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Abstract: If sufficient historical failure life data exist, the failure distribution of the system can be
estimated to identify the system initial hazard function. The conventional proportional covariate
model (PCM) can reveal the dynamic relationship between the response covariates and the system
hazard rate. The system hazard rate function can be constantly updated by the response covariates
through the basic covariate function (BCF). Under the circumstances of sparse or zero failure data,
the key point of the PCM reliability assessment method is to determine the proportional factor
between covariates and the hazard rate for getting BCF. Being devoid of experiments or abundant
experience of the experts, it is very hard to determine the proportional factor accurately. In this paper,
an improved PCM (IPCM) is put forward based on the logistic regression model (LRM). The salient
features reflecting the equipment degradation process are extracted from the existing monitoring
signals, which are considered as the input of the LRM. The equipment state data defined by the failure
threshold are considered as the output of the LRM. The initial reliability can be first estimated by
LRM. Combined with the responding covariates, the initial hazard function can be calculated. Then,
it can be incorporated into conventional PCM to implement the reliability estimation process on other
equipment. The conventional PCM and the IPCM methods are respectively applied to aero-engine
rotor bearing reliability assessment. The comparative results show that the assessing accuracy of
IPCM is superior to the conventional PCM for small failure sample. It provides a new method for
reliability estimation under sparse or zero failure data conditions.

Keywords: reliability assessment; proportional covariate model; logistic regression model; condition
information; aero-engine rotor bearings

1. Introduction

It is an important research issue how to guarantee the safety and reliability of a complex
electromechanical system during its running process [1]. It is of great significance to prevent
a major or catastrophic accident if the equipment failure can be estimated or predicted
accurately in advance, which mainly depends on the reliability assessment techniques.

In general, the frequently used reliability assessment methods can be classified into
two major categories: The traditional reliability analysis methods bases on large sample size
failure life data and reliability analysis methods based on the performance degradation data.
The former is required to obtain sufficient failure life data through reliability tests and then
to acquire the equipment reliability index by using classical mathematical statistics. It lacks
an individual characteristics description of the device itself [2]. The latter is required to
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acquire some professional background knowledge to evaluate the equipment degradation
path or probability distribution function of the state features [3,4].

Due to the diversity, complexity, and randomness of the system parameters, loads,
and environment, the mechanical system reliability is difficult to describe by using strict
mathematical models. Too much simplification will influence the authenticity and credi-
bility of the reliability models [5]. In view of the above problems, some researchers have
begun to recognize the importance of the system operational condition information. Zio
pointed out that the accuracy and reasonableness of reliability models will be improved if
the operational condition information can be considered [6]. Li et al. [7] proposed a self-
data-driven RUL prediction method for wind turbines considering continuously varying
speeds by its own condition monitoring data without depending on failure event data.
Yan et al. [8] investigated the degradation modeling and RUL prediction for dependent
competing failure processes. The degradation models for both soft and hard failure pro-
cesses are formulated, and the offline estimation and online update of parameters are jointly
addressed. Chen et al. [9] proposed a new reliability assessment approach to cutting tools
based on logistic regression model (LRM) by using vibration signals.

Proportional hazard model (PHM) was first proposed by scholar Cox to describe the
system hazard risk with different joint covariates [10]. It has been widely used in life
sciences, economics, electronic engineering, and preventive maintenance decisions [11,12].
In PHM, the baseline hazard function is established based on historical failure data, while
the covariate function is established based on covariate data. If the covariates were replaced
by the salient features extracted from the multi-resource conditional signals (vibration,
force, torque, temperature, acoustic emission, etc.), the equipment conditional monitoring
information can be introduced into PHM for reliability assessment and failure analysis [13].
Based on PHM model, the Center for Maintenance Optimization and Reliability Engi-
neering (C-MORE) of the University of Toronto has developed the PHM’s algorithm and
improved the CBM software (EXAKT), which has been applied to optimize the equipment
operation strategy and maintenance costs [14]. In [15], the root mean square and peak
index extracted from the vibration signals are severed as covariates of PHM to analyze the
cutting tool reliability.

