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Abstract: This article presents the velocity and singularity analysis for a five-degree-of-freedom
(5-DOF) parallel-serial manipulator. The hybrid structure of the manipulator combines a tripod-like
parallel part and a serial part, represented as two carriages moving in perpendicular directions. This
manipulator provides its end-effector with a 3T2R motion pattern, which includes three independent
translations and two independent rotations. First, the study briefly discusses the manipulator design
and the results of the position analysis. These results form the basis for the subsequent velocity
and singularity analysis, performed by screw theory. The screw coordinates of the unit twists are
written for each manipulator joint, and then through the reciprocal screw approach, the actuation and
constraint wrenches of the manipulator are obtained by simple inspection. Based on these twists and
wrenches, the paper forms the velocity equation and shows an example of the inverse velocity analysis
for a given end-effector trajectory. The same example is solved by numerical differentiation to verify
the proposed approach. Next, the paper investigates singular configurations by analyzing the wrench
system of the manipulator and presents several conditions for serial and parallel singularities. Each
condition has both a symbolic representation, given by an equation for screw coordinates of certain
wrenches, and a visual representation, which shows the manipulator in a singular configuration.

Keywords: 5-DOF manipulator; parallel-serial (hybrid) manipulator; three translations and two rotations
motion pattern (3T2R); inverse kinematics; velocity analysis; singularity analysis; MATLAB simulation

1. Introduction

Hybrid mechanisms and manipulators represent mechanical systems composed by
stacking kinematic chains with a parallel or serial structure [1]. These systems have
advantages of both types of kinematic chains, such as an extended workspace [2] and the
possibility to bypass or avoid singular configurations [3].

The current research considers hybrid mechanisms in which the serial kinematic chain
is stacked on the parallel one. The examples of such systems are five-degrees-of-freedom
(5-DOF) CaHyMan, composed of 3-DOF parallel and 2-DOF serial chains [4]; a 5-DOF
machine tool, which combines a 2-DOF parallel part and a 3-DOF serial part [5]; a 5-DOF
polishing machine with a 3T2R motion pattern, which includes a 3-DOF parallel mechanism
for vertical motion and XY rotations and a 2-DOF serial mechanism for XY positioning [6].

Many researchers have studied the kinematics of the hybrid robots, including their
position and velocity analysis. For example, these issues were considered by Tanev [7] for
two serially connected tripod mechanisms; Moosavian et al. [8] for a planar robot with a
serial PUMA-type robotic arm attached to its output link; Zheng et al. [9] for two tripods,
designed such that the smaller one is inside the larger one; Nazari et al. [10] for a tripod
with cylindrical and revolute joints and a serial robotic arm mounted on the tripod moving
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plate; Kucuk and Gungor [11] for a Stewart platform placed on a SCARA-type robot;
Zhang et al. [12] for a 5-DOF Exechon robot, which consists of a tripod and a 2-DOF serial
wrist mechanism; Xu et al. [13] for a polishing machine based on a translational Delta-like
robot with linear drives and a separate serial module with three rotational DOFs; Gim
et al. [14] for a humanoid robotic leg composed of two planar closed loops, each followed
by a link with passive joints and connected to each other and the moving plate through
an actuated revolute joint; Milutinović et al. [15] for a Tricept robot based on a tripod with
translational DOFs equipped with a 2-DOF wrist; My and Hoan [16] for a serial robotic
arm with two intermediate parallel loops.

The singularity analysis of hybrid robots has also been considered by several re-
searchers. Nasseri et al. [17] studied singularities of a 6-DOF micromanipulator for intraoc-
ular surgery based on two serially connected 2-DOF planar mechanisms followed by a
tool gripper with one translational and one rotational DOF. Simas and Di Gregorio [18]
analyzed workspace and singularities of a 4-DOF single-loop robot with an additional
“rotation amplifier”. Rakhodaei et al. [19] examined singularity-free path planning of a
robot consisting of a serially connected hexapod and tripod.

