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Abstract: The recovery treatment of motor dysfunction plays a crucial role in rehabilitation therapy.
Rehabilitation robots are partially or fully replacing therapists in assisting patients in exercise by
advantage of robot technologies. However, the rehabilitation training system is not yet intelligent
enough to provide suitable exercise modes based on the exercise intentions of patients with different
motor abilities. In this paper, a dual-modal hybrid self-switching control strategy (DHSS) is proposed
to automatically determine the exercise mode of patients, i.e., passive and assistive exercise mode.
In this strategy, the potential field method and the ADRC position control are employed to plan
trajectories and assist patients’ training. Dual-modal self-switching rules based on the motor and
impulse information of patients are presented to identify patients’ motor abilities. Finally, the DHSS
assisted five subjects in performing the training with an average deviation error of less than 2 mm in
both exercise modes. The experimental results demonstrate that the muscle activation of the subjects
differed significantly in different modes. It also verifies that DHSS is reasonable and effective, which
helps patients to train independently without therapists.

Keywords: rehabilitation robot; potential field; dual-modal switching; human-robot interaction

1. Introduction

Rehabilitation is essential for people with impaired motor function due to age-associated
diseases or accidents, in order to fully or partially restore the motor function of their
limbs [1]. Due to the shortage of therapists and the cost of various rehabilitation expenses,
a great deal of research has been conducted on robot-assisted rehabilitation. Researchers
have applied robotics to the field of upper limb rehabilitation and have developed a variety
of devices. Examples include end-traction devices: MIT-MANUS [2], MIME [3], EULRR [4],
and BULReD [5]; and exoskeletal rehabilitation devices: ARMin [6] and UL-EXO7 [7–9].
These rehabilitation robots can provide multiple modes of rehabilitation exercises: passive
exercise, assistive exercise, and resistance exercise.

The human–robot interaction control strategy of the rehabilitation robots is also a
key factor affecting the rehabilitation results. The patient’s initial rehabilitation focuses on
unidirectional master–slave passive exercise; and upper limb rehabilitation robots generally
use position control strategies such as classical PID control, sliding mode control [10], and
active disturbance rejection control (ADRC) [11]. In addition, passive exercise puts high
demands on precision and safe motion planning. Thus, a motion planning strategy with
minimal potential energy modulation has been proposed [12]. However, passive exercise
strictly follows the physician’s pre-defined trajectory without any form of interaction
between patients and rehabilitation robots during the whole training process [13]. Patients
will eventually lose active participation in passive exercise. Research findings [14] in
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sports rehabilitation medicine have shown that active participation in training has a crucial
impact on the recovery of motor learning ability and on the improvement of rehabilitation
outcomes, because some patients with severe motor impairment can produce muscle
activity but not movement or strength. Some studies [15–17] have used EMG-triggered
control strategies to assist training.

The control methods for assistive exercise are more diverse. Assist-as-needed (AAN)
control strategies [18–20] are often applied in assistive exercise mode. AAN control strate-
gies firstly develop rules to assess the patient’s motor ability and secondly generate different
assistive forces based on the patient’s motor status. However, changes in tracking error-
based assisted force inevitably lead to negative training. Study [21] has also proposed a
reward–punishment feedback control strategy. It provides rewarding feedback or punish-
ing feedback when patient training participation is high or low, respectively, which helps
to avoid patient slacking. Some preliminary studies that are more directly related to the
present study should be cited: [22,23]. Study [22] has proposed a time-invariant control
strategy: unified motion and variable impedance control (UMIC). By building the potential
and dissipative fields, the motion of the industrial robotic arm on the desired trajectory
is controlled. Literature [23] further proposes a rehabilitation training control strategy
based on potential and velocity fields using the UMIC. UMIC does not assist training
based on tracking errors, but provides control quantities based on a pre-designed potential
field model.

