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Abstract: Intelligent bearing fault diagnosis is a necessary approach to ensure the stable operation
of rotating machinery. However, it is usually difficult to collect fault data under actual working
conditions, leading to a serious imbalance in training datasets, thus reducing the effectiveness of
data-driven diagnostic methods. During the stage of data augmentation, a multi-scale progressive
generative adversarial network (MS-PGAN) is used to learn the distribution mapping relationship
from normal samples to fault samples with transfer learning, which stably generates fault samples at
different scales for dataset augmentation through progressive adversarial training. During the stage
of fault diagnosis, the MACNN-BiLSTM method is proposed, based on a multi-scale attention fusion
mechanism that can adaptively fuse the local frequency features and global timing features extracted
from the input signals of multiple scales to achieve fault diagnosis. Using the UConn and CWRU
datasets, the proposed method achieves higher fault diagnosis accuracy than is achieved by several
comparative methods on data augmentation and fault diagnosis. Experimental results demonstrate
that the proposed method can stably generate high-quality spectrum signals and extract multi-scale
features, with better classification accuracy, robustness, and generalization.

Keywords: imbalanced data; bearing fault diagnosis; multi-scale; generative adversarial networks

1. Introduction

Rolling bearings are some of the most easily damaged components in rotating machin-
ery, especially when under long-term high-speed and heavy load operation; inner ring,
outer ring, and ball faults occur frequently [1]. Therefore, research into fault diagnosis
methods of rolling bearings has practical engineering significance and economic value and
is a hot spot in the field of mechanical fault diagnosis. According to relevant statistics,
about 40% of rotating machinery faults are caused by problems with the bearings [2,3].
Therefore, research on bearing fault diagnosis methods is of great significance to the safe
operation of rotating machinery, which can avoid huge economic losses and casualties as a
result of accidents [4]. In recent years, data-driven fault diagnosis methods have gradually
become a research hotspot in the field of intelligent machine fault diagnosis [5–7]. Tang
et al. [8] proposed a method that combined variational mode decomposition (VMD) and
support vector machine (SVM) to decompose the original signal into several intrinsic mode
functions (IMFs) using the time-frequency analysis method of VMD, which can filter the
noise component with the kurtosis index, and input the filtered IMFs as fault features
to the SVM for fault diagnosis. Lei [9] proposed an unsupervised pre-training of deep
neural network (DNN) methods by using a stack auto-encoder with tie-weights, followed
by the fine-tuning of a pre-training DNN using a back propagation (BP) algorithm under
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supervised conditions. The pre-training process can help to mine fault features and the fine-
tuning process helps to obtain discriminant features for fault classification. Levent et al. [10]
proposed a deep learning algorithm that used a one-dimensional convolutional neural
network (CNN) to extract the local features of time-series signals for fault diagnosis. Duan
et al. [11] proposed a method, based on ResNet as the backbone network, to improve the
classification accuracy of fault diagnosis, which can be used to layer feature maps, compare
potential candidate model blocks, and screen out the best feature combinations. Rhanoui
et al. [12] developed a bidirectional long short-term memory network (BiLSTM)-based
method for bidirectional feature extraction using forward and reverse position sequences
of frequency-domain signal data, which can extract better sequence feature information
than unidirectional LSTM [13]. Huang et al. [14] proposed a method combining CNN and
LSTM, which used a convolutional layer to extract feature information and LSTM to extract
timing information. Jiao et al. [15] designed a CNN-LSTM network based on an attention
mechanism, which used a hierarchical attention mechanism to establish the importance of
the extracted features, thus enhancing the performance and interpretability of the neural
network learning process. It is worth noting that the attention model (AM) is widely used
in feature extraction, which can calculate the importance of different features. Therefore, we
decided to introduce a multi-scale mechanism to establish the features of vibration signals
at different scales, so that we could significantly improve the robustness of the model under
different working conditions, which is conducive to the application of the model [16].

Data-driven intelligent diagnostic models always have a huge demand for sufficiently
labeled training data under all health conditions. However, in actual working conditions,
the fault samples of mechanical equipment collected by sensors are generally far less
accessible than normal samples, which leads to a serious imbalance problem with the
dataset for fault diagnosis [17]. In the process of continuous training, data-driven models
always tend to improve the classification accuracy of more classes of samples and drop
the classification performance level on a few classes of samples, which causes severe
challenges for fault diagnosis. At present, the oversampling method is mostly used to
deal with the problem of imbalanced data, a method that can artificially generate new
data to increase the amount of data available. One of the most widely used methods
for data augmentation is the synthetic minority oversampling technique (SMOTE) [18]
and its improved method [19], which generates new samples through the interpolation
of real data. However, the data generated by SMOTE based on the k-nearest neighbor
principle still obey an uneven minority sample distribution, which means that SMOTE
cannot really change the distribution of the dataset. It is easy to produce a boundary effect,
resulting in the fuzziness of the classification boundary of adjacent categories. The other
data augmentation method is with a generative adversarial network (GAN) [20].

After the GAN model was proposed, it was at the forefront of the trend in data
augmentation. Many scholars have proposed methods to solve the imbalanced data
problem by using a GAN model [21,22] in different fields [23–25], such as images, audio,
text, fault diagnosis, etc. Lee et al. [26] studied and compared the GAN-based oversampling
method and standard oversampling method in terms of the imbalanced data of the fault
diagnosis of electric machines, then combined it with the deep neural network model; they
proved that the GAN model generated data with higher classification accuracy. However,
GAN still has many drawbacks, such as training instability, training failure, vanishing
gradients, and mode collapse. To solve these problems, researchers have proposed a deep
convolution network based on GAN (DCGAN) [27], a WGAN [28] using Wasserstein
distance instead of Jensen–Shannon dispersion, and WGAN-GP [29] using the gradient
penalty. These GAN methods improved the model, in terms of the network structure and
loss function, to make the quality of generated data better and the training process more
stable. Shao et al. [30] used this improved framework of DCGAN to learn the original
vibration data collected by sensors on machines, which generated one-dimensional signal
data to alleviate the data imbalance. Zhang et al. [31] proposed a method to generate a
few categories of EEG samples based on a conditional Wasserstein GAN, which enhanced
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the diversity of generated time-series samples. Li et al. [32] proposed a fault diagnosis
method for rotating machinery based on an auxiliary classifier and Wasserstein GAN
with a gradient penalty, which improved the validity of the generated samples and the
accuracy of fault diagnosis. Zhou et al. [33] proposed an improved GAN method that uses
an autoencoder to extract fault features, which is used to generate fault features instead
of using real fault data samples, but this method will inevitably mean losing the physical
information of signals. Zhang et al. [34] designed a DCGAN structure to learn the mapping
relationship between noise and mechanical vibration data; however, this complex structure
makes the model unstable and easy to lead to training failure, which needs to be improved.