During the singularity analysis of hybrid robots, one can often consider its parallel part
only, because, in general, parallel singularities have more negative effects on the mechanism
performance than the serial ones. For example, Amine et al. [20] carried out a singularity
analysis of the Exechon robot ignoring its wrist part. Ma et al. [21] used another approach
and investigated singularities of a robotic leg of a quadruped walking manipulator by
substituting the original hybrid mechanism with a tripod-like parallel equivalent.

The current article aims at velocity and singularity analysis of a recently proposed
5-DOF hybrid manipulator [22], which includes parallel and serial parts and provides its
output link with a 3T2R motion pattern. Manipulator design and its workspace, thoroughly
discussed in [22], allow it to find applications in processing machine components with
complex shapes, as well as mechanical elements, which have a longitudinal dimension
greater than the transverse one.

The paper has the following structure. Section 2 describes the manipulator design
and explains its mobility. Section 3 briefly discusses the position analysis—a preliminary
step before considering the instantaneous kinematics. Section 4 continues this study and
presents velocity analysis using screw theory. This section also provides a numerical
example of solving the inverse velocity problem for a specified end-effector trajectory.
Section 5 analyzes singular configurations of the manipulator and visualizes several exam-
ples. Sections 6 and 7 discuss and summarize the results and mention directions for future
research.

2. Manipulator Design

Let us consider the manipulator design. Figure 1 shows its kinematic scheme (Figure 1a)
and CAD model (Figure 1b). The manipulator consists of a tripod-like parallel part and a
serial part, represented by two carriages moving orthogonally. Figure 1a has the following
notations: 1—fixed link (base); 2 and 4—driving links; 3—spider of the universal (Cardan)
joint; 5—rod; 6—platform (output link of the parallel part); 7 and 8—rigidly connected links
that form a carriage moving along the longitudinal dimension of platform 6; 9—carriage that
moves along the transversal dimension of platform 6; 10—end-effector (output link of the
serial part and the entire manipulator) mounted rigidly on carriage 9.

Each kinematic chain (leg) of the parallel part has a linear drive that provides displace-
ment q1, q2, or q3. The chain with the universal joint restricts the platform rotation about
the axis perpendicular to the spider plane and two translations in any direction orthogonal
to the axis of the chain linear drive. Two other chains with spherical joints do not constrain
the platform motion. Thus, the parallel part provides platform 6 with one translational and
two rotational DOFs. In the serial part, linear drives displace links 7–8 and 9 for q4 and
q5, respectively—the serial part provides end-effector 10 with two translational DOFs in a
platform plane relative to platform 6.
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Figure 1. 5-DOF (3T2R) parallel–serial (hybrid) manipulator: (a) structural scheme; (b) CAD model.

In summary, we can specify five independent motions of end-effector 10: three trans-
lations and two rotations (3T2R motion pattern), where the parallel part provides one
translation and two rotations (1T2R motion pattern) and the serial part adds two trans-
lations (2T motion pattern). One should remember that the 3T2R motion pattern can
degenerate in singular configurations, which is studied later in this paper.

3. Position Analysis

Though the paper aims at the velocity and singularity study, the position analysis is
a necessary preliminary step that provides relations between the coordinates of the links.
We addressed this topic in detail in [22], and in the current section, we omit the math and
briefly mention the key results essential for the subsequent analysis.

Let us first introduce the following notations (Figure 2):

• OXYZ is a stationary reference frame attached to the base arbitrarily.
• SXSYSZS is a reference frame attached to the end-effector such that axis ZS is directed

along the tool (unit vector n̂) and the remaining axes (XS and YS) have an arbitrary
direction; vector pS and rotation matrix RS define the position and orientation of
SXSYSZS relative to OXYZ.

• q =
[

q1 . . . q5
]T are the actuated coordinates according to the previous section;

all these coordinates are measured about the axes defined by unit vectors ŝ1 . . . ŝ5 (in
OXYZ).