The essence of the human–robot interaction control strategy is to adjust both the
intensity of the rehabilitation robot’s assistance as well as the mode according to the
patient’s motor intention, to encourage active participation in the training. A large number
of studies have used sEMG to identify patients’ motor intentions and to assess their motor
function. Offline upper limb sEMG signals are used to identify functional movements
and assess the level of limb impairment of patients with stroke [24–26]. Literature [27]
proposes an SVM classifier-based sEMG to determine movements of healthy side limb,
and to replicate the movements in the affected side limb for training. However, due to
the variability of the human body, it is still quite difficult to accurately predict the motor
intention of patients online based on sEMG.

The assistance torque required by patients is different at different stages of rehabilita-
tion and motor status. It is important to motivate patients by providing assistance torque
according to patients’ motor intention and motor ability. Study [28] has developed a com-
plete rehabilitation system that can model all the therapeutic exercises for an upper limb
rehabilitation, by modifying the control parameters. However, how to switch intelligently
between the various exercise modes according to the actual motor ability of patients has
not been investigated. This is crucial for rehabilitation devices that are far from or lacking
therapists.

In a previous work [29], a robot platform was introduced and an AAN control strategy
for bilateral training was proposed. The contribution of this study is the design of a
dual-modal hybrid self-switching (DHSS) control strategy that can perform both passive
and assistive exercises. This strategy combines the high accuracy of position control
with the flexibility of potential field. In addition, another contribution is the proposal
of a portable method for assessing patients’ motor ability and the design of dual-modal
self-switching rules.

2. Materials and Methods
2.1. Upper Limb Rehabilitation Robot

An upper limb rehabilitation robot prototype was developed [29]. The rehabilitation
robot described below is designed for patients who have a functional (PFL) and an impaired
limb (PIL). The upper limb bilateral rehabilitation robot consists of two robotic arms, one
of which is called the affected side manipulator (ASM). The ASM is equipped with three
motors (Kollmorgen RGM14A/RGM17A) and a force sensor (Zlm 1826) to assist in the
rehabilitation training of the PIL. The motor contains an angle encoder. The ASM contains
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three degrees of freedom. The robotic arms can move in a three-dimensional workspace.
A schematic diagram of the upper limb bilateral rehabilitation robot is shown in Figure 1.
The ASM with three joints is the control object in this paper.
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Figure 1. Schematic diagram of upper limb bilateral rehabilitation robot. ASM (the affected side
manipulator) is used to assist patients to complete rehabilitation training tasks in a three-dimensional
workspace.

The dynamics equation of ASM in joint space are described as follows:

M(q)
..
q + C(q,

.
q)

.
q + G(q) + f (

.
q) + D = τ (1)

where q = [θ1, θ2, θ3] are the joint angles, M(q) ∈ R3×3 denotes the inertia matrix,
C
(
q,

.
q
)
∈ R3×3 denotes the Coriolis and centrifugal terms, G(q) ∈ R3 is the gravity matrix,

f
( .
q
)
∈ R3 is the friction force, τ ∈ R3 denotes the vector of applied torques by actuators,

D is the unmodeled dynamic term as well as external disturbances. This paper uses the
Lagrange method to obtain the matrices M, C, and G. The Stribeck friction torque model [30]
is used to identify the friction term f

( .
q
)
.

The upper limb rehabilitation robot control system is a multiple input multiple output
(MIMO) system. To facilitate the use of ADRC to control the joints of the upper limb
rehabilitation robot, this section decouples the robot dynamics model and converts it into a
single input single output (SISO) system. Rewrite Equation (1) as:

..
q = M−1τ −M−1(C

.
q + G + f + D) (2)

Further simplification:
..
q = A1 + A2 + u (3)

A1 = −M−1(C
.
q + G + f )

A2 = −M−1D
u = M−1τ

(4)