In PHM, a large number of failure data are needed to estimate the baseline hazard
function and the weight parameters by Maximum Likelihood Estimation (MLE). The
requirement limits the application effectiveness of PHM significantly when failure data are
insufficient. Furthermore, the baseline hazard function is usually considered a constant
function when the covariates are zeros. The hazard rate will change with the covariate of
the system, i.e., the covariate is the explanatory variable and the hazard rate is the response
variable. Actually, during the failure analysis process of an asset based on conditional
monitoring data, the response covariates are extracted and applied to indicate the degree
of equipment degradation. Under the circumstance, the covariates are response variables,
and the hazard rate becomes the explanatory variable. Therefore, PHM is not appropriate
for this condition.

To solve the above problems, Sun has proposed a new model named as proportional
covariate model (PCM) to describe the hazard rate of a mechanical system [16]. PCM reveals
the dynamic relationship between the response covariates and the system hazard rate. The
system hazard rate function can be constantly updated by the response covariates through
the basic covariate function. It uncovers the mapping relationship between conditional
information and equipment reliability more accurately. Cai et al. introduced PCM into the
reliability estimation for cutting tools based on condition monitoring data [17].

The key issue of PCM is how to evaluate the initial baseline covariate function C(t).
In [16], there are two approaches provided: Based on historical failure data and based on
other supplementary information (e.g., data from accelerated life tests). The first one can
be easily understood and put into use [17]. From the perspective of practical application,
people are particularly interested in the life margin and current reliability of the items used
in their system. Wherefore the second approach is more valuable, especially for the scenario
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of no failure or few failure samples. In [16], the average acceleration amplitude is selected
as the covariate to indicate the degree of angular misalignment of the shaft. In another
application case, the increment of Fe wear debris in the unit of parts per million is served as
a covariate to calculate the initial baseline covariate function of the engines. The covariates
are considered proportional to the hazard of the system and the linear proportional factor
between the covariate and the hazard rate is given directly. However, in a real industrial
scenario, the value of the linear proportional factor is very hard to determine in practice
due to its complex working condition. It needs to take a long time to conduct a lot of
experiments to identify the accurate value of the factor. Even if the method is feasible, the
subjective deviation will inevitably be introduced to the evaluation process to affect the
accuracy of the evaluation. Therefore, the effective method to obtain the baseline covariate
function is welcome in the absence of historical failure data. In [18], a stochastic model
based on the Kalman filter is selected to describe the relationship between the covariates
and the hazard rate.

Logistic regression model (LRM) is a useful technology that can transform a linear
combination of multiple variables into a binary classification problem [18]. Compared
with other multiple regression and discriminant analysis methods, LRM has
three advantages:

• It does not require the assumption that the independent variables and their errors con-
form to normal distribution. The application scope of the model is greatly expanded.

• Assuming that the degradation of equipment can be interpreted by a series of state
characteristic parameters, the LRM can give the failure probability of the equipment.
It increases the flexibility of the model application.

• The variables can be continuous variables, discrete variables, or dummy variables.
Nor does it need to assume the existence of multivariate normal distribution be-
tween these variables. There is a complete set of test criteria for regression model
parameter estimation.

There are some studies that have put forward the research about LRM on mechanical
equipment reliability evaluation and remaining useful life (RUL) prediction [19–21]. With
the promotion of material performance and processing technology, the device exhibits the
characteristics of long life, less failure, and even zero failure during its operation. It is
commonly acknowledged that the deterioration of equipment increases the system failure
probability. The degradation process of a system can be evaluated by its conditional moni-
toring information. PCM is proposed and applied to construct a relationship between the
failure rate function and conditional monitoring information. Considering the advantages
of LRM, a new algorithm of initial failure rate function based on LRM is proposed to
improve the engineering practicability of the PCM reliability assessment method under the
circumstances of sparse or zero failure data. A comparative case study between the PCM
method and the improved PCM (IPCM) method for aero-engine rotor bearings verifies the
effectiveness of the proposed method. The overall structure of the article is organized as
follows. PCM and LRM are briefly introduced in Section 2. The PCM reliability assessment
method and the proposed IPCM reliability assessment method are presented in Section 3.
A comparison study is presented in Section 4. Finally, some summarizing remarks are
given in Section 5.