• α and β are the angles in the universal joint measured about its axes defined by unit
vectors û1 and û2 (in OXYZ).

Parameters pS and n̂ (or RS) describe the end-effector configuration and can define the
posture of the entire 5-DOF system: we can express coordinates of all the links as functions
of these parameters (solve the inverse kinematics problem). We can also use other sets
of parameters to define the manipulator configuration, for example, taking q and solving
the direct kinematics problem. The choice of pS and n̂ is natural and does not lead to
cumbersome calculations [22]. Thus, we assume we are given pS and n̂, so we can solve
the inverse kinematics by the following steps (see [22] for details):

1. As the end-effector connects with the platform by two prismatic joints, vector n̂
uniquely defines the orientation of the latter. The platform orientation, on the other
hand, depends only on two angles α and β in the universal joint. This condition allows
us to express n̂ as a function of α and β and find these angles from the corresponding
equations.
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2. Having found α and β, we can write a vector loop equation for pS. This vector
depends only on parameters q1, q4, and q5, which we find from the obtained equation.

3. Having found q1, we know the platform configuration relative to OXYZ. Hence, we
know the coordinates of platform spherical joints A2 and A3 relative to the same
frame. We can also write coordinates of spherical joints C2 and C3 as functions of q2
and q3. Coordinates of the spherical joints in each kinematic chain are connected by a
known and constant distance between the joints. This allows us to form corresponding
equations and find parameters q2 and q3.
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Thus, given the end-effector configuration (pS and n̂), we determined all the parame-
ters necessary to describe coordinates of any manipulator link. In subsequent velocity and
singularity analysis, we assume we know all the coordinates involved.

4. Velocity Analysis

Velocity analysis plays a crucial role in manipulator design and control. The major aim
of this analysis is to find relations between the velocities of the links, particularly between
the end-effector velocity and the drive speeds. There are two prevailing approaches to solve
the problem. The first one consists in differentiating constraint equations, obtained during
position analysis, with respect to time [23] (p. 153). Though the approach is straightforward,
it can lead to cumbersome relations when analyzing complex mechanical systems. An
alternative method applies screw theory and considers twists associated with manipulator
joints [24]. This technique is more elegant, and it also reveals the physical meaning of the
relations obtained, which is important for singularity analysis.

In this paper, we use the second approach mentioned above. Studies [25–27] provide
comprehensive information about the screw theory, and works [28–31] show its application
for velocity analysis. We encourage a reader novel to the subject of screw theory to have a
look at these studies.

4.1. Theory

To find a relation between end-effector twist V and drive speeds
.
q =

[ .
q1 · · · .

q5
]T,

we should consider (unit) twists of the manipulator joints. Figure 3 shows all these twists:
blue arrows designate zero-pitch twists, which correspond to rotations, and red arrows
designate infinite-pitch twists, which correspond to translations.
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End-effector twist V =
[
ωT υT

S
]T consists of point S velocity vector υS and angular

velocity vector ω; both vectors are written relative to the OXYZ frame. Therefore, it is
natural to select point S as a reference point and write screw coordinates of the joint twists
relative to a reference frame, centered at point S with axes parallel to the axes of OXYZ.

First, let us find screw coordinates of infinite-pitch twists ξq1 . . . ξq5 (Figure 3), which
correspond to the actuated joints. The axis of each twist ξq1 . . . ξq5 is collinear with unit
vector ŝ1 . . . ŝ5, so we can write:

ξq1 =

[
0
ŝ1

]
, . . . ,ξq5 =

[
0
ŝ5

]
. (1)

Note that vectors ŝ1, ŝ2, and ŝ3 are defined by the manipulator design and have known
and constant components; vectors ŝ4 and ŝ5 depend on the manipulator configuration and
can be obtained through the preceding position analysis.

