjm̃j ≥ 0 for all j. Combined with the event-triggering mechanism (5), we can
derive

.
V(t) + rT

e (t)re(t)− γ2ω̃T(t)ω̃(t) ≤
r

∑
i=1

r

∑
j=1

m̃iw̃jζ
T(t)Ξijζ(t) (30)

where
ζT(t) =

[
η1(t) η2(t)

]
, ζ1(t) =

[
ξT(t) ξT(t− τ1(t)) ξT(t− τm)HT ξT(t− τ2(t))

]
,

ζ2(t) =
[

ξT(t− τ3(t)) ξT(t− τM)HT ξT(t− τ(t))HT eT
k (t) ω̃T (t)

]
.

By using Schur complement, Ξij ≤ 0, hence, we have

.
V(t) + rT

e (t)re(t)− γ2ω̃T(t)ω̃(t) ≤ 0 (31)

Integrating from 0 to ∞ simultaneously on the left and right sides of (30), we can
obtain: ∫ ∞

0
rT

e (t)re(t)dt < γ2
∫ ∞

0
ω̃T(t)ω̃(t)dt (32)

Equation (32) representative ‖re(t)‖2 < γ‖ω̃(t)‖2 holds for any nonzero ω̃(t) ∈
L2[0, ∞). Thus, the FRS (15) is under the restriction of Theorem 1 is asymptotically stable
and satisfies the given H∞ performance index γ. �

Remark 4. The Lyapunov–Krasovskii function (23) constructed contains multiple integrals, such
as triple, quadruple integrals. The more system and time delay information are considered, and the
amplification of the integral term processing is avoided effectively. Convergence of global asymptotic
stability is guaranteed. Moreover, more recently, the introduction of the relaxation matrix (28)
makes the obtained stability criterion with less conservative.

3.2. Fault Diagnosis Filter Design

In this section, solving the parameters of the FD filter is transformed into the prob-
lem of matrix convex optimization, which can be solved by MATLAB. Using the matrix
transformation and deformation, the proposed filter design method is implemented.

Theorem 2. For given scalars 0 < ε < 1, 0 < τm ≤ τM, γ > 0, and the membership functions
satisfying w̃j − ψjm̃j ≥ 0, (0 < ψj ≤ 1), if the IT2 FRS (15) is asymptotically stable and meets the
expected H∞ performance level γ, then there exists parameter matrix P > 0, Qi > 0 (i = 1, 2),
Si > 0 (i = 1, 2), Ri > 0 (i = 1, 2, 3), Ti > 0 (i = 1, 2), Λi > 0 (i = 1, 2), Ãj, B̃j, C̃j, D̃j and
W̃T

i = W̃i have suitable dimensions satisfying the following inequality:

Ξ̃ij − W̃i < 0 (33)

ψiΞ̃ii − ψiW̃i + W̃i < 0 (34)

ψjΞ̃ij + ψiΞ̃ji − ψiW̃j − ψjW̃i + W̃i + W̃j < 0, i < j (35)
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for Ξ̃ij =

[
Ξ̃

11
ij Ξ̃

12
ij

∗ Ξ̃
22
ij

]
,

in which Ξ̃
11
ij =

[
Φ̃

11
ij Φ̃

12
ij

∗ Φ̃
22
ij

]
, where Φ̃

11
ij =


Φ̃11 Φ̃12 R1 0 0 R3
∗ Φ̃22 0 0 0 0
∗ ∗ −2R1 R1 0 0
∗ ∗ ∗ Φ̃44 R2 0
∗ ∗ ∗ ∗ −2R2 0
∗ ∗ ∗ ∗ ∗ −2R3

,

Φ̃
12
ij =



0 B̃jCi −B̃j P1Bi P1B f i B̃jDi
0 B̃jCi −B̃j YBi YB f i B̃jDi
0 0 0 0 0 0
0 0 0 0 0 0

R2 0 0 0 0 0
R3 0 0 0 0 0


, Φ̃

22
ij =



Φ̃77 0 0 0 0 0
∗ Φ̃88 0 0 0 Φ̃812
∗ ∗ −Λ1 0 0 0
∗ ∗ ∗ −γ2 I 0 0
∗ ∗ ∗ ∗ −γ2 I 0
∗ ∗ ∗ ∗ ∗ Φ̃1212


,

Φ̃11 = P1 Ai + P1∆A + AT
i P1 + AT

i ∆P + Q1 + Q2 − R1 − R3, Φ̃12 = AT
i Y + Ãj + ∆ATY,

Φ̃22 = Ãj + ÃT
j , Φ̃44 = −Q1 − R1 − R2, Φ̃77 = −Q2 − R3, Φ̃88 = εCT

i Λ2Ci,

Φ̃812 = εCT
i Λ2Di, Φ̃1212 = −γ2 I + εDT

i Λ2Di.