A1 is the vector obtained by combining the inertial, friction, and gravity terms. A2 is
the uncertain dynamical model of the system and external disturbances, which are more
difficult to measure. The virtual torque u is introduced, so that robot dynamics is decoupled
into three independent SISO systems:
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..
θ1..
θ2..
θ3

 =

 a11
a12
a13

+

 a21
a22
a23

+

 u1
u2
u3

 (5)

When the virtual torque u is known, the actual joint torque τ can be obtained:

τ = Mu (6)

2.2. Overall Design of Control Strategy

In this paper, a strategy of hybrid control, ADRC combined potential field, is employed
to determine suitable assisted torque for the upper limb rehabilitation robot according to
the different motor function characteristics of the patient.

In the passive exercise mode, since the patients lack sufficient motor capacity, the
auxiliary torque needs to maintain a high level when the rehabilitation robot drives the
patient to track the desired trajectory prescribed by the rehabilitation therapist. To achieve
high-precision trajectory tracking in passive exercise mode, the ADRC position control
strategy is used. In contrast, the patient already has a certain exercise capacity in the
assistive exercise mode, which only needs low auxiliary torque during training. During
this process, the robot should provide haptic feedback to induce the patient to complete
the training. Therefore, a potential field strategy is used in the assistive exercise mode. In
addition, to achieve self-switching between the two modes, a method for assessing the
subject’s motor ability is proposed.

The flow chart of dual-modal hybrid self-switching control is shown in Figure 2. It
includes mode switching rules, path generator, and position control. Firstly, the sensor data
is input to the mode recognition layer after pre-processing. Secondly, the training mode is
divided by judging the current motor ability of the patient. Thirdly, the desired exercise
trajectory is provided according to the corresponding training mode. Finally, the motor
output torque is processed using a smoothing strategy before and after mode switching.
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2.3. Design of Active Disturbance Rejection Position Controller

The position controller of the robot is designed according to the dynamics model
of the system. However, the system has high requirements for the design of a position
controller, due to the strong nonlinearity of the system itself, coupled with the uncertainty
of the model parameters and the external disturbances. The ADRC method can treat the
uncertainty terms as an extended state, which can be equivalently compensated in the
controller. The ADRC position control block diagram is shown in Figure 3.
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Now assume that D(t) is differentiable. Taking joint 3 as an example, a23 is expanded
to a new state variable. Let x1 = θ3, x2 =

.
θ3,

.
x3 = w(t), and the state space equation is

obtained as follows: 
.
x1 = x2.
x2 = x3 + a13 + u1.
x3 = w(t)
y = x1

(7)

The uncertainty term a23 is estimated using a third-order extended state observer.
e1 = z1 − y
.
z1 = z2 − β01e1.
z2 = z3 − β02e1 + a11 + u1.
z3 = −β03e1

(8)

Determining the appropriate observer parameters β01, β02, β03, the system can estimate
x1, x2, x3 well. x3 is used as the input of ADRC.

ADRC feedback law is shown:

u1 = kpe + kd
.
e− a11 − z3 (9)

where e = v1 − θ3, is the tracking error of joint 3; kp and kd denote the proportional and
differential coefficients. ADRC position control block diagram is shown in Figure 3.

2.4. Potential Field Design

The potential field is designed based on the desired motion trajectory. The potential
energy of the desired trajectory is equal and lowest globally, which means that the potential
field gradient is zero at the desired trajectory. The potential energy at each point increases
with the distance from the desired trajectory. Deviating from the desired trajectory, the
potential field will provide a normal force pointing to the desired trajectory. Therefore, the
virtual potential field is designed as follows:

N points are uniformly sampled from the designed trajectory:

Dp =
{

pi
r

}N

i=1
(10)

pi
r ∈ R3, denotes the position information of the end of the ASM at the ith point in the

Cartesian space. Dp denotes discrete desired trajectory dataset of ASM.

Lt = min
({
‖p− pi

r‖2

}N

i=1

)
(11)

Lt is the minimum distance between the point p and each sampling point.

