
Citation: Sato, T.; Yasui, R.;

Kawaguchi, N. Add-On Type

Data-Driven Ripple-Free Dual-Rate

Control Design Based on the Null

Space of Steady-State Step Responses.

Machines 2022, 10, 296.

https://doi.org/10.3390/

machines10050296

Academic Editor: Dan Zhang

Received: 25 February 2022

Accepted: 20 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Add-On Type Data-Driven Ripple-Free Dual-Rate Control
Design Based on the Null Space of Steady-State
Step Responses
Takao Sato * , Ryota Yasui and Natsuki Kawaguchi

Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan;
ryotay1953@gmail.com (R.Y.); kawaguchi@eng.u-hyogo.ac.jp (N.K.)
* Correspondence: tsato@eng.u-hyogo.ac.jp; Tel.: +81-792674983

Abstract: In the present study, a data-driven ripple-free design is proposed for a dual-rate sampled-
data control system in which the sampling interval of the plant output is longer than the holding
interval of the control input. The objective of the present study is to improve the steady-state
intersample response without changing the sampled response and without using the plant model.
To achieve the objective directly from controlled data, an add-on input based on the null space of
steady-state step responses to an existing control system is used. The open-loop or closed-loop system
to obtain the step response is assumed to be stable. In the present study, a two-degree-of-freedom
design is given that redesigns the intersample output response independently of the steady-state
sampled output response. In a numerical example, the proposed method is applied to a linear
time-invariant single-input single-output stable system, where intersample ripples are eliminated
using the add-on input that is independent of the existing sample output response in steady state.

Keywords: data-driven; sampled-data control; dual-rate; intersample ripple; add-on input; step
response

1. Introduction

Most recent control systems are implemented using digital computers in the discrete-
time domain. When a continuous-time plant is controlled by a digital computer, it is
designed as a sampled-data control system [1,2] where the continuous-time signal is
sampled by a sampler and the discrete-time signal is held by a holder. When the sampling
interval of plant outputs and the holding interval of control inputs are equal, the designed
system is referred to as a single-rate system; otherwise, it is referred to as a multi-rate or
dual-rate system [3–6]. Although the control design of a dual-rate system is more complex
than that of a single-rate system, the control performance of a dual-rate system is better
than that of a single-rate system when the sampling, holding, or both intervals are limited.
Examples of applications of dual-rate systems include distillation column compositions [7],
DC-AC converters [8], network control systems [9], and hard disk drives [10–12].

Dual-rate control, which is difficult to design because it is a time-varying system, is
designed as a multi-variable time-invariant system by using lifting techniques [1,13,14].
Because of the high performance of recent digital computers, the update of a control input
is often shorter than the sampling of a plant output. In such a dual-rate sampled-data
control system, the control input, which is essentially a single signal, can be designed
independently as a multi-input. Considering a single-input single-output (SISO) system
as an example, the system can be viewed as a multi-input single-output system where the
input signals are switched in time, as shown in Figure 1. In such a dual-rate system, as
shown in Figure 2, because the time-switching control input is redundant with respect to
the discrete-time output, the discrete-time output from that control input is not uniquely
determined. As a result, because the control input may change between sampling instants,
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the intersample output might oscillate even if the plant output converges to the reference
input at sampling instants [15–19]. The intersample ripple caused by the input oscillation is
eliminated when the ripple-free condition is satisfied [20]. Ripple attenuation methods have
been proposed in which this condition is not used [21–23]. However, a discrete-time model
is needed to design feedforward and feedback controllers [21]; the frequency information
for high-frequency disturbances is required to attenuate the intersample oscillation caused
by disturbances [22] and a continuous-time dynamic model is needed to minimize the
intersample control error [23]. The ripple-free condition is thus useful for solving the
intersample ripple problem without the need for plant models or disturbance information.
Because discrete-time sample performance is as important as intersample performance,
the degradation of the sample performance of an existing system due to the elimination
of intersample ripple must be prevented. For example, in the position control of the
head in a hard disk drive, the head must follow the target position in the discrete-time
domain to read and write user data [10,11]. To this end, a two-degree-of-freedom design in
which intersample ripple is eliminated independently of the discrete-time performance is
ideal [24].

r(k) y(t)u(k)
HolderC(z

-1
) P(s)

y(k)
u(t)

Sampler

P(z
-1
)

...