Ξ12
ij =



τm√
2

S1 Ai
∆τ√

2
S2 Ai τmR1 Ai ∆τR2 Ai τMR3 Ai

τ2
m√
6

T1 Ai
∆τ2
√

6
T2 Ai 0

0 0 0 0 0 0 0 C̃j
0
...
0

5

0
...
0

5

0
...
0

5

0
...
0

5

0
...
0

5

0
...
0

5

0
...
0

5

0
...
0

5

0 0 0 0 0 0 0 D̃jCi
0 0 0 0 0 0 0 −D̃j

τm√
2

S1Bi
∆τ√

2
S2Bi τmR1Bi ∆τR2Bi τMR3Bi

τ2
m√
6

T1Bi
∆τ2
√

6
T2Bi 0

0 0 0 0 0 0 0 −I
0 0 0 0 0 0 0 D̃jDi



,

Ξ̃
22
ij = diag

{
−S1 −S2 −R1 −R2 −R3 −T1 −T2 −I

}
.

Based on the above condition for the establishment of linear matrix inequality, the
filter parameter matrix is obtained as follows

Âj = Y−1 Ãj, B̂j = Y−1B̃j, Ĉj = C̃j, D̂j = D̃j. (36)

Proof. On the basis of Theorem 1, we set P =

[
P1 P2
∗ P3

]
, J1 = diag

{
I, P2P−1

3

}
, J2 =

diag{J1, I . . . I}

18

}.

Then, we have to multiply the left and right sides of Equations (20)–(22) by J2 and JT
2 .

It yields that
Ξ̃ij −Wi + ΣT

1 ∆ f Σ2 + ΣT
2 ∆ f Σ1 < 0 (37)

The application of Lemma 2 achieves the conversion of (37) to (38).

Ξ̃ij −Wi + ε−1
1 ΣT

1 δ2Σ1 + ε1ΣT
2 Σ2 < 0 (38)

To facilitate the simplification and operation of the matrix, the following expression is
made:

W̃i = J2Wi JT
2 , Y = P2P−1

3 PT
2 ,
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Ãj = P2 ÂjP−1
3 PT

2 , B̃j = P2B̂j, C̃j = ĈjP−1
3 PT

2 , D̃j = D̂jP−1
3 PT

2 .

Bringing them into Equations (20)–(22), we can obtain Equations (33)–(35).
By using Schur Complement Lemma, the matrix P is equivalent to P1 − P2P−1

3 PT
2 =

P1 −Y > 0. Furthermore, equivalently under transformation PT
2 P3x f (t), the parameters of

the fault detection filter can be yielded as follows:

Âj = P−T
2 P3(P−1

2 ÃjP−T
2 P3)P−1

3 PT
2 = Y−1 Ãj, B̂j = P−T

2 P3(P−1
2 B̃j) = Y−1B̃j,

Ĉj = (C̃jP−T
2 P3)P−1

3 PT
2 = C̃j, D̂j = (D̃jP−T

2 P3)P−1
3 PT

2 = D̃j.

According to Theorem 2, we determine the FD filter parameters by solving the convex
optimization problems:

min γ subject to the inequalities (33)–(35).
The proof is completed. �

4. Simulation

In this section, we provide several examples to illustrate the usefulness of the designed
IT2 fuzzy FD approach and to compare it with the existing results in [44,45] to show the
advantages of our method.

Two rules have been considered in the following IT2 fuzzy system (system parameters
are borrowed from [46])

.
x(t) =

2
∑

i=1
ρ̃i(x(t))[Aix(t) + Biω(t) + B f i f (t)]

y(t) =
2
∑

i=1
ρ̃i(x(t))[Cix(t) + Diω(t)]

(39)

with A1 =

[
−1 0.2
−0.9 0.15

]
, A2 =

[
−0.4 0.2
−0.8 −1.10

]
, B1 =

[
0.1
0.2

]
, B1 =

[
0.4
0.9

]
, B f 1 =[

−0.1
0.01

]
, B1 =

[
−0.1
0.01

]
, C1 =

[
0.1 0.1

]
, C2 =

[
0.1 0.2

]
, D1 = D2 = 0.01. The

membership functions of the plant and fault detection filter are depicted in Table 2. The
nonlinear functions are chosen as, i.e., ρ

i
(x1(t) = sin(x2

1(t)), ρi(x1(t) = 1− sin(x2
1(t)),

i = 1, 2, and φ
j
(x(t)) = φj(x(t)) = 0.5 for j = 1, 2.

Table 2. Membership functions for plant and filter.