φi(p) = φi
0 +

1
2

(
p− pi

r

)T
Ki
(

p− pi
r

)
∀i ∈ 1 . . . N (12)

The virtual energy element φi(p) is established by p and the sampling point pi
r,

φi
0 is a scalar quantity. For a particular point p, there is a virtual spring between p

and pi
r. p is attracted by −Ki(p− pi

r
)
, and the elastic potential energy of point p is

0.5
(

p− pi
r
)TKi(p− pi

r
)
. It can be seen from Equation (12) that the further the point p

is from pi
r, the higher the elastic potential energy.

Calculate the weight of the potential energy at point p to the N sampling points using
the Gaussian kernel function:

ωi(p) = e
− 1

2(σi)2
(p−pi

r)
T
(p−pi

r) ∀i ∈ 1 . . . N (13)
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Normalize the N weights:

ω̃i(p) =
ωi(p)

∑
j

ω j(p)
∀i ∈ 1 . . . N (14)

Total potential energy at point p:

Φ(p) = ∑
i

ω̃ j(p)φi(p) (15)

In the potential field, the potential energy is the same at each sampling point. The
gradient of the potential field:

∇Φ(p) = ∑
i

1
(σi)

2 ω̃i(p)
(
φi(p)−Φ(p)

)(
p− pi

r
)

−ω̃i(p)Ki(p− pi
r
) (16)

On the sampled dataset Dp, The gradient of the designed potential field is expected
to be equal to zero. For more details about potential field, please refer to [22]. Therefore,
the selection of the potential field parameters φi

0 can be translated into solving the convex
optimization problem Equation (17). Finally, using the circle and the straight line segment
as the desired trajectory, the designed potential fields are shown in Figure 4.

min J(Θ) = 1
N

N
∑

i=1
‖∇Φ

(
pi

r; Θ
)
‖2

subject to
0 ≤ φi

0 ∀i = 1 . . . N
∇Φ(pi

r) = 0 ∀i = 1 . . . N
Θ =

{
φ1

0 . . . φN
0
}

(17)
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2.5. Dual-Modal Hybrid Self-Switching Control

ADRC position controller can precisely track the desired trajectory. By mapping the
negative gradient of potential field to the increment of the desired trajectory, potential
field can be used for the motion planning of the rehabilitation robot. According to the
potential field negative gradient Equation (16), the increment of motion displacement can
be obtained as:

xp = −r∇Φ(p) (18)

where, r is the coefficient for adjusting the displacement increment, which is positive.
Based on the previously designed ADRC position controller and potential field, the

DHSS control strategy is proposed. The control block diagram is shown in Figure 5. The
controller consists of two parts, first, passive exercise control: the path generator is used to
plan the desired trajectory; second, potential field control: the position of the end of ASM is
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found by forward kinematics and the displacement increment for the next control cycle is
solved using potential field. Which exercise mode is used depends on the value of α.

Figure 5. Upper limb rehabilitation robot dual-modal hybrid self-switching control block diagram.

In Figure 5, xa denotes the actual position of the end of ASM, xp denotes the displace-
ment increment generated by potential energy field, and x0 denotes the desired trajectory
generated by the path generator. x0 is as follows:

x0 =

{
xt α = 0
xa α = 1

(19)

where, xt represents the desired trajectory in passive exercise mode. The value of α
determines the value of x0 , and the change of the value of α represents the switching of
the exercise mode. The self-switching rules of the exercise mode are described in Section 2.6.

2.6. Dual-Modal Self-Switching Rules

To accurately assess patients’ motor ability and to intelligently provide suitable ex-
ercise modes, mode self-switching rules are designed in this section. By analyzing the
characteristics of the two training modes and the motor ability of the patient during train-
ing, effective and generalized evaluation indicators and mode switching thresholds are
proposed. It is specified that the initial state of mode is assistive exercise, that assistive
exercise to passive exercise is reverse switching, and that passive exercise to assistive
exercise is forward switching.