Figure 1. Block diagram of a dual-rate sampled-data system.
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Figure 2. Trajectories with and without ripple.

A redundancy-based continuous-time-domain approach has been proposed [25]. In
the method, a redundant variable is introduced based on the redundancy of a controlled
plant model and used to reassign control inputs independently of the plant output. A
discrete-time-domain method for redundant control design has also been proposed [26–28].
In continuous-time-domain design methods, the presence of redundancy depends on
the controlled plant structure, whereas in discrete-time-domain design methods, because
dual-rate systems are designed, redundancy is achieved even if the controlled plant is a
non-redundant system.

Most ripple-free control methods adopt the model-based approach, whereas there
is a data-driven (model-free) method [14,29]. In the conventional model-free method,
only stable systems can be applied since open-loop control is executed for controller
parameter tuning. Furthermore, a control system is newly designed, and hence the sample
performance of an existing system is not maintained. In the conventional model-based
dual-rate design method [26], a redundant variable is designed so that intersample ripple
is eliminated in the steady state. Because the redundant variable is independent of the
sampled plant output, intersample ripple is eliminated without changing the sampled
output obtained by an existing control system, as shown in Figure 2. When the goal
of the design is to eliminate the steady-state intersample ripple, it can be achieved by
simply using steady-state characteristics (i.e., not all dynamic characteristics are required).
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Furthermore, because the steady-state characteristics of dual-rate systems can be identified
by step responses, a model-free ripple-free design is also realizable. Therefore, in the
present study, a model-free method for independently removing intersample ripple from
the steady-state discrete-time output response is discussed. Specifically, the redundant
variable is designed based on the null space of steady-state step responses. The step
response is not a problem if the plant is stable, while if it is unstable, bounded values
cannot be obtained. In the proposed method, since the add-on input is designed as long as
bounded step responses are obtained in the steady state, both open-loop and closed-loop
responses can be used. Therefore, for unstable plants, the proposed method is designed
using stabilized closed-loop responses instead of open-loop responses. As a result, the
proposed method is applicable to unstable plants as well as stable plants.

The rest of this paper is organized as follows: Section 2 describes a dual-rate sampled-
data control system, and Section 3 describes the design method of an add-on input inde-
pendent of the steady-state sampled plant output using step responses. The effectiveness
of the proposed method is then shown in Section 4. Finally, conclusions are presented in
Section 5. In the present study, z−1 denotes the backward shift operator, and In and 0m,n
are an n× n identity matrix and an m× n zero matrix, respectively. N+ and R+ denote the
spaces of positive integer and positive real numbers, respectively, and R denotes the space
of real numbers. Lightface denotes a scalar, and boldface denotes a vector or matrix.

2. Problem Statement

The controlled plant is assumed to be an SISO linear time-invariant continuous-time
system. Because the plant is controlled by a digital computer in the discrete-time domain,
the continuous-time plant output is sampled and converted to a discrete-time signal, and
the discrete-time control input calculated by the digital computer is held and converted to
a continuous-time signal. The holding and sampling intervals are assumed to be as follows.

Assumption 1.

1. The holding interval T is known.
2. The sampling interval lT is known.

where T ∈ R+ and l ∈ N+. If the continuous-time plant output is sampled at intervals of T, the
single-rate system is obtained:

y(k) = P(z−1)u(k) (1)

where y(k) ∈ R and u(k) ∈ R are the sampled plant output and discrete-time control input,
respectively, and P(z−1) is the transfer function in the discrete-time domain.

With Assumption 1, the controlled plant is modeled as a dual-rate system as fol-
lows [17,20]:

y(k) = P(z−1)>u(k− l) (2)

P(z−1) = [P1(z−1) P2(z−1) · · · Pl(z−1)]>

u(k) = [u(k) u(k + 1) · · · u(k + l − 1)]>

= [u1(k) u2(k) · · · ul(k)]>

ui(k) = u(k + i− 1) (i = 1, · · · , l)

Assumption 2.

1. P(z−1) has no zero at the origin.
2. P(z−1) and P(z−1) are unknown.
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A dual-rate control system is designed using the following control law:

Y(z−1)u(k) = K(z−1)r(k)− X(z−1)y(k) (3)

where r(k) ∈ R is the reference input for the plant output and is set to a step function.
K(z−1) and X(z−1) are polynomial vectors and Y(z−1) is a non-singular polynomial matrix.