2. Proportional Covariate Model and Logistic Regression Model
2.1. Proportional Covariate Model

In PCM, the response covariate is the outer expression of the system failure rate. The
system failure rate function can be constantly updated by the response covariates through
the basic covariate function. There are two assumptions in PCM. One is that the covariates
of a system are proportional to the hazard of the system [16,17]. The other is that the
covariates have continuous monotonous changing trends corresponding to the system
failure rate. The expression of the covariate function can be shown as
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ψ(Zr(t)) = C(t)h(t) (1)

where Zr(t), C(t) and h(t) are the covariate function, the baseline covariate, and the hazard
function of a system, respectively. It means that the covariate of a system changes along
with the changes in hazard rate, i.e., the covariate is response variable and the hazard is an
explanatory variable in PCM. The simplification of Equation (1) with a single covariate is
presented as

Zr(t) = C(t)h(t) (2)

The function C(t) is the relationship between Zr(t) and h(t). In [16], the relationship
and comparing analysis between PCM and PHM are given out.

Similar to the reliability estimation method based on degradation tracks, there are
some models employed to fit the change trend of the baseline covariate functions.

a. Polynomial function
C(t) = a0 + a1t + a2t2 + · · · (3)

b. Power function
C(t) = atb (4)

c. Exponential function
C(t) = aebt (5)

where a0, a1, a2, a and b are the function parameters that need to be estimated. The above
functions can be used alone or combined. They can be estimated by linearization techniques
referring to the literature [22].

2.2. Logistic Regression Model

If the observed samples which consist of characteristic parameters and system states
are obtained, LRM can be applied to establish the relationship between normality and
failure [23]. Suppose that at time ti, the equipment condition feature is a k + 1 dimensional
vector Xi = (1, x1i, x2i, . . . , xki)

T and the equipment state is yi (yi = 1 indicates normality
and yi = 0 indicates failure), the reliability function is described as

R(ti|Xi) = P(yi = 1|Xi) =
exp(β0 + β1x1i + β2x2i + · · ·+ βkxki)

1 + exp(β0 + β1x1i + β2x2i + · · ·+ βkxki)
=

exp(BXi)

1 + exp(BXi)
(6)

where B = (β0, β1, · · · , βk) is the model parameter vector and β0 > 0. The expression of
LRM is

Logit(yi) = ln
R(ti|Xi)

1− R(ti|Xi)
= BXi (7)

The likelihood function of the observed equipment state and condition features can be
expressed as

L(B) = ∏
i

Pyi
i (1− Pi)

(1−yi) (8)

Equation (6) is substituted into Equation (8), and the log-likelihood function of the
LRM is

ln[L(B)] = ∑
i
[yiBXi − ln(1 + exp(iBXi))] (9)

The model parameters can be estimated by the MLE method. The reliability index and
its 95% confidence interval (CI) for a new state vector Xj can be presented as

R̂(tj) = P(yj = 1|Xj) =
exp(logit(yj))

1 + exp(logit(yj))
=

exp(B̂Xj)

1 + exp(B̂Xj)
(10)
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[
exp

(
B̂Xj − 1.96

√
Var(B̂Xj)

)
1 + exp

(
B̂Xj − 1.96

√
Var(B̂Xj)

) ,
exp

(
B̂Xj + 1.96

√
Var(B̂Xj)

)
1 + exp

(
B̂Xj + 1.96

√
Var(B̂Xj)

) ] (11)

where B̂ is the model parameters obtained and Var(B̂Xj) is the variance of model parameters.

3. The Improved Reliability Estimation Method
3.1. The PCM Reliability Estimation Method

The reliability estimation process of PCM is described as follows:

1. If the historical failure life data {Ti} (i = 1, 2, . . . , m f ) exist, the failure distribution
parameters of the system are estimated to identify the system initial hazard function
hin(t). Where m f is the number of failure sample.

2. Calculate the discrete baseline covariate function using initial hazard function hin(t)
and covariates extracted from the condition monitoring signals.

Ck =
Zr(tk)

hin(tk)
(k = 1, 2, · · · , mc) (12)

where mc is the number of conditional monitoring sample. Estimate the mathematical
expression of the baseline covariate function C(t) by using the regression analysis
method (RAM).