2.6.1. Reverse Switching Rule

Owing to the patient’s muscle strength being insufficient during training, the main
exercise method is to rely on the robot to drive the upper limb movement. In reverse
switching, the initial state of the robot is assistive exercise mode, which inevitably leads to
the inability of patients with severe motor dysfunction to complete the exercise task. To
solve this problem, the actual trajectory of ASM is sampled in the period t1. If the motion
displacement is less than l0 in the period t1, then the exercise mode will be switched to
passive exercise. The values of t1, l0 are determined according to the exercise requirements.
The specific algorithm is as follows:

End positions of ASM are sampled in time t1, and the data set Dx is obtained:

Dx =
{

pj
x ∈ R3

}N

j=1
(20)

Find the center position p0 of Dx:

p0 = mean(Dx) (21)

The sampling point pmax in Dx farthest from p0:
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pmax = max
({
‖pj

x − p0‖2

}N

j=1

)
(22)

Distance between p0 and pmax:

l = norm(p0 − pmax) (23)

If l is less than the reverse switching threshold l0, the mode is switched to passive
exercise. Based on the patient’s movement information it is easy to determine the actual
movement ability of the patient.

α =

{
0 l < l0
1 l ≥ l0

(24)

2.6.2. Forward Switching Rule

An impulse is characterized by the cumulative effect of a force acting on an object over
some time. Based on the impulse information, the patient’s motor intention and motor
ability can be detected. The human–robot interaction force can be measured with a force
sensor mounted on the end of the ASM. In the passive exercise mode, if patients exert effort
in the desired direction of movement during a period of t2, then the effective impulse I
can be used as an indicator of forward switching.

As shown in Figure 6, taking XY-plane trajectory as an example, the force sensor
measures the human–machine interaction force as Fext, the direction of desired motion is
vr, θ is the angle between Fext and vr, and F is the projection of Fext on vr. The effective
impulse I is the accumulation of F in t2 time period. I is calculated by the following
equation:

F = abs
(

vr

‖vr‖
‖Fext‖ cos θ

)
sign(cos θ) (25)

I =
∫ t2

0
Fdt (26)

α =

{
0 I < I0
1 I ≥ I0

(27)

When θ is an acute angle, it means that the patient’s upper limb muscles have done
positive work, and F is taken as a positive value at this time. When θ is an obtuse angle,
it means that patients have done negative work, and F is taken as a negative value at
this time. The value of the period t2 in Equation (26) is determined by the exercise task.
If I is greater than the forward switching threshold I0, the mode is turned to assistive
exercise. The switching threshold I0 can be determined through experiments. Assume that
the training cycle time is T, the effective impulse is I1 =

∫ T
0 Fdt, and the value range of I0:

I0 ε(0.2I1, 0.5I1).

Figure 6. Interaction force Fext and target velocity vr schematic.
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3. Results

In this experiment, the potential field (Figure 4 left) and VR (Figure 7 right) are
designed according to the circular trajectory. The center of the circle is (0.6,0,0) m, the radius
is 0.1 m, and the circle is located on the XY-plane. The control parameters are β01 = 1200,
β02 = 4800, β03 = 400, kp = [13 15 15], kd = [0.7 0.5 0.5], N = 124, K = 380 N/m, σ = 0.01,
r = 1/50.
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Figure 7. (a) Scene picture of a subject completing rehabilitation task (b) VR.

The experiment was performed by five healthy volunteers (four males and one female,
age 21~25 years). All experiments are approved by the Ethics Committee of Cixi Institute
of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences. All subjects provided informed consent. A passive exercise
period of 5 s was set. The scene picture is shown in Figure 7a.