Zero-pitch twists are ξC1u1 and ξC1u2, which correspond to rotations in the universal
joint (Figure 3); ξAkx, ξAky, ξAkz, and ξCkx, ξCky, ξCkz, k = 2, 3, which correspond to
rotations in the spherical joints. The axes of the first two twists are collinear with the axes
of the universal joint, and these twists have the following coordinates:

ξC1u1 =

[
û1

ρSC1 × û1

]
,ξC1u2 =

[
û2

ρSC1 × û2

]
, (2)

where vector ρSC1 defines position of point C1 relative to point S; we know this vector, as
well as û1 and û2, from the position analysis. Moreover, vector û1 has constant components
in the considered reference frame.
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Axes of the twists corresponding to the spherical joints can be directed arbitrarily.
Therefore, for any manipulator configuration, we can assume these axes are always parallel
to the coordinate axes. We obtain:

ξAkx =

[ [
1 0 0

]T
ρSAk ×

[
1 0 0

]T
]

,ξCkx =

[ [
1 0 0

]T
ρSCk ×

[
1 0 0

]T
]

,

ξAky =

[ [
0 1 0

]T
ρSAk ×

[
0 1 0

]T
]

,ξCky =

[ [
0 1 0

]T
ρSCk ×

[
0 1 0

]T
]

,

ξAkz =

[ [
0 0 1

]T
ρSAk ×

[
0 0 1

]T
]

,ξCkz =

[ [
0 0 1

]T
ρSCk ×

[
0 0 1

]T
]

,

(3)

where vectors ρSAk and ρSCk define the position of points Ak and Ck, k = 2, 3, relative to
point S; we know these vectors from the position analysis.

Next, consider three kinematic chains between the end-effector and the base formed
by three legs of the parallel manipulator and the platform serial part, which is identical for
each chain. We can group the twists of each chain in matrix Ti, i = 1 . . . 3:

T1 =
[
ξq1 ξC1u1 ξC1u2 ξq4 ξq5

]
,

T2 =
[
ξq2 ξC2x ξC2y ξC2z ξA2x ξA2y ξA2z ξq4 ξq5

]
,

T3 =
[
ξq3 ξC3x ξC3y ξC3z ξA3x ξA3y ξA3z ξq4 ξq5

]
.

(4)

We can now write the following velocity equation for each Ti:

Ti


.
qi.
θi.
q4.
q5

 = V, (5)

where vector
.
θi includes speeds in all passive (unactuated) joints in the i-th leg.

Usually, we are not interested in vector
.
θi. To exclude this vector from the velocity

Equation (5), we apply an algorithm based on the reciprocal screw approach [24]. Consider
leg 1 first and let ζ1j be a wrench reciprocal to all twists of T1 except for ξqj:

ξ ◦ ζ1j = 0,ξ ∈ T1
∣∣ ξ 6= ξqj, j = 1, 4, 5, (6)

where “◦” is a reciprocal product of two screws [25] (p. 24).
By taking the reciprocal product of both sides of relation (5) with ζ1j, we obtain:(

ξqj ◦ ζ1j
) .
qj = V ◦ ζ1j. (7)

Equation (7) includes unknown wrench ζ1j. To find screw coordinates of this wrench,
let us first introduce a new wrench ζc reciprocal to all twists of T1:

ξ ◦ ζc = 0, ∀ξ ∈ T1. (8)

Wrench ζc represents a constraint imposed on the end-effector by leg 1. In any non-
singular configuration, rank(T1) = 5; therefore, we can determine unique wrench ζc (up to
a nonzero multiplier) from (8). By observing the leg topology, we see that the end-effector
cannot rotate around the axis perpendicular to the axes of the universal joint. Hence, ζc is
an infinite-pitch wrench with the following screw coordinates:

ζc =

[
0

û1 × û2

]
. (9)
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As shown in [32], wrench ζ1j can now be found uniquely (up to a nonzero multiplier)
using Equation (6) together with the following condition:

ζT
1jζc = 0. (10)

