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Abstract: The reliability and safety of rotating equipment depend on the performance of bearings. For
complex systems with high reliability and safety needs, effectively predicting the fault data in the use
stage has important guiding significance for reasonably formulating reliability plans and carrying out
reliability maintenance activities. Many methods have been used to solve the problem of reliability
prediction. Due to its convenience and efficiency, the data-driven method is increasingly widely
used in practical reliability prediction. In order to ensure the reliability of bearing operation, the
main objective of the present study is to establish a novel model based on the optimized maximum
correlation kurtosis deconvolution (MCKD) and long short-term memory (LSTM) recurrent neural
network to realize early bearing fault warnings by predicting bearing fault time series. The proposed
model is based on the lifecycle vibration signal of the bearing. In the first step, the cuckoo search (CS)
is utilized to optimize the parameter filter length and deconvolution period of MCKD, considering
the influence of periodic bearing time series, and to improve the fault impact component of the
optimized MCKD deconvolution time series. Then the LSTM learning rate is selected according to the
deconvolution time series. Finally, the dataset obtained through various preprocessing approaches
is used to train and predict the LSTM model. The analyses performed using the XJTU-SY bearing
dataset demonstrate that the prediction results are in good consistency with real fault data, and the
average prediction accuracy of the optimized MCKD–LSTM model is 26% higher than that of the
original time series.

Keywords: deep learning; time series prediction; long short-term memory; recurrent neural network;
maximum correlation kurtosis deconvolution; cuckoo search

1. Introduction

Rolling element bearing, which is also called “industrial joint”, has been widely used
in diverse engineering fields, including transmission and hoisting, wind power generation,
and aerospace [1–3]. Since bearings are among the core components of rotating equipment,
it is of significant importance to investigate and predict bearing faults [4–6]. Studies show
that bearing performance directly affects the reliability and safety of heavy machinery.
Accordingly, accurate prediction of fault time series in bearings is an essential factor in
achieving safe industrial production [7–9].

Currently, the bearing-fault time series is created using the convolution of vibration
signals and different noise signals in the signal transmission process. However, this method
affects the accuracy of the prediction model after training. In order to resolve this problem,
the first part of this study is dedicated to preprocessing the original time series. In this
regard, Dong et al. [10] combined the spectral wavelet transform, detrended fluctuation
analysis and proposed a non-iterative denoising method to filter nonlinear vibration signals.
Moreover, Yan et al. [11] explored the discrete convolution wavelet transform (DCWT)

Machines 2022, 10, 342. https://doi.org/10.3390/machines10050342 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10050342
https://doi.org/10.3390/machines10050342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-2752-0308
https://doi.org/10.3390/machines10050342
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10050342?type=check_update&version=2


Machines 2022, 10, 342 2 of 17

to decompose and reconstruct signals in signal processing of swiftly changing signals.
Although remarkable achievements have been realized, the selection capacity of the wavelet-
based function is severely limited [12]. Sharma and Parey [13] employed the variational
mode decomposition (VMD) to handle the multi-component modulated non-stationary
vibration signal of the transmission. To discover the modal properties of engineering
structures, Bagheri et al. [14] proposed a dynamic response decomposition scheme based
on the VMD. Furthermore, Zhang et al. [15] investigated the fractal properties of vibration
signals of rolling element bearings and developed an effective method to assess and
diagnose the bearing defects. Further investigations revealed that the decomposition mode
parameter K and the penalty coefficient η have a significant impact on the decomposition
effect, and should be established to solve the varying parameters. To alleviate the mode
mixing of complicated vibration signals, Zhao X et al. [16] proposed an approach based
on the single-objective salp swarm algorithm to optimize the penalty coefficient η of the
VMD. Feng et al. [17] used the whale optimization algorithm (WOA) to optimize VMD
parameters, achieve adaptive decomposition, and reduce noise in vibration signals. On the
other hand, the decomposition parameters of VMD should be set according to the properties
of the signal. More specifically, selecting inappropriate parameters may result in over-
decomposition and under-decomposition [18]. McDonald et al. [19] established maximum
correlated kurtosis deconvolution (MCKD), which is an ideal method to process early
bearing fault signals with low signal-to-noise ratio and periodic impact characteristics [20].
To achieve composite fault diagnosis, Hong et al. [21] used adaptive MCKD to decouple
the fault information and the noise-reduction signal. Zhang et al. [22] suggested a signal
noise-reduction method based on the Teager energy operator and the MCKD. Recently, the
filter length L and the shift order M in the MCKD have been optimized accordingly. Lyu
et al. [23] optimized the filter length and deconvolution period of the MCKD for composite
fault diagnosis of gear-tooth wear and bearing outer-ring fault using the quantum genetic
algorithm (QGA). To achieve bearing composite fault diagnosis and estimate the prior
period T, Miao et al. [24] used the autocorrelation of the envelope signal. To obtain the best
noise-reduction performance and select the filter length L using MCKD, Yang et al. [25]
applied permutation entropy as the measurement index.