3.1. Experiment on Tracking Error

Subjects simulate passive and assisted exercise of the patient with VR cues. First, the
rehabilitation robot enters passive exercise mode under no-load conditions, and the desired
trajectory and actual trajectory are recorded for ten cycles. Then, the subjects interact
with the ASM to complete the passive exercise for ten cycles. Finally, the exercise mode is
switched to assistive exercise for ten cycles. During each task cycle, subjects are asked to
maintain consistency in exercise time.

Figure 8 shows the experimental results of one subject: the tracking performance of
the three joints of ASM in passive mode, including the actual and desired angles and the
tracking error during ten task cycles. It can be seen that the maximum tracking errors of
the three joints are 0.28◦, 0.5◦, and 1◦, respectively.
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Figure 9a shows the actual trajectories in the assistive exercise. It can be seen that
the subject can move clockwise in the first 10 s and counterclockwise after 12 s, which
proves that the potential field does not compel the subjects to train. Figure 9b shows that
the potential field only restricts subjects to exercise around the desired trajectory, which
encourages subjects to rely on their own efforts to complete the exercise.
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The average deviation error La and the maximum deviation error Lm in (T1, T2) are
used to evaluate the effectiveness of the DHSS controller.

La =
0.001

T2 − T1

T2

∑
t=T1

Lt (28)

Lm = max({Lt}T1
T2
) (29)

The deviation errors of the five subjects are shown in Table 1. In the passive exercise
mode, the maximum deviation error is less than 1 cm, and the average deviation error is
less than 1 mm; in the assistive exercise mode, the maximum deviation error is less than
1.03 cm, and the average deviation error is less than 2 mm. The experiment shows that
the DHSS controller could assist subjects in completing the exercise with a small level of
tracking error in both exercise modes.

Table 1. Subjects’ deviation errors in two exercise modes.

Subject
Passive Exercise (×10−4 m) Assistive Exercise (×10−4 m)

La Lm La Lm

no-load 1.88 37 \ \
1 6.14 83 4.28 64
2 9.37 24 7.52 68
3 2.56 40 7.63 88
4 9.61 32 1.40 45
5 2.26 55 16.3 103

3.2. Dual-Modal Self-Switching Experiment

sEMG is a bioelectric signal generated by the contraction of human surface muscles,
with voltage amplitude in the range of 0–1.5 mV and frequency concentration in the range
of 5–500 Hz. In this paper, the data preprocessing steps of sEMG are as follows: the sEMG
is removed mean, band-pass filtered from 5–500 Hz, full-wave rectified, low pass filtered
with a cutoff of 1.0 Hz. The processed data is used as eigenvalues of the sEMG [31].

The data collected in this experiment are: the interactive force Fext, the end position
of ASM, and the sEMG of the anterior bundle of deltoid muscle (ADM) and the posterior
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bundle of deltoid bundle (PDM). The root mean square RMS of the sEMG is used to assess
the degree of involvement of the upper limb in the exercise. RMS refers to the magnitude
and variability of sEMG over a certain period and is used clinically to describe the number
of motor units activated in muscle activity.

RMS =

√
1
n

n

∑
i=0

E2
i (30)

where n is the number of sEMG data sampled for an exercise task and Ei is the processed
sEMG data.

Subjects first complete ten cycles in assistive exercise mode, and then subjects simulate
patients with severe motor deficits. The exercise is switched to passive mode because they
could not complete the task in time. After completing fifteen cycles of the passive task,
subjects gradually exert effort, causing the mode to switch again from passive to assistive.
Finally, subjects complete ten cycles of exercise in assistive mode.

Part of the training trajectory of a subject is shown in Figure 10. The red box indicates
that the subject has shifted the direction of motion here. As mentioned in Section 2.4,
there is no control effect of the potential field during the exercise on the desired trajectory.
Therefore, the subject can move clockwise during the first 10 s and counterclockwise from
10–35 s. Around 40 s, the reverse switching rule is triggered because the subject does not
continue the movement, and the subject enters passive exercise mode. The variation of
the reverse switching parameter l is shown in Figure 11. Note that mode = 1 indicates
assistive exercise mode, and mode = 2 indicates passive exercise mode. The reverse
switching threshold is l0 = 0.05 m, and the sampling time is: t1 = 5 s. From Figure 11, it
can be seen that this subject has been in motion until 40 s, and the l is kept above l0. Once l
less than l0, the robot switches the mode from assistive to passive.