Equations (6) and (10) allow us to compute numerically screw coordinates of each
wrench ζ1j. We can also determine these wrenches geometrically. As ξC1u1 and ξC1u2 are
zero-pitch twists and ζc is an infinite-pitch wrench, these screws describe only rotational
freedoms and constraints of the end-effector. Therefore, conditions (6) and (10) imply that
any wrench ζ1j should refer only to translational constraints, i.e., all three ζ1j are zero-pitch
wrenches, whose axes pass through point C1. Now, let us consider wrench ζ11 for a moment.
A zero-pitch wrench is reciprocal to an infinite-pitch twist if their axes are orthogonal [25]
(p. 25); therefore, to satisfy condition (6), the axis of ζ11 must be orthogonal to the axes of
ξq4 and ξq5. We can apply the same logic to ζ14 and ζ15 and calculate coordinates of all
these wrenches as follows:

ζ11 =

[
ŝ4 × ŝ5

ρSC1 × (ŝ4 × ŝ5)

]
,

ζ14 =

[
ŝ1 × ŝ5

ρSC1 × (ŝ1 × ŝ5)

]
,

ζ15 =

[
ŝ1 × ŝ4

ρSC1 × (ŝ1 × ŝ4)

]
.

(11)

Let us now consider leg k, k = 2, 3, and rewrite Equation (5):

T′k

[ .
qk.
θk

]
= VP, (12)

where
T′k =

[
ξqk ξCkx ξCky ξCkz ξAkx ξAky ξAkz

]
,

VP = V−
(
ξq4

.
q4 + ξq5

.
q5
)
.

Using the same approach as before, we can define the wrench ζk reciprocal to all twists
of T′k except for ξqk and obtain the following relation:(

ξqk ◦ ζk

) .
qk = VP ◦ ζk. (13)

In any nonsingular configuration, rank
(
T′k
)
= 6, and there always exists a linear

dependence between the twists of the leg spherical joints. Therefore, we can uniquely
determine wrench ζk (up to a nonzero multiplier) and calculate its screw coordinates with
ease. It is also clear that ζk should be a zero-pitch wrench, whose axis passes through points
Ak and Ck, i.e.,

ζk =

[
ŵk

ρSCk × ŵk

]
, (14)

where ŵk is a unit vector parallel to line AkCk (Figure 2); we know this vector from the
position analysis.

To visualize the results obtained so far, Figure 4 shows all the wrenches calculated
above for a general manipulator configuration.
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Finally, using relations (7) and (13), we exclude all
.
θi from Equation (5) and rewrite it

as follows (the right side of the equation below overloads the reciprocal product notation
“◦,” but we hope the meaning is clear from the context):

ξq1 ◦ ζ11 0 0 0 0
0 ξq2 ◦ ζ2 0 ξq4 ◦ ζ2 ξq5 ◦ ζ2
0 0 ξq3 ◦ ζ3 ξq4 ◦ ζ3 ξq5 ◦ ζ3
0 0 0 ξq4 ◦ ζ14 0
0 0 0 0 ξq5 ◦ ζ15
0 0 0 0 0


.
q =



ζT
11
ζT

2
ζT

3
ζT

14
ζT

15
ζT

c


◦V. (15)

As the screw coordinates of all twists and wrenches can be calculated from the formu-
lae devised throughout this section, Equation (15) allows us to solve a forward or inverse
velocity problem and analyze singular configurations of the manipulator.