In order to develop a bearing-fault time series prediction model, Pan et al. [26] calcu-
lated the upper and lower boundaries of unknown elevation on a terrain profile using the
double multiplicative neuron (DMN) model and the modified particle swarm optimization
(MPSO) technique. Moreover, Raubitzek and Neubauer [27] presented a fractal interpola-
tion method to predict the time series. For long-term time series prediction, Liu et al. [28]
proposed dual-stage two-phase (DSTP)-based RNN (DSTP-RNN) and DSTP-RNN-II algo-
rithms. Savad koohi et al. [29] predicted the human fall risk using the depth neural network
model. Meanwhile, Zhang et al. [30] introduced high-level abstract features into an LSTM
network and proposed the CEEMD-PCA-LSTM hybrid prediction model to predict time
series. Che et al. [31] proposed the 1d-CNN model for regression analysis of time series
samples, and then employed bidirectional long short-memory (Bi-LSTM) to establish a
performance-deterioration model and predict the performance decline over time. Recently,
Niu and Yang [32] proposed Dempster–Shafer regression technology to predict time series
in diverse problems.

Based on the literature survey, the main objective of the present study is to take the
strong noise-reduction effect of the MCKD in periodic signals to denoise the bearing-fault
time series and acquire the deconvolution time series. Then the deconvolution time series
are used to train long short-term memory recurrent neural networks and establish the
optimized MCKD–LSTM prediction model to predict the bearing-fault time series.

This article is organized as follows: Section 2 reviews the relevant methods. In
Section 2.1,the basics of maximum correlated kurtosis deconvolution in signal processing
are reviewed and the performance of noisy sample reconstruction is analyzed. Then pa-
rameters of the CS optimization are introduced in Section 2.2. The long short-term memory
recurrent neural network for predicting bearing-fault time series is introduced in Section 2.3.
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The cuckoo search for optimizing MCKD is analyzed in Section 3. The effectiveness of
LSTM in predicting the fault time series of bearing signals is verified experimentally in
Section 4. Finally, the main achievements and conclusions are summarized in Section 5.

2. Correlation Method
2.1. Maximum Correlated Kurtosis Deconvolution

Mcdonald et al. [19] proposed maximum correlated kurtosis deconvolution (MCKD)
and successfully applied this method in gear-flaking fault diagnosis by considering the
impact and periodic characteristics of the fault information. In this algorithm, y represents
the impulse signal, h is the response of the y signal after passing the transmission path,
and x denotes the signal convoluted from various signals on the transmission path. The
mathematical correlation between these parameters can be expressed as follows:

x = h ∗ y (1)

The main objective of MCKD is to find a finite impulse response (FIR) filter to solve
the input signal y through the output signal x. This can be expressed as follows:

y = f ∗ x =
L

∑
k=1

fkxn−k+1 (2)

where f = [f 1,f 2, . . . ,f L]T is the filter factor of the length L.
In MCKD, the maximum correlation kurtosis is considered as the evaluation criterion:

O(CKM(T)) =

N
∑

n=1
(

M
∏

m=0
y(n−mT))

2

(
N
∑

n=1
yn2)

M+1 (3)

In order to obtain the optimal inverse filter coefficient f, the first derivative of the
objective function should become zero.

d
d fk

CKM(T) = 0, k = 1, 2, · · · , L (4)

Consequently, the optimum filter coefficient can be obtained in the form below:

f =

∥∥y2
∥∥

2‖β‖2 (X0XT
0 )
−1 M

∑
m=0

(XmTαm) (5)

The main steps to realize MCKD are as follows:

(1) Determine the filter length L, the order of shift M, and period T of the impact signal.
(2) Calculate X0X0

T and Xm
T matrices of the original signal x(n).

(3) Obtain the filtered output signal y(n).
(4) Calculate αm and β according to y(n).
(5) Update the filter coefficient f.

If the signal f before and after filtering conforms to the condition, the iteration ends,
and the calculation continues from step (3).

The deconvolution signal y of the actual acquisition signal x can be obtained by
substituting the obtained inverse filter coefficients.

2.2. Cuckoo Search

The cuckoo search [33] refers to a heuristic search algorithm that integrates the Lévy
flights theory with the parasitic behavior of cuckoos. It has superior characteristics, includ-
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ing few parameters and fast convergence. The cuckoo search consists of the following three
ideal rules:

(1) Each cuckoo lays only one egg at a time and places the eggs in a randomly selected
nest, which is also known as a host nest.

(2) The parasitic nest with the highest quality eggs will be retained for the next generation.
(3) The number of possible nests is fixed, and the chance of discovering host eggs in a

nest is p.

When the host bird discovers the host egg, it either throws it out or abandons the nest
to establish a new one in a new site.

After randomly generating n nest placements, a new nest location is established using
the Lévy flights search strategy. This can be mathematically expressed as follows:

Xw+1
i = Xw

i + α0
φ× µ

|ν|1/β
(Xw

i − Xw
b ) (6)

where Xw+1i and Xwi signify the ith cuckoo’s nest site in the w and w + 1 generations,
respectively. Moreover, Xwb is the optimal nest location in the current search. The parameter
α0 reflects the step size. In the present study, the step size is set to α0 = 0.01. µ and ν are
random values generated using the normal distribution, and the default value of H is 0.5.

During the calculations, the nest with the higher fitness value is kept when the new
nest location is found using the Lévy flight search strategy. Then, based on the discovery
probability p, a number of the nest positions are eliminated, and a new nest position
is constructed using the preferred random walk search strategy. This can be expressed
as follows:

Xw+1
i = Xw

i + r(Xw
j − Xw

k ) (7)

where r is a random number between 0 and 1, and Xwj and Xwk are two candidate solutions
that are randomly selected from the current population.

2.3. Long Short-Term Memory Recurrent Neural Network

In this section, the gating mechanism is employed in the long short-term memory
(LSTM) recurrent neural network [34]. It is worth noting that this mechanism has been
frequently used to process time series signals. LSTM can be mathematically expressed
as follows:

2.3.1. Forward Calculation Method of LSTM

Figure 1 indicates that for a given time series signal x = (x1, x2, . . . , xt) and a hidden
layer sequence ht−1 = (h1, h2, . . . , ht−1), the candidate state value c̃t, input gate value it,
forgetting gate value f t, output gate value ot, memory cell value ct, hidden layer sequence
ht, and the output sequence yt = (y1, y2, . . . , yt) at time t can be determined using the
conventional LSTM model.