Using the discrete-time control law, the closed-loop system from the reference input to
the plant output is given as follows:

y(k) = z−lG(z−1)>K(z−1)r(k) (4)

G(z−1)> =
P(z−1)>Y(z−1)−1

1 + z−lP(z−1)>Y(z−1)−1X(z−1)
(5)

A block diagram of the designed dual-rate control system is shown in Figure 3.

r(k) u(k)
P(z

-1
)

y(k)

X(z
-1
)

K(z
-1
) Y(z

-1
)

-1+

-

G(z
-1
)

Figure 3. Block diagram of dual-rate sampled-data control system.

Assumption 3. For the closed-loop system, the following conditions are satisfied.

1. The closed-loop system described by Equation (4) is stable.
2. The steady-state discrete-time output converges to the reference input.
3. The closed-loop transfer function G(z−1) is unknown.

Because the closed-loop system is stable from Assumption 3, the steady-state plant
output is calculated as follows:

y(∞) = G(1)>K(1)r(∞) (6)

The closed-loop system from the reference input to the control input vector is given as
follows:

u(k) = Gr(z−1)r(k) (7)

Gr(z−1) = (Y(z−1) + z−lX(z−1)P(z−1)>)−1K(z−1) (8)

When the control input is constant between sampling instants, there is no intersample
ripple in the steady state [20]. The ripple-free condition is therefore described as follows:

ui(∞) = ui+1(∞) (i = 1, 2, · · · , l − 1) (9)

If the control law is redesigned so as to satisfy the above condition, the existing
correctly calibrated sampled response may degrade. In the next section, to prevent such
degradation, the control law is extended using the null space and the ripple-free condition
is then satisfied independently of the existing steady-state discrete-time response. As a
result, intersample ripple is eliminated independently of the steady-state discrete-time
response.

3. Ripple-Free Design Using Add-On Input
3.1. Extended Control Law Using Null Space of Step Responses

First, matrix G⊥ is defined as follows.
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Definition 1. G⊥ satisfies the following relational expressions:

Im(G⊥) = Ker(Ĝ(1)>)

Ker(Ĝ(1)>) := {G⊥ ∈ Rl×l−1 | Ĝ(1)>G⊥ = 01,l−1}

where Ĝ(1) denotes the identified value of G(1). The i-th element of G(1) can be identified by the
steady-state value of the step response of Equation (6) when the elements of K(z−1), excluding the
i-th element, are set to 0. P(z−1) is unknown, whereas Ĝ(1) is available, and thus G⊥ that satisfies
Definition 1 is obtained.

Using G⊥, the control law is extended as follows:

Y(z−1)u(k) = K(z−1)r(k)− X(z−1)y(k) + G⊥w(k) (10)

where w(k) ∈ Rl−1 is an add-on input. The block diagram of the extended system is shown
in Figure 4. The closed-loop system that uses the extended control law is given as follows:

y(k) = z−lG(z−1)>K(z−1)r(k) + z−lG(z−1)>G⊥w(k) (11)

r(k) u(k)
P(z

-1
)

y(k)

X(z
-1
)

K(z
-1
) Y(z

-1
)

-1+

-

G(z
-1
)

w(k)

TG 

+

Figure 4. Block diagram of extended system.

In the steady state, the output response is obtained as follows:

y(∞) = G(1)>K(1)r(∞) + G(1)>G⊥w(∞) (12)

In the above equation, the second term on the right-hand side is always 0 for the
bounded w(∞) from Definition 1 when G(1) = Ĝ(1), and w(∞) is independent of the
steady-state sampled output obtained using Equation (3). Therefore, the steady-state
sampled response, Equation (6), is maintained even when the extended control law is
applied. Furthermore, using the add-on input, intersample ripple is eliminated without
changing the steady-state sampled output response. In Section 3.2, w(k) is designed to
satisfy the ripple-free condition in Equation (9).