We should mention one more thing about Equation (15). Suppose we are given end-
effector trajectory pS(t) and n̂(t) and have to calculate actuator speeds

.
q(t), where t is the

time. The right side of Equation (15) includes end-effector twist V =
[
ωT υT

S
]T. Linear

velocity υS is a time derivative of vector pS, i.e., υS =
.
pS, and we can set it explicitly. To

obtain angular velocityω, we can first write the following expression [33] (p. 20):

.
n̂ =ω× n̂ = −Λ(n̂)ω, (16)

where Λ(n̂) is a skew-symmetric matrix representation of vector n̂;
.
n̂ is a time derivative of

vector n̂, which we can also determine explicitly.
Expression (16) represents a system of three linear equations with respect to unknown

components ofω. In addition, 3 × 3 skew-symmetric matrices have rank two [33] (p. 22);
therefore, we cannot use (16) to find uniqueω. To obtain the third independent equation,
we can equate the last rows of both sides of (15), concerning (9):

(û1 × û2)
Tω = 0. (17)

Any two equations of (16) with Equation (17) represent a system of three (independent)
linear equations, which we can use to calculateω.

4.2. Numerical Example

Let us consider an example of velocity analysis when we have to find actuator speeds
given the end-effector motion. We examine the manipulator with the same geometrical
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parameters as in [22], and we suppose the end-effector follows a spiral-helical trajectory
also studied earlier in [22]:

pS(t) =


30ϕ(t)

2π cosϕ(t)
30ϕ(t)

2π sinϕ(t)
240− 30ϕ(t)

2π

 mm, n̂(t) =

 sin π
12 cosϕ(t)

sin π
12 sinϕ(t)
cos π12

,

ϕ(t) = 6πt/15 rad, t = (0, 15) s.

(18)

Trajectory (18) corresponds to three revolutions of point S about the Z axis of the
OXYZ frame (Figure 5). Both radial and axial pitches of the curve equal 30 mm. At the
same time, the end-effector forms an angle of 15◦ with the Z axis during the motion. We
consider this (arbitrarily selected) trajectory to verify the developed techniques for a general
case, when the end-effector varies all its coordinates during the motion.
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Figure 5. Spiral-helical trajectory for velocity analysis. Green arrows show end-effector orientation.

We simulated the proposed algorithm using the MATLAB package, and Figure 6
shows the computed actuator speeds (red lines). We also calculated these speeds by a
numerical differentiation (green dots) of actuated coordinates (blue lines), obtained from
the preceding inverse kinematics. Both results coincide completely, which verifies the
suggested method.
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5. Singularity Analysis

Singularity analysis aims to detect manipulator configurations where it loses or attains
DOFs or even changes its motion type. Such configurations should be avoided for proper
manipulator performance, and various authors have proposed different approaches to
classify and determine singularities [34–37].

In this section, we use the results obtained in the previous section to discuss two
common types of singularities: serial singularities when the end-effector loses a DOF and
parallel singularities when it gains an additional (uncontrolled) DOF [38]. Constraint sin-
gularities [39] are not possible for this manipulator, since only one leg imposes constraints
on the moving platform.

5.1. Serial Singularities

The condition for this type of singularity is that the matrix on the left side of Equation (15)
becomes rank-deficient [34]. This 6 × 5 matrix has an upper triangular structure with the last
row full of zeros; hence, it will lose its rank if at least one element on the main diagonal equals
zero.

Let us first consider the first, fourth, and fifth rows of the matrix. Given Equations (1)
and (11), we can write the following conditions:

ξq1 ◦ ζ11 = ŝT
1 (ŝ4 × ŝ5) = 0,

ξq4 ◦ ζ14 = ŝT
4 (ŝ1 × ŝ5) = 0,

ξq5 ◦ ζ15 = ŝT
5 (ŝ1 × ŝ4) = 0.

(19)

Any condition from (19) will be satisfied if a parallelepiped formed by vectors ŝ1, ŝ4,
and ŝ5 degenerates. As, by the manipulator design, vector ŝ1 has a constant direction and
vectors ŝ4 and ŝ5 are orthogonal to each other, this situation is only possible if the platform
is tilted such that ŝ1 becomes parallel to a plane spanned by ŝ4 and ŝ5 (Figure 7a). The
end-effector loses its ability to translate along direction ŝ4 × ŝ5, i.e., perpendicular to the
plane mentioned above.
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Next, we consider one of the two remaining conditions concerning Equation (14):

ξq2 ◦ ζ2 = ŵT
2 ŝ2 = 0,

ξq3 ◦ ζ3 = ŵT
3 ŝ3 = 0.