In summary, the existing improved GAN generation methods have made break-
throughs in the design of network structure and loss function. However, in the experiment
based on a one-dimensional vibration signal, there are still some problems, such as the
instability of model training and the damage to signal mechanism information. Therefore,
based on the idea of GAN variants such as DCGAN [27], WGAN-GP [29], StackGAN [35],
and ProGAN [36], and the multi-scale mechanism, a two-stage bearing fault diagnosis
method for imbalanced data is proposed. This includes a multi-scale progressive generative
adversarial network, named MS-PGAN, for data augmentation and a MACNN-BiLSTM,
based on the multi-scale attention fusion mechanism, for bearing fault diagnosis. This
framework has the advantages of high stability, fast convergence, and strong robustness.
The contributions of this paper are summarized as follows:

• Stage 1: A multiscale progressive generative adversarial network is proposed, to
generate high-quality multi-scale data to rebalance the imbalanced datasets.

a. A multi-scale GAN network structure with progressive growth has strong stabil-
ity, which avoids the common problem of training failure in the GAN.

b. The improved loss function MMD-WGP makes the generator model learn the
distribution of fault samples from normal samples by introducing the transfer
learning mechanism [37], which effectively improves the problem of random
spectral noise and mode collapse.

c. The local noise interpolation upsampling uses adaptive noise interpolation in the
process of dimension promotion to protect the frequency information of the fault
feature.

• Stage 2: Combined with multi-scale MS-PGAN, a diagnostic method based on a
multi-scale attention fusion mechanism, named MACNN-BiLSTM, is proposed.

a. The feature extraction structure of the proposed diagnosis method can combine
the local feature extraction capability of the CNN and the global timing feature
extraction capability of BiLSTM.

b. The multi-scale attention fusion mechanism enables the model to fuse feature
information extracted from different scales, which significantly improves the
diagnostic capability of the model.

The remainder of the paper is organized as follows. The theoretical background is
presented in Section 2. The proposed methodology and detailed framework are described
in Section 3. Experimental details, results, and our analysis are presented in Section 4.
Finally, our conclusions are drawn in Section 5.

2. Theoretical Background
2.1. Convolutional Neural Network (CNN)

Deep learning has a deeper network layer and a larger hierarchical structure than
shallow neural networks. It mainly obtains a deep abstract expression by extracting and
combining the underlying features. Among them, the recurrent neural network (RNN),
convolutional neural networks (CNN), and various variant models are the most widely
used, and the actual effect is the most ideal [38]. CNN is a feed-forward neural network
with convolution computation and a deep structure, which is composed of a convolution
layer, activation layer, pooling layer, full connection layer, etc. The CNN uses a convolution
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kernel to simulate the function of the human visual cortex receptive field to extract a feature
map. The calculation formula of convolution is expressed as:

yl+1
i = f

(
W l+1

i ∗ Xl + bl+1
i

)
(1)

where yl+1
i is the ith value of the output of the l + 1th layer, f (·) is the activation function,

W l+1
i is the shared weight of the ith convolution kernel in the l + 1th convolution layer, Xl

is the output of the lth layer and the input of the l + 1th layer, and bl+1
i is the ith bias of the

l + 1th layer.
The activation function provides the CNN with the ability to solve nonlinear problems.

Common activation functions include Sigmoid, Tanh, ReLU, LeakyReLU, etc. These acti-
vation functions have their own advantages and disadvantages, so we can choose among
them flexibly according to the actual network situation. The pooling layer is used to reduce
network parameters and avoid overfitting. There are two main types of pooling: maximum
pooling and average pooling. Currently, maximum pooling is widely used because it can
save the most important information in the pooling window and avoid feature blurring.
The function of the full connection layer is to combine the extracted features in a nonlinear
way to obtain the output. Some improved networks use global average pooling instead of
using the full connection layer.

2.2. Generative Adversarial Network (GAN)

The GAN [20] is a generative model of adversarial deep learning. It generates data
through the interplay of the generator and discriminator. Its core idea comes from the
concept of “Nash equilibrium” in game theory [39]. The GAN learns the data distribution
of training samples in the game process of generating a network and identifying a network,
then generates new data similar to the original data distribution to achieve the effect of data
enhancement. Therefore, the generated network output can be used to confuse the training
samples with the real samples, so as to solve the problem of imbalanced data, that the
fault samples are less than the normal samples in the actual fault diagnosis. As shown in
Figure 1, GAN consists of two different sub-networks, the generator and the discriminator,
which are trained at the same time.

Figure 1. The structure of the GAN model.

The generator inputs a set of random noise Z = {z1, z2, · · · , zm}, the generated false
sample G(z) = {G(z1), G(z2), · · · , G(zm)}, which is the same as the real data dimension;
the discriminator is responsible for distinguishing the real sample X = {x1, x2, · · · , xn},
and the generated false sample G(z) = {G(z1), G(z2), · · · , G(zm)}. The loss function of
GAN is expressed as:

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (2)
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where Pdata(x) is the data distribution of real data, Pz(z) is the a priori noise distribution.
D(x) represents the probability that x comes from real data. D(G(z)) represents the
probability that G(z) comes from the generated data, where G(z) is the data sample
generated by the generator from the noise data z, subject to the a priori distribution.
Ex∼Pdata(x) represents the data distribution expectation of x from real data, while Ez∼Pz(z)
represents the expectation that z comes from the noise distribution.

3. Proposed Methodology

In this section, the proposed two-stage method for bearing fault diagnosis is described.
Figure 2 is a flowchart of the two-stage approach presented in this paper. The two-stage
method consists of data augmentation and fault diagnosis. In stage 1, to solve the problem
of imbalanced data, MS-PGAN was used to generate data and expand the dataset. In stage
2, the multi-scale data generated by MS-PGAN are input into the MACNN-BiLSTM model,
then the multi-scale feature information is extracted and fused for fault classification.

Figure 2. The flowchart of the proposed two-stage approach.