2.3.2. Reverse Computation Method of LSTM

The calculations of the LSTM training algorithm can be mainly summarized in the
following four steps:

(1) The output value of each neuron is calculated forward f (y) = f (wTx)
(2) The cost function is the mean square deviation function J, and the error term δj value

of each neuron is calculated inversely as follows:

J =
1

2N

N

∑
i=1
‖yi − f (y)‖

2

(8)

δT
t = (yi − f (y)) (9)

δT
o,t = δT

t tanh(ct)ot(1− ot) (10)
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δT
f ,t = δT

t ot(1− tanh(ct)
2)ct−1 ft(1− ft) (11)

δT
f ,t = δT

t ot(1− tanh(ct)
2)c̃tit(1− it) (12)

δT
f ,t = δT

t ot(1− tanh(ct)
2)it ft(1− c̃2

t ) (13)

(3) Reverse error gradient calculation from the following expression:

∆E = δj f ′(y) (14)

(4) Determine the weight difference ∆w:

∆w = η•∆E•x (15)

where η is the learning rate, which is set to 0.01 in all calculations.
In the present study, the mean square error (MSE) is used as the measuring standard to

evaluate the accuracy of the prediction model. By calculating the MSE of the training and
test sets, the fitting and prediction accuracy of the model can be analyzed quantitatively.

Figure 1. Reconstructed samples of a noisy voiced frame.

3. Parameter Optimization Based on the Cuckoo Search

As shown in Figure 2, due to noise generation inherent to the operation of rotating
systems under industrial environments, it is necessary to preprocess the bearing data before
predicting the bearing-fault time series, so as to further improve the prediction accuracy
of bearing-fault time series. Typically, because the bearing signal has both periodicity and
impact, the fault signal and noise can be effectively separated using this characteristic. The
main reason for choosing MCKD is that it takes the maximization of correlation kurtosis
as the evaluation standard, and its essence is to find a final impulse response (FIR) filter.
From this process, it can be observed that MCKD takes into account the periodicity and
impact of fault signal to denoise. When utilizing MCKD to denoise bearing-fault time
series, specific hyperparameters [L, T] must be adjusted to achieve optimal performance.
Classically, in the relevant condition-monitoring reference, this process is addressed in an
empirical manner to maximize the final diagnostic performance. However, this method



Machines 2022, 10, 342 6 of 17

leads to a high risk of over-fitting; that is, MCKD is forced to give priority to those modes
that provide higher diagnostic performance, rather than those that better describe the
original signal according to the reconstructed fitness function. On the other hand, in most
cases, several hyperparameter-tuning strategies are classically proposed to optimize the
hyperparameter for a single model criterion and obtain a high-performance model. In this
sense, the challenge of the proposal is to realize the hyperparameter adjustment program
by considering the impact of highlighting the fault signal. Therefore, a heuristic search
algorithm, cuckoo search (CS), is used to adjust the hyperparameter of MCKD, in which
the fitness function of CS is focused on maximizing the crest factor of envelope spectrum
(Ec) in the reconstruction process.

Figure 2. Flow chart of the prediction process of rolling element bearing fault time series based on
the optimized MCKD–LSTM.

When using CS to optimize the parameters, it is important to choose the right fitness
function based on the signal characteristics and the periodic impact signal of the bearing
signal, which may differ from the noise signal. In this regard, Zhang et al. [35] proposed a
dimensionless crest factor of the envelope spectrum (Ec) index that takes into consideration
the periodic properties of fault information in vibration signals. Assuming the signal
envelope spectrum amplitude X(j) (j = 1, 2, . . . , M), the index Ec can be defined as follows:

Ec =
emax

erms
(16)

where emax is the highest value of the envelope signal obtained after Hilbert demodulation
in the range [n × fr, fs/2], f r is the bearing signal’s frequency conversion, and fs is the
sampling frequency. Moreover, erms denotes the effective value, which is defined as the
effective value of the signal following the Hilbert demodulation. In the present study,
rotating frequency multiple of bearing is set to n = 2 to prevent the influence of fr on Ec.