3.2. Design of Add-On Input

The closed-loop system from both the reference and the add-on input to the control
input vector is obtained as follows:

u(k) = Gr(z−1)r(k) + Gw(z−1)w(k) (13)

Gw(z−1) = (Y(z−1) + z−lX(z−1)P(z−1)>)−1G⊥ (14)

In the steady state, Equation (13) is described as follows:

u(∞) = Gr(1)r(∞) + Gw(1)w(∞) (15)
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Because the unknown P(1) is included in both Gr(1) and Gw(1), these cannot be
straightforwardly calculated. The present study proposes a lemma to obtain Gr(1) and
Gw(1) without using P(1).

Lemma 1. Using Ĝ(1), Gr(1) and Gw(1) are calculated as follows:

Gr(1) = Y(1)−1(I l − X(1)Ĝ(1)>)K(1) (16)

Gw(1) = Y(1)−1(I l − X(1)Ĝ(1)>)G⊥ (17)

Proof. From the matrix inversion lemma,

(Y(1) + X(1)P(1)>)−1

= Y(1)−1 − Y(1)−1X(1)(1 + P(1)>Y(1)−1X(1))−1P(1)>Y(1)−1

= Y(1)−1 − Y(1)−1X(1)G(1)> (18)

where G(1) is given by Equation (5) as follows:

G(1)> = (1 + P(1)>Y(1)−1X(1))−1P(1)>Y(1)−1 (19)

Substituting Equation (18) into Equations (8) and (14) in the steady state, respectively,
and using Ĝ(1) instead of G(1), Equations (16) and (17) are obtained.

Y(1), X(1) and K(1) are the design parameters of the control law, and G⊥ is decided
based on Ĝ(1). Therefore, Gr(1) and Gw(1) are obtained even when the plant model is
unknown.

Theorem 1. The ripple-free condition is satisfied when w(∞) is designed as follows:

w(∞) = −Ḡ−1
w Ḡrr(∞) (20)

where Ḡw and Ḡr are given as follows:

Ḡw = Gu
w −Gl

w

Gu
w = [Il−1 0l−1,1]Gw(1)

Gl
w = [0l−1,1 Il−1]Gw(1)

Ḡr = Gu
r −Gl

r

Gu
r = [Il−1 0l−1,1]Gr(1)

Gl
r = [0l−1,1 Il−1]Gr(1)

Proof. From Equation (15), the steady-state control input between the sampling instants is
given as follows:

u1(∞)
u2(∞)

...
ul(∞)


︸ ︷︷ ︸

u(∞)

=


gr1

gr2
...

grl


︸ ︷︷ ︸

Gr(1)

r(∞) +


gw1,1 gw1,2 · · · gw1,l−1

gw2,1 gw2,2 · · · gw2,l−1
...

...
gwl,1 gwl,2 · · · gwl,l−1


︸ ︷︷ ︸

Gw(1)


w1(∞)
w2(∞)
...

wl−1(∞)


︸ ︷︷ ︸

w(∞)

(21)

For ui(∞) = ui+1(∞), the next equation must be satisfied:[
gwi,1−gwi+1,1 gwi,2−gwi+1,2 · · · gwi,l−1−gwi+1,l−1

]
w(∞) = −(gri − gri+1)r(∞) (22)
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From the above condition, all the conditions from i = 1 to i = l− 1 are summarized as
follows:

Ḡww(∞) = −Ḡrr(∞) (23)

As a result, the design condition (20) is obtained.

Corollary 1. If the controlled plant is stable, the identified steady-state plant gain P̂(1) is also
obtained by step responses. Based on the null space of P̂(1), the control law Equation (3) can be
extended as follows:

Y(z−1)u(k) = K(z−1)r(k)− X(z−1)y(k) + Y(z−1)P⊥wo(k) (24)

where wo(k) ∈ Rl−1 is a new add-on input, and a non-zero matrix P⊥ ∈ Rl×l−1 is derived that
satisfies the following equation:

P̂(1)>P⊥ = 01,l−1 (25)

Using the extended control law Equation (24), the corresponding closed-loop system is given
as follows:

y(k) = G(z−1)>K(z−1)r(k) +
P(z−1)>Y(z−1)−1Y(z−1)P⊥

1 + z−lP(z−1)>Y(z−1)−1X(z−1)
wo(k) (26)

In the steady state, because the second term on the right-hand side of Equation (26) is 0, wo(∞)
is independent of the steady-state output of Equation (4). wo(∞) is therefore designed in the same
way as Theorem 1 so that intersample ripple is eliminated without changing the steady-state sampled
output. However, the open-loop design method requires a plant model and is not applicable to
unstable plants.