3.1. MS-PGAN
3.1.1. The Structure of MS-PGAN

The MS-PGAN presented in this paper is a stable and fast-convergent multi-scale
progressive GAN framework. Figure 3 clarifies the network structure of MS-PGAN, which
includes an input unit, multi-layer GAN sub-structure, and upsampling unit. Each GAN
substructure is based on a convolutional GAN, including a generator and discriminator.
The parameters of the structure are shown in Tables 1 and 2. The generator has a 5-layer
network; the activation function of the middle layer uses ReLU, and the activation function
of the output layer uses Tanh. The discriminator has a 5-layer network, with LeakyReLU as
the activation function for the middle layer and softmax as the activation function for the
output layer. B is the batch size, and N is the input scale size. Convolution in deep learning
is generally used to process two-dimensional images. To process one-dimensional signal
data, we use 1D-Conv and 1D-ConvT. The name “1D-Conv” refers to a one-dimensional
convolution layer, which is used to extract and compress the one-dimensional input features.
Conversely, 1D-ConvT refers to a one-dimensional transposed convolution layer, which is
used to amplify the length of the one-dimensional input data. It works almost exactly the
same as the one-dimensional convolutional layer but in reverse. The input size parameter
N of the GAN sub-networks with different dimensions is determined by the dimension of
the input data. The distribution of the input data of each layer is transformed into normal
distribution by using batch normalization, which causes the mean and variance of input
data to remain standardized to reduce the shift in internal covariance, so as to alleviate the
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problem of gradient disappearance and accelerate the convergence of the model. The input
unit and upsampling unit are described in detail in a later section.

Figure 3. The structure of the MS-PGAN model.

Table 1. The MS-PGAN’s generator network structure parameters.

Layer Input Size Output Size BN Activation Function Layer

1D-ConvT
1D-ConvT

B,N,1,1 B,64 * 2,1,5 yes ReLU 1D-ConvT
B,64 * 2,1,5 B,64 * 4,1,12 yes ReLU 1D-ConvT

1D-ConvT
1D-ConvT

B,64 * 4,1,12 B,64 * 2,1,24 yes ReLU 1D-ConvT
B,64 * 2,1,24 B,64,1,50 yes ReLU 1D-ConvT

1D-ConvT B,64,1,50 B,1,1,N yes Tanh 1D-ConvT

Table 2. MS-PGAN’s discriminator network structure parameters.

Layer Input Size Output Size BN Activation Function Layer

1D-Conv
1D-Conv

B,1,1,N B,64,1,50 yes LeakyReLU 1D-Conv
B,64,1,50 B,64 * 2,1,24 yes LeakyReLU 1D-Conv

1D-Conv
1D-Conv

B,64 * 2,1,24 B,64 * 4,1,12 yes LeakyReLU 1D-Conv
B,64 * 4,1,12 B,64 * 2,1,5 yes LeakyReLU 1D-Conv

1D-Conv B,64 * 2,1,5 B,1,1,1 yes Softmax 1D-Conv

The training process of MS-PGAN is an adversarial process of progressive growth.
The algorithm procedure of MS-PGAN is shown in Algorithm 1. Firstly, the training
generator G1 achieves Nash equilibrium with the discriminator D1 by inputting a low-scale
normal frequency spectrum signal XNormal and a low-scale real sample Sreal

1 with Gauss
noise Z into the generator G1 and generates the same-scale fault spectrum signal sample,
S1, for the fault class. The generated low-scale fault samples are transformed into the
mesoscale fault sample S′1 by local noise interpolation upsampling, then the S′1 and the
real sample Sreal

2 are input into the generator. After the Nash balance between the training
generator G2 and the discriminator D2 is reached, a specified number of mesoscale fault
frequency spectrum samples S2 are generated. The same method is used to generate a
high-scale spectrum signal S3 or even higher-scale samples. Finally, the generated samples
of the spectrum signal with different scales are obtained from each GAN subnetwork.
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Algorithm 1. The procedure of MS-PGAN

Input: XNormal , Z, Sreal
1 , Sreal

2 , Sreal
3

Output: S1, S2, S3
1: for i = 1 to 3 do
2: if ki is 40:
3: G1, D1 XNormal , Z, Sreal

1
4: while G1, D1 Satisfy Nash equilibrium do
5: G1, D1 ←min

D
max

G
LMS−PGAN(D1, G1)

6: S1 ← G1(XNormal + Z)
7: end while
8: end if
9: if ki is 100 or 200:
10: S′i−1 ← upsampling(Si−1)

11: Gi, Di ← S′i−1, Sreal
i ,

12: while Gi, Di Satisfy Nash equilibrium do
13: Gi, Di ←min

D
max

G
LMS−PGAN(Di, Gi)

14: Si ← G1

(
S′i−1

)
15: end while
16: end if
17: end for

3.1.2. Multi-Scale Mechanism

The multi-scale mechanism can transform time-series signals into multi-scale one-
dimensional signals. Due to the different levels of features of signals that can be observed
at different scales, a multi-scale mechanism has the ability to better represent the feature
information and improve the performance of the network. In this paper, a multi-scale
processing mechanism has been designed to process the data in the frequency domain
of the vibration signals. The 1D maximum pool method was selected, and its step size
is consistent with the kernel size. The maximum value in the sliding window can better
preserve the instantaneous energy features of the signal and filter out random noise and
high-frequency disturbance to a certain extent. In the training process, a set of vibration
signals {x1, · · · , xn, · · · , xN} is used, where N is the length of the original input data and xn
is the nth vibration value of the original input signal. The corresponding scale time series
are obtained by one-dimensional maximum pooling with different steps, and the final data
length is N

s . The multi-scale calculation process is expressed as:

Ms,j = max
{

X′j
}

, 1 ≤ j ≤ N
S

(3)

where Ms,j is an output signal obtained for multi-scale processing. M is the step size of
one-dimensional max pooling, while X′j is the jth frequency spectrum signal sequence
with scale S. Multi-scale fault category frequency spectrum signals are divided into three
scale types:

• Low-dimensional rough scale: if N is 200 and S is 5 and the resolution is 40-length,
which mainly includes the features of spectral peak.

• Middle-dimensional scale: if N is 200, S is 2 and the resolution is 100-length, so more
harmonic features are added.

• High dimensional scale: if N is 200, S is 1 and the resolution is 200-length; this enriches
the detailed features of the signal, including the complete frequency domain information.