The Upper Membership Function The Lower Membership Function

v1(x1(t)) =
0.27−0.01x2

1(t)
0.27

v2(x1(t)) =
x2

1(t)
9

v1(x1(t)) =
0.27−0.03x2

1(t)
0.27

v2(x1(t)) =
x2

1(t)
27

κ1(x1(t)) = exp
(
− x2

1(t)
8

)
κ2(x1(t)) = 1− κ1(x1(t))

κ1(x1(t)) = exp
(
− x2

1(t)
4

)
κ2(x1(t)) = 1− κ1(x1(t))

In order to derive the gain matrices of the FD filter in (7), we assume the parameter
sets (τm, τM, ε, `l , `2) = (0.01, 0.1, 0.5, 0.7, 0.5). Then by solving the conditions in Theorem
2, we can obtain

Â1 =

[
−1.6738 0.1545
−0.5992 −0.3587

]
, Â2 =

[
−0.6885 −0.1969
0.8140 −2.3963

]
,

B̂1 =

[
−2.8318× 10−12

9.3801× 10−13

]
, B̂2 =

[
−1.7555× 10−12

−9.6037× 10−13

]
,
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Ĉ1 =
[

0.1087 −0.0306
]
, Ĉ2 =

[
0.0980 −0.0180

]
,

D̂1 = 1.2609× 10−12, D̂2 = 1.6357× 10−12, Λ = 5.3637× 10−12.

Besides, the H∞ performance is calculated as γ = 2.4227. According to the FD
mechanism, we set the fault signal as

f (t) =
{

2, 20 < t < 30
0, others

(40)

and the external disturbance ω(t) is stochastic noise that belongs to standard normal
distribution. Let the initial states be x0 = x̂0 =

[
0 0

]T . Then, we can derive Figures 2–4.
Specifically, Figure 2 depicts the actual transmission instants and intervals under the
event-triggered scheme. In the simulation time (50 s) and sampling period (0.1 s), only
20.0% of sampled data are transmitted over the wireless network. Clearly, it saves many
communication resources. Figures 3 and 4, respectively, show the trajectories of the error
re(t) without/with fault.
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Figure 2. Transmission instants and intervals.
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Figure 4. The trajectories of re(t) with fault.

Moreover, the threshold Jth can be calculated without fault, i.e., Jth = 4.0711× 10−13.

Then, it is not hard to obtain that J(t) =
{∫ 24.9

0 rT
F (s)rF(s)ds

} 1
2
= 4.0826× 10−13 > Jth.

This means that the fault can be detected after 4.9 s. Further, Figure 5 illustrates the fault
detection results demonstrating that the proposed FD approach is effective.

0 5 10 15 20 25 30 35 40 45 50

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

J
(t

)

10
-12

Figure 5. The trajectories of evaluation function with/without fault.

Following the above steps, considering the different types of faults, we performed
three sets of simulations. Then, we produced Table 3 and derived Figures 6 and 7.



Machines 2022, 10, 347 14 of 17

Table 3. Verification for different types of faults.

System
Parameters

Fault Signal Trigger
Mechanism

Comparison of
Trigger Rate Comparison of

Detection Time
(Triggering Times)

Exp a [44] f (t) =
{

2 sin(t), 30 < t < 60
0, others

cycle trigger 100% 23.9%
0.5 s 0.3 s(1000) (239)

Exp b [45] f (t) =
{

1, 1.5 < t < 2.3
0, others

adaptive
Trigger

31% 26%
0.19 s 0.13 s(31) (26)

Exp c [47] f (t) =
{

20 sin(t− 2)(1− e
−t+2

4 ), 10 < t < 30
0, others

cycle trigger 100% 26.3%
* 0.6 s3000 789

* This is not explicitly stated in [47].
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Figure 7. The trajectories of evaluation function with/without fault for experiment (a–c).

Experiment a uses the same system parameters and fault types as those the in the
literature [44]. During the simulation time (100 s) with the sampling period (0.1 s), the
cycle triggering time is 1000, and the events triggering time is 239. Simultaneously, the
results show that the proposed method obtains a faster detection time. In experiment b, the
step signal is used to represent the sudden fault. The final time is 10 s, and the sampling
period is 0.1 s. With the same experimental conditions, the proposed method has fewer
triggers and a faster detection speed. It can be seen that the structure of the event triggering
mechanism we used is simpler. More recently, in order to discuss the effectiveness of the
method for time-varying faults. Experiment c was performed by considering an inverted
pendulum on a cart. It readjusts that the experimental time is 30 s and sampling period is
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0.01 s, and only 26.3% of sampled data is transmitted over the wireless network. In Figure 7,
one can see that the fault can be detected after 0.6 s.

5. Conclusions

The event-triggered FD problem of IT2 T-S fuzzy nonlinear networked systems has
been studied in this paper. A fault residual system is established by integrating the IT2
fuzzy theory, external disturbance, event-triggered scheme, time delays and parameter
uncertainties. In particular, the designed FD filter premise variable could be different from
NNSs. The stability conditions and performance criterion have been proposed with the aid
of the Lyapunov theory. At last, the validity has been verified by simulation experiments.
The results illustrate that the proposed FD method can achieve rapid detection of faults, and
the event-triggered scheme reduces the transmission rate and saves wireless communication
resources. The responsiveness to different types of faults highlights its low conservativeness.
The event-triggered FD problem of NNSs with random cyberattacks and packet losses will
be further investigated.
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