3. If there are no historical failure life data, C(t) is identified by the linear proportional
factor r between the covariate and hazard rate based on the experience of the operator
or other supplementary information.

4. Update the system hazard function by adding some new covariates
{Zr(tl)} (l = 1, 2, · · · , mn) and C(t). mn is the number of the new conditional moni-
toring samples.

h̃(ti) =
Zr(ti)

C(ti)
(i = 1, 2, · · · , mc, mc + 1, · · · , mc + mn) (13)

Estimate the mathematical expression of the system hazard function by using RAM.
5. Repeat the above process to update C(t) and h̃(t) if there are new failure data and

condition data are obtained.
6. Calculate the reliability function of the system through h̃(t).

R(t) = exp(−
∫ t

0
h̃(t)dt) (14)

If the hazard function h̃(t) obeys Weibull distribution, i.e., h̃(t) = (β/η)(t/η)β−1

(Wherein, β > 0, η > 0, t ≥ 0, β is the shape parameters and η is the scale parameter of
Weibull function), the reliability can be represented as

R(t) = exp(−(t/η)β) (15)

The flow diagram of PCM reliability estimation is listed in Figure 1.
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3.2. The IPCM Reliability Estimation Method

Under the circumstances of sparse or zero failure data, the key point of PCM is to
determine the proportional factor r between the covariate and hazard rate for getting
C(t). From the point of the study, the reliability estimation method of PCM is theoretically
feasible. However, being devoid of experiments and abundant experience of the experts, it
is very hard to determine the proportional factor accurately. Through the introduction in
Section 2.2, LRM may be a good choice to solve the problem.

The block diagram of the IPCM reliability assessment method is listed in Figure 2.
Firstly, the salient feature indexes extracted from existing monitoring data are taken as
input vectors of LRM to reflect the equipment operation performance. The equipment state
variables determined by the failure threshold specified by the relevant standard or actual
operation conditions are taken as the output of LRM. Then the initial reliability Rin(t) can
be estimated by LRM and incorporated into PCM to complete the process of reliability
estimation. In the IPCM method, the initial hazard function hin(t) is evaluated only by
using the existing condition information and asset state, which passes the decision process
of the linear proportional factor r. The IPCM is independent of historical failure data and
greatly expands using the scope of the PCM model for sparse or zero failure data.
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The reliability estimation method based on IPCM is described as follows:

(1) Input Zrt and
{

Zr(tj)
}
(j = 1, 2, · · · , n), Zrt is the failure threshold of the response

covariate and
{

Zr(tj)
}
(j = 1, 2, · · · , n) is the response covariate dataset extracted

from the monitoring data;
(2) Identify the input vector X and the output vector Y of LRM, X = [zr(t1), zr(t2), · · · , zr(tn)]

T

and Y = [y1, y2, · · · , yn]
T, if Zr(tj) < Zrt, yj = 1 (under the normal state), otherwise

yj = 0;
(3) Estimate the parameters of LRM and calculate the concrete reliability R(tj) corre-

sponding to Zr(tj) by using Equation (10);
(4) Identify the expression of Rin(t) by using the regression analysis method (RAM).
(5) Calculate the hazard function by equation hin(t) = f (t)/Rin(t) = −d(ln Rin(t))/dt

and implement the remaining reliability assessment procedures (4)~(6) of conven-
tional PCM mentioned in Section 3.1, where f (t) is the failure probability density
function(PDF).

The algorithm of hin(t) shown in Figure 2 is illustrated in sole-response covariate form.
For multi-dimension response covariates, the input X = [Zr(tj)]

T (j = 1, 2, · · · , n) can be
changed as X = [Zri(tj)]

T (i = 1, 2, · · · , K, j = 1, 2, · · · , n), K is the dimension of X. If the
multivariate LRM is adopted, the proposed algorithm is still effective.

4. Case Study of Aero Engine Rolling Bearing

To verify the efficiency of the proposed improved PCM reliability assessment method
under sparse or zero failure data condition, a case study is conducted on aero engine
rolling bearing. The currently used maintenance strategy for aero engine rolling bearing
is focused on controlling the flight hours or total cumulative cycle strictly to keep its
stable performance due to the harsh working conditions. It is a highly conserved regular
maintenance method [24]. Compared with failure life data, the operational condition data
are easily obtained and can be used to characterize the performance degradation process of
the individual bearing. If the salient features reflecting the degradation can be extracted
by signal processing technology and taken as the input of the IPCM method, the mapping
relationship between condition information and the system reliability will be built. It will
be more suitable for industrial application in a single piece or small quantity equipment
health assessment.