(20)

Conditions (20) are satisfied if ŵ2 or ŵ3 is perpendicular to ŝ2 or ŝ3, respectively.
Figure 7b shows such a case for leg 2. In this case, the platform loses one DOF because
there arises a zero-pitch wrench similar to ζ2, which constrains the platform translation
parallel to vector ŵ2. Hence, the end-effector will lose one DOF too. If we want to find its
remaining DOFs, we should first determine two twists, which define platform motion, and
then augment them with twists ξq4 and ξq5. The wrench system reciprocal to these four
twists will define two constraints on the end-effector motion.

5.2. Parallel Singularities

These singularities occur when the matrix on the right side of Equation (15) loses its
rank [34], i.e., when wrenches that form this matrix are linearly dependent. We can also
treat this condition as follows: the end-effector will gain an uncontrolled motion (V 6= 0)
when all its drives are stopped (

.
q = 0).

Let us first focus on the 3-DOF parallel part of the manipulator (we explain the
reasons later) and assume that its actuated pairs, which correspond to qi, i = 1 . . . 3, are
stopped. In this case, leg 1 provides the platform with two rotational DOFs, which come
from the universal joint, and therefore imposes four constraints (three translational and
one rotational). We can represent these constraints by four wrenches: three (linearly
independent) zero-pitch wrenches with axes passing through point C1 and one infinite
pitch wrench ζc. Legs 2 and 3 impose constraints described by zero-pitch wrenches ζ2 and
ζ3, respectively. As all translational movements of the platform are prevented by three
zero-pitch wrenches mentioned above, ζ2 and ζ3 should only constrain two rotational
DOFs not blocked by ζc. In other words, if we calculate screw coordinates of ζ2 and ζ3 with
C1 being the reference point, the moment parts (last three components) of these wrenches
along with the vector defining the axis of ζc should be linearly independent and span a
three-dimensional constraint space. In the most general case, this condition can be violated
when the three vectors mentioned above lie in the same plane, i.e.,

((ρC12 × ŵ2)× (ρC13 × ŵ3))
T(û1 × û2) = 0, (21)

where ρC12 and ρC13 are vectors from point C1 to any point on a line spanned by vector ŵ2
or ŵ3, respectively.

The platform will attain an uncontrolled rotation about the axis, which passes through
point C1 orthogonally to the plane mentioned above. We can mention several particular
cases:

1. ŵ2 and ŵ3 are collinear (Figure 8a): ζ2 and ζ3 are linearly dependent, and their
moment parts are collinear.

2. ŵ2 (or ŵ3) is on a line passing through point C1 (Figure 8b): ζ2 (or ζ3) has a zero
moment part.

3. ŵ2 and ŵ3 lie in a plane passing through point C1 (Figure 8c): the moment parts of ζ2
and ζ3 are collinear.

4. ŵ2 (or ŵ3) lie in the spider plane, spanned by vectors û1 and û2 (Figure 8d): the
moment part of ζ2 (or ζ3) is collinear with the axis of ζc.

5. ŵ2 and ŵ3 are parallel and lie in a plane parallel to the spider plane (Figure 8e): the
moment parts of ζ2 and ζ3 and the axis of ζc lie in a common plane.

The above cases describe possible parallel singularities of the 3-DOF parallel manip-
ulator. In cases 2 and 4, the condition can hold for both ŵ2 and ŵ3 simultaneously: the
platform will attain two uncontrolled rotational DOFs about any axes, which pass through
point C1 and lie in the spider plane.