4. Simulation

To demonstrate the effectiveness of the proposed closed-loop-based method, two types
of plant are controlled, namely stable and unstable plants. In the simulation, the reference
input is given by set-point 1, and the holding and sampling intervals are set as 1 s and 2 s
(l = 2), respectively.

4.1. Stable Plant

As a controlled plant, the following stable continuous-time system is given:

P(s) =
1

s2 + 3s + 1
(27)

The dual-rate model is described as follows:

P(z−1) = [P1(z−1) P2(z−1)]> (28)

P1(z−1) =
0.242 + 0.00403z−2

1− 0.471z−2 + 0.00248z−4

P2(z−1) =
0.213 + 0.00718z−2

1− 0.471z−2 + 0.00248z−4
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The coefficients of the control law Equation (3) are designed as follows:

Y(z−1) =

[
1.0 + 0.0396z−2 −0.100z−2

0 1

]
K(z−1) =

[
1.68
1.68

]
X(z−1) =

[
1.06− 0.735z−2

1

]
where the poles of the designed closed-loop characteristic polynomial are 4.45× 10−3, 0.271
and −0.315, and the steady-state gain from the reference input to the plant output is 1.

First, the control result obtained using the control law in Equation (3) with the coeffi-
cients designed as described above is shown in Figures 5–7, where the output and input
trajectories are plotted by the black dashed-dotted lines, and the sampled output trajectory
is plotted by black ‘*’ symbols. It can be seen that the intersample output oscillates even
though the sampled output converges to the reference input. This is because the steady-
state gain Gr(1) is [1.37 0.683]>, and the control input is thus not constant, even though
the control error between the reference input and the sampled plant output is 0.
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Figure 5. Output trajectories of stable plant.
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Figure 6. Steady-state trajectories for data in Figure 5.
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Figure 7. Input trajectories for stable plant.

Second, the simulation result for the proposed method is presented. From two close-
loop step responses of 50 s, where K(z−1) is set to [1 0]> and [0 1]>, respectively, the
steady-state gain of the closed-loop system is identified as follows:

Ĝ(1) =
[

0.258 0.336
]>

The vector orthogonal to the steady-state gain is decided as follows:

G⊥ =
[
−0.794 0.609

]>
Using Equation (20), the add-on input w(k) is designed as follows:

w(k) = w(∞) = 0.521 (29)

Equation (29) shows that w(k) is designed as a constant. The control result obtained
using the proposed closed-loop-based extension method is also shown in Figures 5–7,
where the output and input trajectories are plotted by the red solid lines, and the sampled
output trajectory is plotted by red ‘◦’ symbols. It can be seen that the intersample output
as well as the sampled output converge to the reference input without intersample ripple.
Furthermore, the sampled output response obtained by the conventional non-extension
method is maintained in the steady state even though the trajectories of the control inputs
obtained by the proposed and conventional methods are quite different.

Third, for comparison with the proposed closed-loop-based extension method, the
control result obtained using the open-loop-based extension method is presented. In the
open-loop extension method, the steady-state gain of a controlled plant is required. Hence,
P(1) is identified from two step responses of 50 s, where u(k) is set to [1 0]> and [0 1]>,
respectively:

P̂(1) =
[

0.463 0.537
]> (30)

From the obtained steady-state gain, the add-on input is designed as follows:

wo(k) = wo(∞) = 0.485 (31)

The control result of the open-loop extension method is also shown in Figures 5–7,
where the output and input trajectories are plotted by the blue dashed lines, and the
sampled output trajectory is plotted by blue ‘♦’ symbols. It can be seen that when the
steady-state gain of the controlled plant is available, the intersample ripple is eliminated
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and the steady-state sampled response obtained by the conventional non-extension method
is maintained.