It should be indicated that the envelope spectrum peak factor Ec of the envelope signal
acquired by the Hilbert demodulation is determined using the MCKD operation on the
fault signal in an arbitrary nest Xi location. Therefore, Ec reflects the fitness value of the
bird nest. When the periodic impact occurs in the decomposition results, the envelope
spectrum peak factor Ec is significant and the decomposition effect is optimal. On the other
hand, for a relatively small envelope spectrum peak factor Ec, the decomposition effect is
negligible. Accordingly, the greatest value of Ec is considered as the optimization object.

In fact, according to [36], heuristic search algorithms, such as CS, have been widely
used and preferred, because the solution is based on random optimization method. In
addition, one of the main advantages of utilizing CS is that it is simple and easy and does
not need a large number of parameters to solve the problem, because for the optimization
algorithm itself, fewer parameters can allow researchers to spend less time finding the best
combination of parameters. Secondly, the experimental results are compared by testing
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examples, such as standard test functions; this shows that the results of CSare superior to
those of genetic algorithm (GA) and particle swarm optimization (PSO)algorithm, and has
also have greater robustness.

Finally, the LSTM neural network is a good method to deal with time series. The
function of an LSTM memory unit is to make the information flow effectively. Considering
the data characteristics of finite sample points of univariate fault time series and the design
principle of simplifying recurrent neural network, the overall framework of the LSTM
prediction model constructed in this paper is shown in Figure 2, including five functional
modules: input layer, hidden layer, output layer, network training, and network prediction.
The input layer is responsible for the preliminary processing of the original fault time
series to meet the network input requirements. The hidden layer uses the LSTM cells
shown in Figure 1 to build a single-layer recurrent neural network, and the output layer
provides the prediction results. The network training adopts the random gradient descent
optimization method mentioned in Section 2.3.2, and the network prediction adopts the
iterative method to predict point by point. Figure 2 shows the flowchart of the proposed
fault diagnosis method.

4. Experimental Signal Analysis

To analyze the obtained results, the experimental dataset of the LDK UER204 rolling
element bearings of XJTU–SY bearing [37] were used. Figure 3 illustrates the configu-
ration of the bearing accelerated life testbed and outer-ring crack of a bearing. During
the experiment, two unidirectional acceleration sensors (PCB 352C33, PCB Piezotronics,
New York, NY, USA) were installed along the vertical and horizontal directions to collect
vibration signals through a portable dynamic signal collector (Measurement Computing
Corporation, Norton, MA, USA). The sampling frequency and the sampling interval were
set to 25.6 kHz and 1 min, respectively, and 32,769 samples were taken in total. Then the
horizontal vibration signals in the dataset bearing1_1 were selected to perform the analysis.

Figure 3. Bearing accelerated life test bed and outer–ring crack of bearing. (a) Bearing accelerated life
test bed. (b) Outer–ring crack of bearing.

4.1. Data Preprocessing

The vibration signal of the 50th series along the horizontal direction of the bearing1_1
was selected to predict the bearing-fault time series. Figure 4 illustrates the time-frequency
domain diagram of a vibration signal. It can be observed that there are many impact
components to consider in the temporal domain, while no clear rule has yet been enacted.
The frequency spectrum shows the frequency conversion of 34.38 Hz and its frequency
doubling components, and several resonance frequency bands appear in the high–frequency
band. It was found that the frequency components were complex, and the bearing outer-
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ring fault had no distinct frequency. Consequently, it was necessary to retrieve the time
series in order to access more impact information to denoise the original time series.

Figure 4. Time frequency domain diagram of original time series. (a) Time domain diagram of
original time series. (b) Spectrum of original time series.