Machines 2022, 10, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 10. Actual training trajectory. 

 

Figure 11. Reverse switching parameter 𝑙. 

The component of  𝐹𝑒𝑥𝑡 on the X-axis is shown in Figure 12. Around 130 s, this sub-

ject starts to actively participate in the training and put more effort, which leads to the 

triggering of the forward switching rule and the robot switching from the passive mode 

to the assistive.  𝐹𝑒𝑥𝑡 varies considerably before and after mode switching. Therefore, it 

makes sense to use impulse information as a criterion for forward switching. The variation 

of the forward switching parameter  𝐼  is shown in Figure 13. The forward switching 

threshold is set to 𝐼0 = [8 8 − 1], and the sampling period is 𝑡2 = 2 s. Since the desired 

trajectory is in the XY plane, then the component of 𝐼 in the Z-axis is 0. From Figure 13, it 

can be seen that the amplitude of the effective impulse 𝐼 increases around 130 s. 𝐼 > 𝐼0 

at 137 s, the training mode is switched to assistive exercise. 

 

Figure 12. Interaction force and exercise mode. 

 

Figure 10. Actual training trajectory.

Machines 2022, 10, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 10. Actual training trajectory. 

 

Figure 11. Reverse switching parameter 𝑙. 

The component of  𝐹𝑒𝑥𝑡 on the X-axis is shown in Figure 12. Around 130 s, this sub-

ject starts to actively participate in the training and put more effort, which leads to the 

triggering of the forward switching rule and the robot switching from the passive mode 

to the assistive.  𝐹𝑒𝑥𝑡 varies considerably before and after mode switching. Therefore, it 

makes sense to use impulse information as a criterion for forward switching. The variation 

of the forward switching parameter  𝐼  is shown in Figure 13. The forward switching 

threshold is set to 𝐼0 = [8 8 − 1], and the sampling period is 𝑡2 = 2 s. Since the desired 

trajectory is in the XY plane, then the component of 𝐼 in the Z-axis is 0. From Figure 13, it 

can be seen that the amplitude of the effective impulse 𝐼 increases around 130 s. 𝐼 > 𝐼0 

at 137 s, the training mode is switched to assistive exercise. 

 

Figure 12. Interaction force and exercise mode. 

 

Figure 11. Reverse switching parameter l .

The component of Fext on the X-axis is shown in Figure 12. Around 130 s, this
subject starts to actively participate in the training and put more effort, which leads to the
triggering of the forward switching rule and the robot switching from the passive mode to
the assistive. Fext varies considerably before and after mode switching. Therefore, it makes
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sense to use impulse information as a criterion for forward switching. The variation of the
forward switching parameter I is shown in Figure 13. The forward switching threshold is
set to I0 = [8 8− 1], and the sampling period is t2 = 2 s. Since the desired trajectory is in
the XY plane, then the component of I in the Z-axis is 0. From Figure 13, it can be seen that
the amplitude of the effective impulse I increases around 130 s. I > I0 at 137 s, the training
mode is switched to assistive exercise.
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Figure 13. Forward switching parameter I.