3.1.3. Improved GAN Loss Function with Transfer Learning

WGAN proposes the measurement of Wasserstein distance to replace the JS divergence
of the basic Gan model, keeps the loss function of the traditional Gan unchanged, removes
the sigmoid layer of the discriminator (D) loss, and cancels the logarithmic process of the
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generator (G) and discriminator (D) loss. In addition, because the Wasserstein distance has
no upper and lower bounds, it may cause D to become larger and larger after multiple
iterations and updates. Therefore, WGAN limits the absolute value of discriminator D to a
constant “C” by weight-clipping every time it updates the discriminator D, which makes
the value of D smoother, and effectively alleviates the difficulties and instability of GAN
training due to loss of function, mode collapse, and other problems. However, the trick
used in WGAN does not really make D satisfy the requirement that for any x, the magnitude
of the gradient is less than or equal to 1, to meet the “1-Lipschitz” condition. Therefore,
problems such as training difficulties and slow convergence will still be encountered in
practical applications. Therefore, an improved method, WGAN-GP, was proposed. WGAN-
GP realizes the approximate “1-Lipschitz” condition restriction on discriminator D by using
a gradient penalty instead of the weight-clipping method of directly clipping the gradient
value. This method has achieved good performance in practice. The actual gradient penalty
term of WGAN-GP is shown in Formula (4). The original loss function of the discriminator
is shown in Formula (5), and the loss function of the discriminator of WGAN-GP is shown
in Formula (6).

GP = Ex∼PPenalty

[
(||∇xD (x)||2 − 1 )2

]
(4)

LWGAN(G, D) = Ex∼PG [D(x)]− Ex∼Pdata [D(x)] (5)

L(D) = LWGAN + GP (6)

Although the loss function proposed by WGAN-GP has been successful in the field
of GAN image generation, it has been found in experiments that there are still problems
regarding the generation of a one-dimensional vibration signal, such as random spectral
noise and mode collapse.

In the case of sparse and limited training data, transfer learning [37] can build a
powerful generalization model from related but different application scenarios to create
new application scenarios by making the source domain instance distribution close to the
target domain instance distribution. From the perspective of transfer learning, the essence
of a fault signal is a normal signal with added fault features. This means that the domain
distribution of normal signals from rotating machinery equipment is related to but different
from that of fault signals, which meets the application conditions of transfer learning.
Therefore, we introduced a transfer learning mechanism to improve the model. Taking
normal samples as the source domain DX and fault samples as the target domain DY, the
MS-PGAN model is trained to learn the distribution of fault samples from a sufficient
number of normal samples. The process of transfer learning is shown in Figure 4. Its
advantages are as follows: (1) learning the frequency features of fault samples from the
frequency features of normal samples can significantly reduce the random spectral noise in
the generated samples, which can retain the original physical information to the maximum
extent; (2) it avoids the generator directly learning features from a small amount of fault
data, causing the problem of mode collapse.

Figure 4. The process of transfer learning.

The proposed method presents MMD-WGP as a loss function of the MS-PGAN model.
On the basis of WGAN-GP, the maximum mean discrepancy (MMD) [40,41], which mea-
sures the similarity between source domain and target domain in the transfer learning
domain, is introduced to measure the similarity between generated samples and real sam-
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ples. In the experiment, using the WGAN-GP loss function in a one-dimensional spectrum
signal generation task, the model converges too fast in a vanishing gradient, which leads to
inadequate training and so the model is difficult to optimize. The suggested method solves
this problem by introducing the MMD penalty of maximum mean difference, which makes
the model training more stable and generates samples closer to the true fault signal. MMD
is expressed as:

MMD[F, p, q] = sup
f∈F

(
Ex∼p[ f (x)]− Ex∼q[ f (x)]

)
(7)

where F denotes a given set of functions, p and q are two independent distributions, x and
y obey p and q, respectively, sup denotes an upper bound, and f (·) denotes a function
mapping. We calculate the value of MMD2 as the MMD penalty between source domain
DX and the target domain DY, which is shown in Formula (8). The improved loss function
MMD-WGP of the MS-PGAN model is shown in Formula (9).

MMD2[DX , DY] =‖
1
x

x

∑
i=1

f (xi)−
1
y

y

∑
j=1

f (yi) ‖2 (8)

LMSGAN(G, D) = Ex∼PG [D(x)] −Ex∼Pdata [D(x)] + λEx∼PPenalty

[
(‖ ∇xD(x) ‖2 − 1)2

]
+µ ‖ 1

x

x
∑

i=1
f (xi)− 1

y

y
∑

j=1
f (yi) ‖2 (9)

In Equation (9), the first two are the Wasserstein distance of WGAN-GP and the
gradient penalty. The last one is the MMD penalty, which measures the distribution of
generated fault samples and the distribution of the real fault samples.

3.1.4. Local Noise Interpolation Upsampling

In the training process of MS-PGAN, the progressive growth of generated samples
requires the use of the upsampling method; that is, the input of low-scale generated fault
signal samples to a higher-scale signal needs to be processed by upsampling. The main
methods are nearest-neighbor interpolation, bilinear interpolation, deconvolution, etc.
These classical upsampling methods are well applied in the GANs. In ProGAN [36], a
progressively growing generation model, the conversion of pictures from low-dimensional
pixels, 4 ∗ 4, to higher-dimensional pixels, 8 ∗ 8, is achieved through nearest-neighbor
interpolation. In its improved model, StyleGAN [42], the core structure synthesis network
uses deconvolution to convert the generated low-resolution pictures into higher-resolution
pictures to double the resolution.

In this paper, based on the features of one-dimensional spectral time-series signals
and MS-PGAN networks using input noise control to generate sample diversity, a local
noise interpolation sampling method is proposed: that is, inserting adaptive Gaussian
noise between two points of a low-dimensional signal. The mean σi and variance µi of
noise are determined by the local values of the local window i ∈ {1, 2 . . . , N/k}, where N
is the length of the input and k is the size of the local window. The distribution of adaptive
Gaussian noise is expressed as:

pG(x, a, b, i) =
1

bσi
√

2π
e
− (x−aµi)

2

2(bσi)
2 (10)

where parameters a and b are coefficients of the mean and variance of the signals in the
local window.