4.1. Data Description

The data come from UCR Center for Intelligent Maintenance Systems (IMS) [25]. The
bearing test bench and sensor placement installations are shown in Figure 3. There are four
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ZA-2115 double row bearings were tested in the experiment. The structure parameters of
the bearing are shown in Table 1. The rotational speed was 2000 RPM and 6000 lb radial
load was placed on the shaft by a spring mechanism. Eight PCB 353B33 ICP accelerometers
were installed to collect the vibration signal. The data sampling frequency is 20 kHz, and
the sampling points are 20,408. A magnetic plug was installed in the oil feedback pipe to
collect debris from the oil as an indicator of bearing degradation. The test will stop when
the accumulated debris adhered to the magnetic plug exceeds a certain level.
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Table 1. The structure parameters of the rolling bearing.

Bearing Model Pitch Diameter Roller Diameter Number of Rolling Element Tapered Contact Angle

ZA-2115 2.815 in 0.331 in 16 15.17◦

In the experiment, altogether, eight bearing’s vibration signals were acquired. Among
them, only three bearings ran to failure and their lifetime varied quite a lot. It is a typical
small sample failure data problem, and it is hard to estimate their reliability by using the
conventional PCM model. In data set No. 1, an inner race defect was found in bearing 3
(labeled as bearing A), and a mixed roller element and outer race defect were observed in
bearing 4 (labeled as bearing B). The remaining bearings are labeled as C~H.

4.2. Data Analysis and Covariate Selection

Time-domain feature parameters are easy to calculate and commonly used in online
conditional monitoring, which can reflect the working state of the rolling bearings [27].
Under normal circumstances, the amplitudes of the bearing vibration signals approximately
obey a normal distribution with zero mean. If the bearing defect occurs, the amplitude of
the time-domain signals will get larger [28]. The time domain features characterized by
statistical analysis can be divided into dimensionless indicators and dimensional indica-
tors [29]. The frequently used dimensional indicators include the mean, root mean square
(rms) value, variance, etc. These values show a monotonically increasing trend with the
increasing bearing failure. However, the dimensional indicators are sensitive and suscepti-
ble to the changes in load and rotational speed. Dimensionless indicators are substantially
independent of rotational speed and load. The frequently used dimensionless time domain
features include kurtosis indicator, peak indicator, and margin indicator, etc. [30]. In this
section, there are 11 time-domain features are studied: Mean (xm), peak (xp), root amplitude
(xra), root mean square (xrms), standard deviation (xstd), skewness (xske), kurtosis (xk), crest
(xc) margin (xma), shape (xsha), and impulse factor (xi). The mathematical descriptions of
these features are shown in Table 2.
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Table 2. The time domain features.

xm =

N
∑

n=1
x(n)

N
xp = max|x(n)|

xra = (

N
∑

n=1

√
|x(n)|

N )

2

xxms =

√
N
∑

n=1
(x(n))2

N

xstd =

√
N
∑

n=1
(x(n)−xm)2

N−1
xske =

N
∑

n=1
(x(n)−xm)3

(N−1)x3
std

xk =

N
∑

n=1
(x(n)−xm)4

(N−1)x4
std

xc =
xp

xrms

xma =
xp
xra

xsha = xrms
xm

xi =
xp
xm

where x(n) is a time series n = 1, 2, . . . , N, N is the number of data points.

The time domain feature extraction is applied to the vibration signals of bearing A. The
above mentioned 11 time domain features have been calculated and only six representative
feature figures are shown in Figure 4 because the other five features have similar changing
trends to these six features. The similar relationships among them are listed in Table 3.
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Table 3. The similar relationships between different time domain features.