The sEMG preprocessing results of ADM and PDM are shown in Figure 14. Subjects
have weak motor ability during the passive exercise; the activation of ADM and PDM are
low, as is Fext. During the assistive exercise, subjects start to actively participate in the
exercise, when the activation of ADM and PDM is high and Fext is at a high level. The
results show that the activation levels of ADM and PDM are positively correlated with the
training effort of subjects.
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Paired samples t-tests are performed for both muscles in both exercise modes, and
the results are shown in Table 2 and Figure 15. RMS of sEMG for both muscles in assistive
exercise mode is greater than that in the passive exercise mode. RMS of ADM is a significant
difference in both modes (p < 0.05), and RMS of PDM is a highly significant difference in
both modes (p < 0.005). Therefore, it can be concluded that the subjects’ motor abilities
differed significantly before and after mode switching, and that it is reasonable to set
thresholds for mode switching.

Table 2. RMS of two muscles in two exercise modes.

Muscle Assistive Exercise (×10−5 V) Passive Exercise (×10−5 V) p

ADM 1.941 ± 0.962 1.034 ± 0.509 0.019
PDM 2.914 ± 0.243 0.952 ± 0.374 0.001
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4. Discussion

Passive exercise is mainly suitable for patients with severe motor deficits. Active
participation in training can better promote patients’ functional recovery. Therefore, after
a large amount of passive exercise, patients’ muscle strength performance should be
evaluated in time. The assistive exercise mode is selected when the partial motor ability
of patients is restored. In addition, considering the cognitive impairment of patients, we
used a dual visual and haptic feedback in the task design. Visual feedback was provided
by a non-immersive VR, which accurately provides dynamic position information of tasks.
Haptic feedback was generated by a designed artificial potential field, which allows patients
to perceive the correct training direction.

In this paper, the ADRC method is adopted in the underlying motion controller, while
two methods are used for the planning of the desired motion. In passive exercise mode, the
path generator can directly generate smooth and stable target trajectories. In the assistive
exercise mode, the improved potential field [22,23] is used for path planning considering
the compliance of the control strategy. The speed and direction of subjects’ motions are
entirely determined by themselves, as shown in Figure 10, which also helps to motivate
subjects to actively participate in the training. Thus, the potential field is fundamentally
different from the time-varying control strategy [18–21]. To evaluate patients’ motor ability,
dual-modal self-switching rules based on motor and impulse information are proposed.
The rationality of the switching indicators is demonstrated with sEMG experiments. This
also facilitates the promotion and popularization of the designed rehabilitation robot.
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During the rehabilitation of patients with severe motor deficits, the patients were
only able to perform passive training due to their lack of muscle strength. According to
Figure 14, it can be seen that the sEMG values are low and the muscles are in a state of
inactivity when the healthy subjects simulate the patients for passive exercise. However, in
the assistive exercise mode, healthy subjects only simulate patients with high motor ability.
The level of motor ability of the healthy subjects is not classified, and the subjects only
simulate two typical patients with motor dysfunction. Thus, recruitment was limited to
only healthy subjects for the experiment in this paper, and patients still need to be recruited.
We will further explore the human–robot interaction characteristics of various rehabilitation
training modalities in the follow-up [32,33].

According to the training strategy designed in this paper, patients will enter passive
exercise mode when they are insufficiently active. This setup will inevitably cause pa-
tients to slacken off and rely too much on passive training, rather than stimulating active
participation in training. This problem can be addressed by designing attractive VR and
introducing reward and punishment mechanisms. In addition, the effects of the proposed
training strategies on the rehabilitation training results of patients with motor dysfunction
in different age groups have not been investigated. The differences in cognitive, motor and
learning abilities of patients at different ages need be explored in the future, and the control
strategy can be further improved.

5. Conclusions

A dual-modal hybrid self-switching control strategy is proposed for the characteristics
of human–robot interaction of the upper limb rehabilitation robot. It can be used for
self-rehabilitation training of patients with motor dysfunction. The rehabilitation robot
provides visual and haptic feedback to patients, which has great potential to improve
training accuracy and reduce the difficulty of perceiving training tasks. Dual-modal self-
switching rules can accurately determine patients’ motor intention, which helps to motivate
patients to exercise and improve the rehabilitation effect. The proposed control strategy
has significant implications for patient training at home away from the therapist.
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