3.2. MS-PGAN Combining MACNN-BiLSTM

In recent years, many scholars have combined GAN or its variant with the CNN
in the field of data imbalance, to form a fault diagnosis model of a deep convolutional
generative adversarial network. On the other hand, Hochreite et al. [13] proposed a long
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short-term memory network (LSTM), which has certain information-mining capabilities in
terms of long sequential data and is widely applied in various fields related to time series.
A bidirectional long short-term memory network (BiLSTM), a variant of LSTM, can learn
bidirectional temporal features from the time series to capture more sequence dependen-
cies. Therefore, we designed the model to fuse the ideas of the CNN and BiLSTM: the
CNN’s short-sequence feature abstraction ability is used to extract local features, while the
BiLSTM integrates the short-sequence local features to extract bidirectional global temporal
features, effectively improving the feature extraction ability of the model. Furthermore, by
introducing a multi-scale attention fusion mechanism (MSAFM), the diagnostic model can
establish the importance of feature information at different scales to adaptively select the
best feature combinations at different scales for weighted fusion.

As shown in Figure 5, the model is composed of a data augmentation module, a multi-
scale feature extraction module, a multi-scale attention fusion module, and a classification
module. The MS-PGAN data augmentation module is composed of a sub-network for
progressive adversarial generation at multiple levels, which can be used to output multi-
scale rebalance samples. The multi-scale feature extraction module is composed of three
CNN-BiLSTM sub-networks for different scales, wherein convolution blocks extract local
features and the BiLSTM extracts long-term temporal-dependent information. Each one-
dimensional convolution block (1D-Conv Block) contains a one-dimensional convolution
layer, a BN layer, and a LeakyReLU activation layer. The end of each sub-network uses
global average pooling (GAP) to reduce the model parameters, which can improve training
speed and reduce overfitting. The multi-scale attention fusion mechanism fuses different
scale features using an adaptive attention weight. The classification module consists of
the full connection layer and the softmax layer, which can output the probability of label
classification. The parameters of the MACNN-BiLSTM are shown in Table 3, where B is the
batch size, N is the input scale size, and Num is the number of label categories.

Figure 5. The network structure of MS-PGAN, combining the ACNN-BiLSTM.
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Table 3. The parameters of the MACNN-BiLSTM.

Layer Input Size Kernel Size Stride Padding

input B,1, N
1D-Conv Block1 B,128,N 5,1 1,1 yes
1D-Conv Block2 B,128,N 5,1 1,1 yes
1D-Conv Block3 B,128,N 5,1 1,1 yes
ADD B,128,N
LeakyReLU B,128,N
Max Pool B,128,N 2,1 1,1 yes
BiLSTM B,128,N/2
Attention B,128,256
GAP B,4,256 4,1 1,1 yes
MS-Attention B,256,1
FC 96,Num
softmax Num,Num

Algorithm 2 is the procedure of MACNN-BiLSTM, the input of which is the multi-scale
rebalancing training dataset {S1, S2, S3}, which is the output of stage 1, and the output
of that is the probability O of fault classification. Firstly, Sk at the scale of k is input into
the feature extraction module of the scale, then three continuous convolution blocks are
used to extract the local features of Sk to calculate

{
Ck

1 , Ck
2, Ck

3}. Each convolution block
contains a one-dimensional convolution layer, a BN layer, and a LeakyReLU activation
layer. Then, a residual structure is used to input the sum of Ck

3 and Ck
1 into the LeakyReLU

activation layer to prevent the vanishing gradient. The convolution layer output Ck
o is

obtained via the max-pooling layer, which is used to reduce the complexity of the feature
maps and prevent the model overfitting. In addition, we input Ck

o into the bidirectional
LSTM network with care to establish the memory unit output, Mk

o . It can extract global
temporal features, according to the weight of attention. Via the global average pooling
layer at the end of each feature extraction subnetwork, the variable Hk is output, reducing
the number of model parameters to alleviate the overfitting problem. Furthermore, the
multi-scale attention fusion mechanism is used to calculate the adaptive attention weight
aAM of the outputs

{
Hk

1 , Hk
2 , Hk

3} from different scales. Finally, the weighted fusion output
YAM is input into the full connection layer, and the classification probability O of fault
diagnosis is output via the softmax layer.

Algorithm 2. The procedure of MACNN-BiLSTM

Input: S1, S2, S3
Output: O
1: while not converge do
2: for all Sk do Sk
3: Ck

0 = Sk
4: for i = 1 to 3 do
5: Ck

i ← Conv Blocki

(
Ck

i−1

)
6: end for
7: Ck

o ←MP(LeakyReLU(Ck
3 + Ck

1))
8: Mk

o ← Attention(BiLSTM(Ck
o))

9: Hk ← GMP(Mk
o)

10: end for
11: αAM ← Softmax(FC(Concat(H1, H2, H3))
12: YAM ← αAM∗ Concat (H1, H2, H3)
13: O← Softmax(FC(YAM))
14: end while
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4. Experimental Study

In order to verify the validity, robustness, and generalization of the proposed model
in solving the problem of an imbalanced sample of fault signals in actual conditions, two
different datasets of rotating machinery are selected for the experimental study.

4.1. Dataset Descriptions and Preprocessing
4.1.1. Case 1: UConn Dataset

The University of Connecticut (UConn) gearbox dataset is a gearbox vibration dataset
shared by Professor Tang Liang’s team [43]. As shown in Figure 6, the experimental
equipment is a benchmark two-stage gearbox with replaceable gears. The speed of the
gear is controlled by a motor and the torque is provided by a magnetic brake, which
can be adjusted by changing its input voltage. The first input shaft has 32 pinions and
80 pinions, and the second stage consists of 48 pinions and 64 pinions. The input shaft
speed is measured by a tachometer with teeth. The vibration signal is recorded by the
dSPACE system with a sampling frequency of 20KHz. Nine different health states are
introduced to the pinion on the input shaft, including healthy conditions, a missing tooth,
a root crack, spalling, and a chipping tip, with five different levels of severity.

Figure 6. The benchmark two-stage gearbox.

In order to verify the effectiveness and reliability of the data augmentation method,
we designed several datasets based on the UConn dataset. A, T1, and T1’ are the original
signal datasets used for training and testing. B, C, D, B’, C’, and D’ are the datasets derived
by SMOTE, DCGAN-GP, and MS-PGAN, respectively.

Table 4 represents the details of the experimental datasets from Case 1. Dataset A is an
imbalanced set of data, which is processed at an imbalanced ratio of 0.1, including 312 nor-
mal samples and 32 fault samples in the other 8, totaling 568 samples. Dataset A comprises
the training data outputs generated by dataset B by SMOTE, the generated dataset C by
DCGAN-GP, and the generated dataset D by MS-PGAN. This expands 280 samples in each
fault category into an imbalanced dataset to restore the balance of the dataset. Specifically,
these datasets contain data at three scales for experimental comparison. The pure generated
datasets, B’, C’, and D’, are composed of generated data in the rebalanced datasets of B, C,
and D, respectively, which are the difference sets of the two types of datasets, including
280 generated samples of 8 fault categories in each scale.