In the present study, the MCKD was used to preprocess the original time series while
the order of the shift M and the iteration termination times G were set to 1 and 20, re-
spectively. Meanwhile, the CS was used to optimize the filter length L and deconvolution
period T. The main parameters of the CS were set as follows: the dimension of solution D
was set to 2, the population size N was set to 15, the host bird with probability P was set
to 0.1. Furthermore, the upper and lower bounds were searched based on L > 2fs/fc and
T = fs/fc [38], where fs is the sampling frequency and fc denotes the characteristic frequency.
In all calculations, the optimization ranges were set to L = [100, 1500] and T = [50, 1000].
Figure 5a shows the results, indicating that the peak factor of the local maximum envelope
spectrum converged to 10.2478 at the 7th iteration, and the corresponding optimization
parameter combination [L, T] to the peak factor of the local maximum envelope spectrum
was [600, 235]. Then the original time series signal was denoised using the MCKD parame-
ters to obtain the deconvolution series signal and envelope spectrum. The obtained results
in Figure 5b,c demonstrate that the impact component intensity of the deconvolution series
signal increased in the time domain. Moreover, the noise interference component reduced
significantly, the frequency conversion component approached 34.38 Hz, 108.6 Hz, and
frequency doubling emerged in the envelope spectrum. This frequency was consistent with
the theoretical value of the bearing outer–ring crack characteristic frequency of 107.91 Hz,
resulting in a significant noise reduction.
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Figure 5. Time frequency diagram of deconvolution time series. (a) Variation curves of different
Ec indexes with iteration times. (b) Time domain diagram of deconvolution series. (c) Spectrum of
deconvolution time series.

The deconvolution time series were then taken as one dimensional time series to
train the prediction model of the bearing fault time series. All one dimensional vibration
signals were selected at once based on the 50th original time series every ten series. Among
102 groups of time series, six groups were taken as the training set, and seven groups were
taken as the test set. Meanwhile, the optimized MCKD was utilized to denoise. After the
whole dataset was established, it was introduced to the LSTM model to train the model
and predict bearing fault time series.
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To evaluate the performance of the optimized MCKD–LSTM in predicting the bearing
fault time series, the original fault series were denoised using EMD and optimized VMD.
Training of the LSTM model was then completed, and it was compared with the predictions
of the bearing fault time series. Figure 6 reveals that since the impact signal is included
in the bearing lifecycle signal, the fault impact information of the bearing will appear
in partial IMF components after signal processing by EMD; hence the kurtosis diagram
shows ten IMF components, IMF1 to IMF10. In the present study, the five components
with the highest kurtosis (i.e., IMF9, IMF6, IMF1, IMF2, and IMF10) were chosen as one
dimensional time series to rearrange the signal. Both the training and test sets are EMD
processed simultaneously.

Figure 6. Kurtosis diagram of IMF components of time series signals (EMD).

Similarly, VMD is applied to denoise the dataset. However, the decomposition mode
parameter K and the penalty term coefficient α should be considered in the signal analysis.
Generally, the central frequency observation [39] and EMD–VMD methods can be used
to select the decomposition mode parameter K. In this case, the correlation between the
K–value and the penalty term coefficient α can be ignored. Moreover, the CS can be
effectively applied to search the influence parameter combination [K, α] of the VMD
to perform adaptive parameter selection while considering the interaction between the
affecting parameters. The images in Figure 7a,c show the kurtosis diagrams corresponding
to the three approaches of VMD–C, VMD–EMD, and VMD –CS, respectively. Figure 7a
reveals that the five components with the highest kurtosis (i.e.,IMF8, IMF6, IMF5, IMF7,
and IMF3) were selected as one-dimensional time series to signal reformation. As shown
Figure 7b, the five components with the highest kurtosis (i.e., IMF10, IMF9, IMF7, IMF6, and
IMF4) were selected as one dimensional time series to signal reformation. Meanwhile, the
three components with the highest kurtosis (i.e., IMF4, IMF3, and IMF2) shown in Figure 7c
were selected as one dimensional time series to signal reformation. Finally, noise-reduction
processing was performed on all datasets, and the obtained dataset is presented in Table 1,
while the characteristics and definition of EMD, VMD−C, VMD−EMD, VMD−CS, and
MCKD are shown in Table 2.

Table 1. The central frequencies of IMF components corresponding to different K values.