No. 1 2 3 4 5 6

similar relationships xm xrms,xra,xstd,xp xske xk xc,xi,xmar xsha

Since the sampling frequency is not uniformly spaced, the horizontal ordinate is
expressed as the sampling number but not as real time. As is depicted in Figure 4, with
the increase of operation time, different time domain features have apparently different
changing trends. During the whole running process, xm fluctuates extremely but has no
obvious trend. The other five features are shown in Figure 4b–f. Their changing trends can
be divided into two stages from the 1800th sampling number. xrms nearly has no fluctuation
but an apparently changing trend. Especially at the end of running, the values of xrms
increased monotonously from 0.15 to 0.6. On the contrary, xske fluctuates extremely but
has no apparent changing trend. The amplitudes of xk, xc, and xsha have some similar
changing trends. In the first stage, their values are comparatively smaller. It means that
the bearing operates healthily and normally. In the second stage, the amplitudes get larger,
and the changing rate increases significantly. Two apparent crests can be clearly observed
in Figure 4d–f. It means that the defects start emerging, propagating, and failing.

Generally speaking, the tendency of xrms is the most obvious, while its susceptibility to
incipient failure is the poorest. xk is the most sensitive to incipient defect, but its tendency
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is not obvious. The tendency and susceptibility of xc are comparatively good. However,
it fluctuates extremely. Compared with the several above indicators, the sensitivity and
the tendency of xsha are relatively better, and the fluctuation is not very strong. Thus, it is
selected as the response covariate.

4.3. Reliability Estimation Based on Conventional PCM

According to Section 3.1, the failure life data should be acquired and used to evaluate
the system initial hazard function hin(t). The degradation path model method [31] is con-
sidered to estimate the failure life for all the eight bearings labeled A~H. If the degradation
of the equipment can be indicated by a condition feature, the equipment fails when the
condition feature reaches a pre-set value, which is defined as the failure threshold [32]. The
failure threshold has different identification criteria for different working situations. In [9],
the flank wear value 0.6 mm is set as the failure threshold to identify the tool state with
reference to ISO3685. In [33], the bearing running state can be classified into three different
types, based on the maximum normalized shock value: Healthy (0 ≤ dB < 20), weak fault
(20 ≤ dB < 35), and heavy fault (35 ≤ dB < 60). In [34], according to the industrial standard
ISO 2372, an overall root mean square (rms) vibration acceleration level ranging between
2.0 and 2.2 Gs is considered a “danger level”. The vibration signals of the eight bearings
have also been analyzed and their time domain features xsha have been extracted and
plotted together in Figure 5. In this study, we want to give an alarm threshold to trigger
a preventive maintenance (PM) action (e.g., see [35]). As we can observe in Figure 5, the
value 1.35 is suitable to select as the incipient failure threshold and is denoted as xt in
Figure 5 with a horizontal dot dash line. If xsha ≤ xt, the bearing is considered normal. If
xsha > xt, the bearing is considered to have an incipient failure. Only the first four bearings
A~D have reached the early failure criteria according to the incipient failure threshold. The
failure lives of A~D determined by xt are the 1864th, 1615th, 703th, and 983th sampling
numbers, respectively. For the remaining bearings, the exponential function is employed
to model the degradation process of the bearings. During the whole experimental period,
the changing trends of xsha of bearings F~H are not obvious. Thus, the degeneration
path model fitting method is not available to obtain the incipient failure life. Only the
degradation process of bearing E has been modeled as a biexponential function form.

xsha(t) = 1.255× e2.489×10−6t + 3.645× 10−18 × e0.0159t (16)
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The pseudo failure life of bearing E is the 2374 sampling number identified by xt.
Together with the previously mentioned four failure samples, there are five pieces of failure
life data. The hypothesis test is implemented to analyze the failure distribution and the
result is presented in Figure 6. It is rational to assume that the failure distribution of the
bearings obeys a Weibull distribution, and the expression is shown as

F(t) = 1− exp

[
−
(

t
η

)β
]
= 1− exp

[
−
(

t
17008

)2.8
]

(17)
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Thus, the initial failure rate function of the bearings is

hin1(t) =
β

η

(
t
η

)β−1
=

2.8
17008

(
t

17008

)1.8
(18)

As described in Section 3.1, the discrete form of the baseline covariate function can
be estimated based on hin1(t) and xsha of the bearing A. The expression of the baseline
covariate function by RAM for the bearing is listed as.