4.2. Unstable Plant

As an unstable plant, the following transfer function is considered:

P(s) =
1

s2 + 1.6s− 0.8
(32)

The corresponding transfer functions in a dual-rate system are given as follows:

P1(z−1) =
0.740 + 0.0403z−2

1− 2.24z−2 + 0.0408z−4

P2(z−1) =
0.332 + 0.392z−2

1− 2.24z−2 + 0.0408z−4

The coefficients of the control law Equation (3) are designed as follows:

Y(z−1) =

[
1.0 + 0.0680z−2 −0.100z−2

0 1

]
K(z−1) =

[
0.618
0.618

]
X(z−1) =

[
2.58− 0.736z−2

1

]
where G(1)>K(1) = 1, and the poles of the closed-loop characteristic polynomial are
0.0696, 0.174 and −0.312.

The control result obtained by the non-extension control law with the coefficients de-
signed as described above is shown in Figures 8–10, where the output and input trajectories
are plotted by the black dashed-dotted lines, and the sampled output trajectory is plotted by
black ‘*’ symbols. As in the case of the stable plant, the intersample output oscillates even
though the sampled output follows the reference input. The reason for this intersample
oscillation is the oscillation of the control input, and Gr(1) = [−1.19 − 0.382]>.
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Figure 8. Output trajectories of unstable plant.
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Figure 9. Steady-state trajectories for data in Figure 8.
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Figure 10. Input trajectories for unstable plant.

The open-loop-based method is not applicable to the unstable plant, whereas the
proposed method is, because of the closed-loop-based design.

From two step responses of 30 s, the identified steady-state gain of the closed-loop
system is given as follows:

Ĝ(1) =
[

0.774 0.844
]>

The corresponding orthogonal vector is given as follows:

G⊥ =
[
−0.737 0.676

]>
From Equation (20), the add-on input is obtained as follows:

w(k) = w(∞) = −0.618

The control result obtained using the proposed method is shown in Figures 8–10,
where the output and input trajectories are plotted by the red solid lines, and the sam-
pled output trajectory is plotted by red ‘◦’ symbols. As shown in Figures 8 and 9, the
steady-state sampled output responses obtained by the conventional non-extension and
proposed methods are the same. Furthermore, intersample ripple is eliminated using the
proposed method.



Machines 2022, 10, 296 12 of 14

The present study assumes that there will be no noise or disturbance, but in reality,
there may be impacts. An example is shown where the output is disturbed by noise of
variance 2.0× 10−4. Since the step response is affected by noise, the correct steady-state
gain cannot be obtained:

Ĝ(1) =
[

0.863 0.968
]>

Therefore, the wrong orthogonal vector is given as follows:

G⊥ =
[
−0.747 0.665

]>
Simulation results in the presence of noise are shown in Figures 11 and 12, where the

same noise is applied by fixing the seed value. Even when the proposed method is applied,
the control input oscillates and intersample ripple is not eliminated.

0 10 20 30

Time[s]

0

0.2

0.4

0.6

0.8

1

1.2

P
la

n
t 

o
u

tp
u

t

Set-point

Conv

Prop (closed)

Figure 11. Output trajectories of unstable plant in the presence of noise.
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Figure 12. Input trajectories for unstable plant in the presence of noise.

5. Conclusions

The present study proposed a design method for a dual-rate sampled-data control
system, in which the sampling interval is longer than the holding interval. In such a system,
even when the sampled output converges to the reference input, the intersample output
might oscillate because the control input may change between sampling instants. In the
proposed method, an existing control law is extended by introducing an add-on input
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based on the null space of step responses to eliminate intersample ripple independently
of an existing steady-state sampled response. The proposed method is based on step
responses and is easily implemented. Since the present study proposes the closed-loop-
based method as well as the open-loop-based method, the proposed method can be applied
to an unstable plant.

In the present study, the controlled plant is limited to linear time-invariant systems;
however, the proposed method can be applied to wider classes. The proposed method is
applicable when the steady-state output is uniquely determined for the steady-state input,
but difficult otherwise. Therefore, our future work is to clarify the class of controlled plants
in which the proposed add-on design method is applicable. The present study assumes the
case where there is no unknown information such as noise. Therefore, it is necessary to deal
with cases where the steady-state gains cannot be estimated correctly due to disturbances
and so on. In addition, verification using actual equipment is also an issue for the future.
Furthermore, in the present study, the add-on input is designed so that the intersample
response is improved in the steady state. Therefore, one of the future works is to design the
add-on input to improve the transient response as well as the steady-state response.
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