4.1.2. Case 2: CWRU Dataset

In order to verify the overall performance of the bearing fault diagnosis with the pro-
posed method using imbalanced data under actual working conditions, Case 2 selects the
Case Western Reserve University (CWRU) bearing dataset [44], which is the authoritative
dataset in this field. It is the standard bearing dataset published by the database of the
CWRU bearing center website, which was collected from the test platform composed of a
motor, torque sensor, power meter, and electronic controller. The bearing fault damage is
caused by single-point damage processed by an electric spark. The drive end bearing is
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selected as SKF6205, and the sampling frequency is 12 kHz for the bearing to be tested. The
diameter of fault damage of the inner ring, outer ring, and rolling body of the bearing is
0.1778 mm, 0.3556 mm, 0.5334 mm, and 0.7112 mm, respectively.

Table 4. The details of experimental datasets, based on Case 1.

State Location A B C D T1 B’ C’ D’ T1’

0 Normal 312 312 312 312 104 - - - -
1 Missing Tooth 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
2 Root Crack 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
3 Spalling 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
4 Chipping 5a 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
5 Chipping 4a 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
6 Chipping 3a 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
7 Chipping 2a 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104
8 Chipping 1a 32 32 + 280 32 + 280 32 + 280 104 280 280 280 104

In Table 5, datasets E, F, E’, F’, and T2 are designed based on Case 2, with ten different
healthy states. We chose 0.1 and 0.05 as the imbalance ratios to verify and compare the
impact of models under severe imbalance ratios. E is an imbalanced dataset with an
imbalance ratio of 0.1, which comprises 840 normal samples and 84 samples for the other
9 fault categories, totaling 1596 samples. F is an imbalanced dataset with an imbalance
ratio of 0.05, which has 840 normal samples and 44 samples for the other 9 fault categories,
totaling 1236 samples. MS-PGAN uses the imbalanced datasets E and F as training data to
obtain the multi-scale rebalanced datasets E’ and F’, including 840 samples in all categories,
totaling 8400 samples. Dataset T2 is a test set with 360 samples in each category and a total
of 3600 samples.

Table 5. The details of the experimental datasets, based on Case 2.

State Location Degree (mm) E F E’ F’ T2

0 Normal 0.000 840 840 840 840 360
1 Ball 0.1778 84 44 84 + 756 44 + 796 360
2 Inner race 0.1778 84 44 84 + 756 44 + 796 360
3 Outer race 0.1778 84 44 84 + 756 44 + 796 360
4 Ball 0.3556 84 44 84 + 756 44 + 796 360
5 Inner race 0.3556 84 44 84 + 756 44 + 796 360
6 Outer race 0.3556 84 44 84 + 756 44 + 796 360
7 Ball 0.5334 84 44 84 + 756 44 + 796 360
8 Inner race 0.5334 84 44 84 + 756 44 + 796 360
9 Outer race 0.5334 84 44 84 + 756 44 + 796 360

4.1.3. Data Preprocessing

Compared with the original time-domain signal, the frequency spectrum signal has
more significant physical information and contains more useful information about fault
diagnosis, which is helpful for quantitative analysis of the vibration signal [45]. However,
traditional time-domain analysis and frequency-domain analysis are used to process vibra-
tion data that is less affected by noise or that has a simpler vibration signal. Under actual
working conditions, the vibration signals of a rolling bearing may have strong non-linearity
and non-stationarity, so that, when the above two signal processing methods fail to meet
the requirements, the time-frequency analysis method is needed. Therefore, when consid-
ering the complex signal issues of practical engineering problems, the experiment uses
variational mode decomposition (VMD) in the time-frequency analysis method to obtain
frequency-domain signals as data samples to train the model. The frequency spectrum
signals of the common four health states of rolling bearings after VMD processing are
shown in Figure 7a–d.
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Figure 7. Spectrum signals of different health states, processed by VMD: (a) normal state; (b) ball
fault; (c) inner race fault; (d) outer race fault.

4.2. Stage 1: Data Augmentation

In order to evaluate the feasibility of the proposed two-stage fault diagnosis method
to solve the imbalance problem of a vibration signal dataset of rotating machinery in
application scenarios, two groups of experiments were designed to test data augmentation
and fault diagnosis, respectively.

4.2.1. Experiments Results of Data Augmentation

In the experiment, datasets A, E, and F are processed using a multi-scale mechanism;
then, multi-scale sample data with 40-length, 100-length, and 200-length granularity are
gradually generated using a multi-scale MS-PGAN. In particular, the experimental samples
are randomly cut from various original signals with a length of 400 time-series segments,
and the first half of the symmetric frequency domain signals are taken after VMD processing,
i.e., frequency-domain signals with a length of 200.

The original frequency-domain signal diagrams of the imbalanced dataset E at 40, 100,
and 200 scales are shown in Figure 8a–c, respectively. Take dataset E, for example: the
multi-scale unbalanced fault samples with an imbalance ratio of 0.1 in E are iteratively
trained by the gradually growing multi-scale generation model (MS-PGAN). When the
training reaches Nash equilibrium, a specified number of multi-scale generated samples
are generated for each fault category, and 756 samples are generated for each category at
each scale, mixing with E to obtain a balanced dataset, E’, containing multi-scale samples.
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Figure 8. The spectrum of the multi-scale original signals: (a) low-scale; (b) mesoscale; (c) high-scale.

The frequency-domain signal maps of the generated balanced dataset E’ at 40, 100,
and 200 scales are shown in Figure 9a–c, respectively. In the same way, the imbalanced
datasets A and F are used to obtain the corresponding multi-scale balanced generated
sample datasets C and F’, respectively. Eventually, these multi-scale balanced datasets will
realize fault diagnosis through the MACNN-BiLSTM model of the multi-scale attention
mechanism. The experimental results illustrate that MS-PGAN can generate realistic multi-
scale frequency spectral signals and accord with the physical mechanism of signals, which
can effectively alleviate the problem of data imbalance.

Figure 9. The spectrum of the multi-scale generated signal: (a) low-scale; (b) mesoscale; (c) high-scale.