Method EMD VMD–C VMD–EMD VMD–CS MCKD

Training Set 6 × 1000 6 × 1000 6 × 1000 6 × 1000 6 × 1000
Test Set 7 × 100 7 × 100 7 × 100 7 × 100 7 × 100
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Figure 7. Kurtosis diagram of IMF components of original time series. (a) Kurtosis diagram of
IMF components of time series (VMD–C). (b) Kurtosis diagram of IMF components of time series
(VMD–EMD). (c) Kurtosis diagram of IMF components of time series (VMD–CS).

Table 2. The characteristics and definition of EMD, VMD–C, VMD–EMD, VMD–CS, and MCKD.

Method EMD VMD–C VMD–EMD VMD–CS MCKD

Definition
(Empirical mode
decomposition,

EMD)

(Variational mode
decomposition,

VMD)

(Variational mode
decomposition–
Empirical mode
decomposition,

VMD–EMD)

(Variational mode
decomposition–
cuckoo search,

VMD–CS)

(Maximum
correlated kurtosis

deconvolution,
MCKD)

Characteristics
Fault signal

preprocessing by
EMD

The central
frequency method
is used to optimize

the
hyperparameter [k,

α] of VMD, and
then the fault

signal is
preprocessed by

VMD–C

EMD is used to
find the optimal

hyperparameter k
of VMD, and then
the fault signal is
preprocessed by

VMD-EMD

CS is used to find
the optimal

hyperparameter
combination [k, α]
of VMD, and then
the fault signal is
preprocessed by

VMD–CS

Taking advantage
of both the impact
and periodicity of
the signal, MCKD
preprocesses the
fault time series

signal
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4.2. Parameter Selection

Since the learning rate significantly affects the performance of the LSTM neural net-
work model, it is necessary to analyze the experimental results with different rates. In this
regard, the performance of the LSTM model was analyzed with three learning rates, 0.01,
0.02, and 0.03,to obtain the error loss and model accuracy of the LSTM model. Figure 8
shows that an over-fitted phenomenon occurred when η was set to 0.02, resulting in severe
swings in the prediction accuracy. However, the prediction accuracy of the LSTM model
was steady when the learning rate varied in the range of 0.01 to 0.03. Table 3 shows the
mean square error of the LSTM model on the test time series 1, 2, 3, 4, 5, 6, and 7 when
the parameter η was set to 0.01. It was observed that the prediction accuracy of each time
series with η = 0.01 was greater than that when η = 0.03. Accordingly, the learning rate η
was set to 0.01 as the training rate of the LSTM model in all calculations.

Figure 8. Variation of error loss and mean square error comparison of LSTM models at different
learning rates. (a) Error loss of LSTM models at different learning rates. (b) Mean square error of
LSTM models at different learning rates.

4.3. Prediction Model

In this section, the dataset produced from various data preprocessing is introduced into
the LSTM model and the distributions of the error loss under various models are calculated.
Figure 9a indicates that the minimum error loss of the prediction result of the original
time series occurred in the LSTM model, and the loss obtained by the model was often
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greater than that acquired by the original time series after applying different preprocessing
procedures. As can be seen from the accuracy comparison results of prediction results
under different models in Figure 9b, the higher the accuracy of fault prediction, the lower
the MES. The result of fault prediction based on the time domain data (raw data) and LSTM
is denoted by the black solid line, and the result of fault prediction based on the proposed
method is denoted by the yellow solid line. From the two results, it can be seen that the
accuracy of fault prediction based on the proposed method is higher than that based on the
original data in test time series 1, 3, 4, 5, and 6.

Table 3. The central frequencies of IMF components corresponding to different K values.