C1(t) = 4.962× 108t−1.8 (19)

The response covariates xsha of bearing B and C1(t) are introduced into Equation (13) to
update hin1(t). Its continuous expression fitted by a power function curve is represented as

h̃1(t) = 2.215× 10−9t1.826 (20)

The updated h̃1(t) is input into Equation (14) and the estimated reliability curve of
bearing B is shown in Figure 7. If the threshold of reliability is selected as Rt = 0.5 [9], the
estimated incipient failure time of bearing B is the 1465th sampling number. On the basis
of the amount of the time accumulated debris, the actual incipient failure of bearings B is
the 1615th sampling number. Supposing the sampling frequency is uniformly spaced. The
estimation error is 9.29%.
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4.4. Reliability Estimation Based on IPCM

In order to compare with the results of the conventional PCM method, the IPCM
reliability analysis method is also applied to bearing B. Similar to Section 4.2, the changing
trends of xsha of the first two failure bearings A and B are shown altogether in Figure 8.
The failure starting points of bearings A and B determined by xt are the 1864th and 1615th
sampling numbers.
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As the estimated procedure of IPCM described in Section 3.2, the vibration signals
of the bearing A are taken as the existing information to calculate the initial hazard rate
function hin(t). The vector X composed of shape factor xi

sha at different sampling time ti is
taken as the input of the LRM. The vector Y composed of the bearing state variable yi is
taken as the output of the LRM (yi is determined by the values of xi

sha and xt. If xshai < xt,
yi = 1, i.e., the bearing is normal, otherwise yi = 0). The model parameters are estimated
by MLE and the obtained LRM is as follows.

Logit(yi) = ln
R(ti|Xi)

1− R(ti|Xi)
= BXi = 271.4− 210.2xi

sha (21)

The reliability Rin2(ti) of the bearing A corresponding to different values of xi
sha can be

acquired based on Equation (10) and shown as the scatter diagram in Figure 9. Considering
the descending trend of system reliability, one monotonous smooth curve can be used
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to fit the scatter diagram, shown as the solid lines in Figure 9. Then the discrete form of
the initial hazard function hin2(t) can be calculated by equation hin2(t) = f (t)/Rin2(t) =
−d(ln Rin2(t))/dt. Its continuous curve expression can be fitted by power function and
exponential function and is described in Table 4. It can be found that the fitting goodness
of the exponential function is superior to the power function. Therefore, it is selected as the
function expression of hin2(t) and shown in Figure 10.
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Table 4. The fitted model and parameters of hin2(t).

Model hin2(t) = atb hin2(t) = aebt

Parameters a = 7.809 × 10−27

b = 7.212
a = 2.354 × 10−6

b = 0.003822

Goodness of fit:
SSE: 7.989 × 10−6 2.922 × 10−6

R-square: 0.999 0.9996
RMSE: 0.999 0.9996

Adjusted R-square: 6.091 × 10−5 3.684 × 10−5
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Figure 10. The initial hazard function hin2(t) and its updated form h̃2(t).

Just as the description in Section 3.2, once hin2(t) is obtained, the remaining reliability
assessment procedures can be implemented by using the PCM method. The values of
xi

sha sever as the basic covariate and can be introduced into Equation (12) to calculate the
discrete form Ck2 of the baseline covariate function. Its continuous function form C2(t) is
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fitted by an exponential model, whose advantages are more obvious than other models, as
shown in Figure 11. The expression of C2(t) is

C2(t) = 8.994× 105e−0.003964t (22)

Machines 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

R-square: 0.999 0.9996 
RMSE: 0.999 0.9996 

Adjusted R-square: 6.091 × 10−5 3.684 × 10−5 

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02

0.025

 

 

()h
t

( )h t

. 

Figure 10. The initial hazard function 2 ( )inh t  and its updated form 2 ( )h t . 

()
C

t

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9
x 105

 

 

. 

Figure 11. The discrete form Ck2 and the continuous function form C2(t) of baseline covariate func-
tion. 