4.2.2. Performance Analysis

Figure 10a,b illustrates the difference in ball faults of the MS-PGAN model before
and after using the improved loss function MMD-WGP. The results clarify that the data
generated without the improved loss function MMD-WGP has a significant problem of
random spectral noise. Obviously, the presence of noise in all frequency bands disrupts
the physical mechanism of the generated signal. In contrast, the generated signals with an
improved MMD-WGP loss function can significantly suppress the noise problem, improve
the mechanism of the generated signals, and retain more effective physical information.
This indicates that the introduction of a transfer learning mechanism by MMD-WGP helps
the generator model to learn a more generalized distribution of fault samples from normal
samples, to avoid the limitations of learning the distribution of a few fault samples directly,
which can effectively improve the stability and effectiveness of the model and restrain the
GAN mode collapse problem.
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Figure 10. The comparison of MS-PGAN using the improved loss function MMD-WGP: (a) generated
signal without MMD-WGP; (b) generated signal with MMD-WGP.

This experiment demonstrates that the higher-scale fault frequency domain signal
obtained by local noise interpolation upsampling not only maintains the low dimension
fault feature frequency but also increases the diversity of local details by local adaptive
Gaussian noise. It also greatly improves the convergence rate of the MS-PGAN model.

As shown in Figure 11a,b, when a is 1.5 and b is 1.20 in Formula (10), the fault sample
of the outer race is transformed from a 40-length low-scale fault sample to a 100-length
mesoscale sample, using a local noise interpolation upsampling method. Obviously, the
mesoscale sample maintains the frequency of fault feature in the low-scale sample, while
adding adaptive noise to improve the diversity of the generated sample.

Figure 11c,d illustrates the loss convergence without local noise interpolation for each
fault class and loss convergence after using local noise interpolation during the training
process for generating dataset E’, respectively. The experimental results explain that loss
convergence can be significantly improved by adding local noise interpolation during the
progressive generation process of MS-PGAN.

As shown in Tables 6 and 7, we used the SVM model as a diagnostic model, which
has outstanding stability, to conduct experiments regarding diagnostic classification on the
imbalance dataset A, rebalance datasets B, C, and D, and pure generated datasets B’, C’,
and D’ at multiple scales. It can be observed that the performance of the data-driven fault
diagnosis methods is prominently influenced by the imbalanced training data, and it can
be effectively alleviated by expanding the dataset through a data enhancement method.
In terms of the whole, the average accuracy at all scales of the pure generated datasets
B’, C’, and D’ was about 0.58%, 1.43%, and 2.50% higher than that of the imbalanced
dataset A. The average accuracy at all scales of the generated rebalanced datasets B, C,
and D was about 1.15%, 2.32%, and 3.05% higher than that of the imbalanced dataset A.
In terms of multiple scales, there are significant differences in the classification accuracy
of the models at different scales. In the three different scales, the MS-PGAN-generated
rebalanced dataset D was about 3.20%, 3.43%, and 2.5% higher than imbalance set A, while
the DCGAN-GP dataset was about 2.36%, 3.05%, and 1.53% higher, and the SMOTE dataset
also increased by about 0.26%, 2.22%, and 0.98%. The experimental results indicate that the
rebalanced dataset with generated data achieves a better classification performance than
the imbalanced dataset, which proves the feasibility and usefulness of using generated
data for data augmentation. Secondly, on these datasets, the quality of the MS-PGAN-
generated dataset is obviously better than that of the three other datasets for all scales. In
addition, the difference between the different scales of the generated data indicates that the
robustness and generalization of the single-scale model are obviously lower than that of the
multi-scale model, which proves the necessity of fusing multi-scale data. In conclusion, the
experiments based on Case 1 demonstrate the reliability and validity of the sample quality
generated via MS-PGAN.
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Figure 11. Comparison of the local noise interpolation used in the progressive generation: (a) a signal
before using local noise interpolation; (b) a signal after using local noise interpolation; (c) the loss
without local noise interpolation; (d) the loss using the local noise interpolation.

Table 6. The average precision and recall (%) of the imbalanced and rebalanced datasets by SVM.

Data Scale
Imbalance Rebalance
Original SMOTE DCGAN-GP MS-PGAN

Dataset A Dataset B Dataset C Dataset D

aPre aRec aPre aRec aPre aRec aPre aRec
Low 88.48 88.46 88.74 88.35 90.84 90.59 91.68 91.67

Middle 90.93 90.60 93.13 93.06 93.98 93.91 94.36 94.34
High 92.79 92.84 93.77 93.91 94.32 94.34 95.29 95.19

Table 7. The average precision and recall (%) of the imbalanced and pure generated datasets by SVM.

Data Scale
Imbalance Pure Generated Data
Original SMOTE DCGAN-GP MS-PGAN

Dataset A Dataset B’ Dataset C’ Dataset D’

aPre aRec aPre aRec aPre aRec aPre aRec
Low 88.48 88.46 87.91 87.14 88.74 88.35 90.73 90.50

Middle 90.93 90.60 92.37 92.31 93.58 93.15 94.18 93.99
High 92.79 92.84 93.65 93.63 94.12 94.06 94.80 94.71
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Figure 12a–d show the confusion matrix between the imbalanced dataset A and the
rebalanced datasets B, C, and D at a high scale by SVM, which may provide an explanation
for the practical effect of using generated data to mitigate the problem of imbalanced data.
Figure 12a shows the confusion matrix of the imbalanced dataset A, illustrating that the
imbalance of fault categories has a significant negative impact on fault diagnosis. Type-5
and type-7 faults are particularly affected by a category imbalance of only 82% and 79%,
respectively. Figure 12b–d demonstrate that the problem of a lack of real fault data can be
significantly improved by using the data expansion method. In particular, the MS-PGAN
method improves the diagnostic accuracy of type-5 faults from 82% to 90%, and that of
type-7 faults from 79% to 90%, achieving remarkable results. Obviously, the proposed
method using MS-PGAN for data augmentation has the ability to improve the accuracy of
fault diagnosis, especially for those fault categories that are most affected by an imbalance
of fault categories.
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4.3. Stage 2: Fault Diagnosis
4.3.1. Experimental Results of Data Augmentation

In order to further verify the feasibility of the proposed model including MS-PGAN
and MACNN-BiLSTM for fault diagnosis with imbalanced data, five baseline methods
and the proposed method were selected for a comparative experiment of fault diagnosis:
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VMD-SVM [8], DAE-DNN [9], 1D-CNN [10], BiLSTM [12], ResNet [11], and the proposed
method. The above six methods were used to conduct comparative experiments using the
datasets for Case 1 and Case 2. Table 8 shows the experimental results of the fault diagnosis
using the different generation methods. Table 9 shows the experimental results of the fault
diagnosis with different imbalanced ratios. In particular, all the single-scale methods used
datasets at the 200-length scale to conduct the experiments.