Model
Learning Rate

Test Time Series
1 2 3 4 5 6 7

Mean Square Error

0.01 0.01544 0.01972 0.02019 0.00986 0.01002 0.00089 0.01660
0.02 0.12468 0.14582 0.09857 0.12179 0.12682 0.09063 0.10852
0.03 0.02869 0.03561 0.03181 0.02381 0.02946 0.00608 0.02420

Figure 9. Error loss and mean square error comparisons for different models. (a) Error loss for
different models. (b) Mean square error for different models.
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In order to verify the proposed model, the prediction results of the original time
series and the optimized MCKD–LSTM model were compared. The images in Figure 10a,b
demonstrate that the original time series prediction results had some deviation through
the whole time series, but the optimized MCKD–LSTM model tracked the real fault data
well. Moreover, Table 4 reveals that on test series 1, 3, 4, 5, and 6, the MSE of the original
time series was 0.02327, 0.02384, 0.01691, 0.0349, and 0.00287, respectively. Meanwhile, the
prediction results of the optimized MCKD–LSTM model were 0.01544, 0.02019, 0.00986,
0.01002, and 0.000895153, respectively, indicating that the average prediction accuracy was
improved by 26%.

Figure 10. Timeseries prediction results. (a) Prediction results of original time series. (b) Prediction
results of deconvolution time series.

Table 4. The central frequencies of IMF components corresponding to different K values.

Model
Test Time Series

1 2 3 4 5 6 7
Mean Square Error

Original signal 0.02327 0.01883 0.02384 0.01691 0.0349 0.00287 0.01101
EMD 0.02875 0.02292 0.03114 0.0243 0.04327 0.0052 0.01509

VMD-C 0.02756 0.02089 0.02828 0.02296 0.03895 0.00481 0.01344
VMD-EMD 0.03043 0.01268 0.02442 0.02456 0.04411 0.00899 0.01143

VMD-CS 0.03596 0.03376 0.0449 0.02826 0.04799 0.01213 0.0217
MCKD 0.01544 0.01972 0.02019 0.00986 0.01002 8.95153 × 10−4 0.0166
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5. Conclusions

In the present study, an optimized MCKD–LSTM model was proposed to predict
bearing faults. In this model, optimization of the MCKD preprocessing of the original
series was combined with the prediction of time series using deconvolution signals. The
effectiveness of this method was then verified using the XJTU–SY bearing dataset. Based
on the performed analysis, the main conclusions can be summarized as follows:

(1) When comparing the results of EMD, VMD–C, VMD–EMD, VMD–CS, and MCKD
on the original time series, the impact component of the deconvolution time series
obtained by optimizing MCKD was enhanced, and the fault characteristic frequency
of the bearing outer ring was extracted.

(2) The accuracy and loss change of the model is affected by the learning rate of the neural
network. More specifically, when the change rate is too high or too low, over–fitting
difficulties occur, which affects the efficiency and prediction ability of the model.
Experiments revealed that the optimum learning rate of the LSTM prediction model
of bearing time series was η = 0.01.

(3) When the learning rate η was set to 0.01, the highest prediction accuracy occurred in
the optimized MCKD–LSTM model, being 26% higher than the prediction accuracy of
the original time series. It was found that the prediction results tracked the real fault
data accurately.

(4) However, the proposed method also has disadvantages. Firstly, due to noise gener-
ation inherent to the operation of rotating systems in industrial environments, the
existence of the preprocessing aspect of this study engendered a whole-life prediction
framework, rather than an end-to-end learning framework. Therefore, the preprocess-
ing part may introduce additional errors that could affect the overall life-prediction
performance. Secondly, the use and implementation of CS as a tool to search the
optimal hyperparameter may pose a challenge to industrial maintenance practition-
ers, because a priori knowledge is required. Finally, the prediction model is trained
through supervised learning, but it is difficult to obtain the ground truth value with
low noise in practical application, because large rotating machinery is always accom-
panied by significant noise. The proposed bearing-fault time series prediction model
is designed to analyze bearing faults. The framework allows the fault time series
prediction of metallic, hybrid, and ceramic bearings to be considered. In this sense,
future work, taking into account the development of the evolving learning system,
can further address the end–to–end model of bearing-fault time series prediction
and study the unsupervised learning model through novel learning methods for the
purpose of bearing-fault time series prediction.
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