The response covariates shax  of bearing B and ( )C t  are simultaneously introduced 
into Equation (13) to update 2 ( )inh t . Considering the assumption that the covariates are 
proportional to the hazard of the system, the product factor expressed as 

sha-B sha-Aexp( / )i ix x  is introduced into the process of the hazard ratio function updating, 
where sha-A

ix  and sha-B
ix  are the shape values sampling time ti of bearings A and B, re-

spectively. Equation (13) has been changed as 

sha-B sha-A
( )( ) exp( / )
( )

i ir i
i

i

Z th t x x
C t

=  (23)

Its continuous function fitted by the exponential curve is expressed as Equation (24) 
and shown in Figure 10. 

36 3.613 10
2 ( ) 9.811 10 th t e

−− ×= ×  (24)

Figure 11. The discrete form Ck2 and the continuous function form C2(t) of baseline covariate function.

The response covariates xsha of bearing B and C(t) are simultaneously introduced into
Equation (13) to update hin2(t). Considering the assumption that the covariates are propor-
tional to the hazard of the system, the product factor expressed as exp(xi

sha−B/xi
sha−A) is

introduced into the process of the hazard ratio function updating, where xi
sha−A and xi

sha−B
are the shape values sampling time ti of bearings A and B, respectively. Equation (13) has
been changed as

h̃(ti) =
Zr(ti)

C(ti)
exp(xi

sha−B/xi
sha−A) (23)

Its continuous function fitted by the exponential curve is expressed as Equation (24)
and shown in Figure 10.

h̃2(t) = 9.811× 10−6e3.613×10−3t (24)

The updated h̃2(t) is input into Equation (14) and the reliability of bearing B can be
obtained. The estimated reliability curve is shown in Figure 12. Similar to Section 4.3, if
the threshold of reliability is identified as Rt = 0.5, the estimated incipient failure time of
bearing B is at the 1535th sampling number and the estimation error is 4.95%. Indeed, the
assessment result of IPCM reliability is superior to the conventional PCM method.
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The above reliability estimation process only involves the univariate condition. In
Section 4.2, there are other 10 time domain features that have been analyzed. Through
the signal processing method, we can also obtain more state characteristic indexes. The
sensitivity, trends, and stability of the features are different. If some of them can be fused
together to combine one or two new health indicator(s) (HI) with excellent properties,
such as the MQE indicator used by Qiu and Lee [26] and the new HI obtained from the
6 AE features by Liu [36], the evaluative accuracy of the IPCM method will be increased.
The fused methods, such as principal component analysis (PCA), factor analysis, distance
analysis, and rough set, etc. [37,38], can be used for feature dimensionality reduction and
extraction. In addition, because LMR is a multivariable model, this method is also feasible
for multiple covariates.

It can be seen from the above comparative analysis that the conventional PCM analysis
method relies on the failure life data excessively. Fewer failure samples will lead to a large
deviation between the PDF of the failure life date estimated by the hypothesis and the
actual PDF of the failure life. In the subsequent reliability assessment process, this deviation
will be gradually transferred to the calculation of hin(t), c(t), and h̃0(t), resulting in a large
deviation between the actual evaluation reliability and the actual value.

5. Conclusions

The present study proposes a new kind of reliability assessment method named as
IPCM under the condition of sparse or zero failure data. LRM is employed to calculate the
initial hazard function and PCM is then employed to estimate the equipment’s operational
reliability. Through the case studies of conventional PCM and IPCM to the aero engine
rolling bearings, we can draw some conclusions as follows:

(1) The LRM-based estimation method only needs acquiring the equipment’s response
covariate vectors and their corresponding states without requiring specific mechanical
knowledge or making many assumptions about the PDFs of variables. It passes the
process of the proportional factor identification between covariate and hazard rate so
that it can avoid the influence of the subjective deviation.

(2) The salient features extracted and selected from conditional monitoring data during
the equipment operation process are more suitable for the equipment degradation
evaluation. The assessing accuracy of IPCM is superior to conventional PCM for
a small failure sample, which verifies the plausibility and effectiveness of the pro-
posed method. The method reveals the equipment performance from the conditional
monitoring data and provides a new method for reliability assessment under sparse
or zero failure data conditions.

(3) This paper only studies the evaluation method and results of IPCM in the case of
univariate. Some suggestions are given for the multivariable. The specific operation
process and effectiveness need to be tested in future work.
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