Table 8. The average precision and recall (%) of baselines and our proposed method for Case 1.

Methods

Imbalance Balance

Dataset A
SMOTE DCGAN-GP MS-PGAN

Dataset B Dataset C Dataset D
aPre aRec aPre aRec aPre aRec aPre aRec

VMD-SVM 92.79 92.84 93.97 93.91 94.32 94.34 95.29 95.19
SAE-DNN 93.38 93.18 94.28 94.12 93.98 94.21 94.12 93.48
1D-CNN 94.98 94.65 94.86 94.71 95.23 95.34 95.67 95.62
Bi-LSTM 89.54 89.21 92.74 92.25 92.41 92.18 92.92 92.33
Res-Net 94.44 93.91 94.97 94.66 94.87 94.76 95.30 95.08

Ours 95.21 95.13 95.52 95.24 96.11 96.02 97.15 96.89

Table 9. The average precision and recall (%) of baselines and our proposed method for Case 2.

Methods

Imbalance Rebalance
0.1 Ratio 0.05 Ratio 0.1 Ratio 0.05 Ratio
Dataset E Dataset F Dataset E’ Dataset F’

aPre aRec aPre aRec aPre aRec aPre aRec

VMD-SVM 95.62 95.50 93.35 93.33 97.44 97.42 96.38 96.33
SAE-DNN 93.81 93.75 92.67 93.61 97.52 97.43 93.79 93.77
1D-CNN 95.56 95.47 91.36 91.25 97.26 97.22 95.40 95.28
Bi-LSTM 97.35 97.31 96.26 96.14 97.57 97.53 97.53 97.50
Res-Net 96.56 96.53 94.92 95.31 97.22 97.11 95.92 95.86

Ours 97.68 97.59 96.47 96.35 98.49 98.47 98.07 98.03

4.3.2. Performance Analysis

As shown in Table 8, for all datasets based on Case 1, the average precision of the
1D-CNN, the mean of the average precision of datasets A, B, C, and D, is 95.19%, that
of the BiLSTM is 91.90%, and that of the proposed model is 96.00%. In Table 9, for all
datasets based on Case 2, the average precision of the 1D-CNN, the mean of the average
precision of datasets E, F, E’ and F’, is 94.90%, that of the BiLSTM is 97.18%, and that of
the proposed model is 97.68%. By contrast, the average precision of the BiLSTM is 2.28%
higher than that of 1D-CNN in Case 2. In Case 1, the average precision of the 1D-CNN
is 3.29% higher than that of the BiLSTM. The experimental results indicate that the same
network structure has significantly different feature extraction effects on vibration datasets
from different pieces of rotating machinery equipment, which means that the single-feature
extraction unit makes the ability of fault diagnosis unstable. Therefore, in order to obtain
better robustness and generalization, the diagnostic model needs a better feature extraction
ability. Obviously, the multi-scale MACNN-BILSTM fault diagnosis method can achieve
higher accuracy than the CNN and the BiLSTM in both Case 1 and Case 2, which proves
that the proposed model can combine the advantages of the CNN and BiLSTM to extract
the local and global features of the spectrum signals.

In addition, the diagnostic effect of the proposed multi-scale method is much better
than that of the single-scale methods in the five experimental groups of rebalanced datasets
shown in Figure 13. This proves that the diagnostic method, based on a multi-scale attention
fusion mechanism, can fuse different feature information at multiple scales, and this gives
the model higher accuracy and better robustness. Furthermore, as shown in Figure 14a,b,
the average precision of all models in the dataset rebalanced by MS-PGAN is higher than
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that in the imbalanced dataset. In particular, the proposed method achieves an average
precision of 97.15%, 98.49%, and 98.07% on the rebalanced datasets C, E’ and F’ generated
by multi-scale MS-PGAN, respectively, which is higher than the average precision of other
baselines with the same imbalance ratio. This proves that the two-step multi-scale method
we proposed can realize effective fault diagnosis with imbalanced data.

Figure 13. The average precision (%) of the baselines and our proposed method in all rebalanced datasets.

Figure 14. The average precision (%) of baselines and our proposed method for imbalanced data.
(a) Results for Case 2 with a 0.1 imbalance ratio; (b) results for Case 2 with a 0.05 imbalance ratio.

In conclusion, the multi-scale fault diagnosis method proposed in this paper can
combine the local feature extraction capability of the CNN and the global temporal feature
extraction capability of the BiLSTM. It can effectively fuse the feature information at
different scales through the multi-scale attention fusion mechanism, which has outstanding
accuracy and robustness for different working conditions. This method achieves great
generalization performance on two different datasets of rotating machinery, which has an
important application value for fault diagnosis.

5. Conclusions

In this paper, a two-step multi-scale bearing fault diagnosis method is proposed to
solve the problem of imbalanced data. In stage one, we proposed a multi-scale progressive
generative adversarial network (MS-PGAN), generating high-scale samples gradually and
stably from low-scale samples by means of progressive growth. In the training process, the
model uses the transfer learning mechanism to learn the distribution mapping relationship
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from normal samples to fault samples, which alleviates the problem of random spectral
noise and mode collapse. Furthermore, local noise interpolation upsampling is used to
protect the fault feature frequency and improve the convergence speed. In stage two,
a diagnosis model based on a multi-scale attention mechanism (MACNN-BiLSTM) is
proposed, which can extract and fuse the local frequency features and global temporal
features effectively from multi-scale spectrum signals, to realize fault diagnosis. The
experimental results, based on UConn and CWRU datasets, demonstrate that the proposed
model can stably generate fault samples to significantly improve the imbalance problem,
and can fuse more feature information at different scales with a multi-scale attention
mechanism, which gives better classification accuracy, robustness, and generalization than
the other compared methods.

Despite the fact that diagnostic accuracy is significantly improved after data expansion,
it is still difficult to reach the upper limit of that accuracy with enough real data. This
means that there is some difference between the distribution of generated samples and real
samples, which requires further improvement of the generalization process. In addition,
the application of the model to different pieces of rotating machinery involves more cross-
domain adaptive problems. Therefore, our future work will focus on the fault diagnosis
method combined with domain adaptation and domain generalization.
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