Machines 2022, 10, 276 12 of 15Machines 2022, 10, x FOR PEER REVIEW 12 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Parallel singularities: (a) 𝐰𝐰�2 and 𝐰𝐰�3 are collinear; (b) 𝐰𝐰�2 passes through 𝐶𝐶1; (c) 𝐰𝐰�2 and 
𝐰𝐰�3 lie in a plane passing through 𝐶𝐶1; (d) 𝐰𝐰�2 lie in the spider plane, spanned by 𝐮𝐮�1 and 𝐮𝐮�2; (e) 𝐰𝐰�2 
and 𝐰𝐰�3 are parallel and lie in a plane parallel to the spider plane. 
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Machines 2022, 10, 276 13 of 15

Actually, the parallel singularities mentioned above correspond not only to the 3-DOF
parallel part but for the entire manipulator. One can argue that we did not consider
wrenches ζ11, ζ14, and ζ15, presented in (15), but introduced three other zero-pitch wrenches
in point C1. The reason for doing this is that translational constraints imposed by leg 1 are
determined by the leg topology and do not depend on the platform orientation. Technically,
in a nonsingular configuration, ζ11, ζ14, and ζ15 can also be used to analyze parallel
singularities. On the other hand, if ζ11, ζ14, and ζ15 are linearly dependent, condition (19)
will be satisfied, and the matrix on the left side of Equation (15) will lose its rank. Such
a configuration, however, is not a parallel singularity, and there will be no uncontrolled
instantaneous motion of the platform.

6. Discussion

Screw theory allows us to address both velocity and singularity analyses of the hybrid
spatial manipulator by simple expressions, obtained mainly by inspection and with no
complicated numerical calculations. For comparison, we could find matrices in the velocity
Equation (15) by differentiating the kinematic constraint equations [22], but this approach
would require some tricky manipulations with the vector loop expressions, which are
unnecessary in the presented procedure. Moreover, in contrast to the formal numerical
procedures, the applied method reveals the geometrical nature of singular configurations,
which could be difficult to interpret if we directly computed and analyzed the matrix
determinants in Equation (15). This geometrical insight is useful for better understanding
of the manipulator performance.

During the velocity analysis, we obtained the relation that connects drive speeds
.
q

and end-effector twist V. Some designing tasks may also require speeds in unactuated
joints, i.e., vectors

.
θi in Equation (5). We can always include these speeds in our study

by selecting wrenches that are not reciprocal to the twist in the passive joint that we are
interested in. This approach allows us to compute speed in any joint of the manipulator.

During the singularity analysis, we established several conditions that correspond
to serial and parallel singularities. In practice, we should check these conditions when
planning motion trajectories to guarantee proper manipulator performance. Note that we
can also avoid some singular configurations by suitable mechanical design. For example,
singularities given in Figures 7a and 8a,e will most likely be beyond the manipulator
workspace because of the joint constraints. Nevertheless, it is always desirable to analyze
closeness to singularities [40] because the manipulator can lose its stiffness and accuracy
and may require additional efforts from its actuators when it is nearby a singular posture.

7. Conclusions

This article has expanded the previous research performed on the 5-DOF 3T2R parallel-
serial (hybrid) manipulator. After a brief discussion of the manipulator design and its
position analysis, the paper has presented an approach for velocity and singularity analysis
based on the screw theory.

First, we considered the unit twists of each manipulator joint and obtained closed-
form expressions for actuation and constraint wrenches using the reciprocal screw method.
Having determined screw coordinates of these twists and wrenches, we formed a system of
velocity equations, which relates the end-effector twist to the drive speeds. To demonstrate
the proposed techniques, we performed the inverse velocity analysis for a predefined
spiral-helical trajectory. We found the values of the drive speeds and verified the results by
comparing them to the values obtained through the numerical differentiation.

Next, we investigated serial and parallel singular configurations of the manipulator
by analyzing wrench systems obtained during the velocity analysis. We established sev-
eral conditions for both types of singularities and provided corresponding mathematical
relations between the screw coordinates of the wrenches. We also considered two exam-
ples of the serial singularities and five examples of the parallel ones and gave a visual
representation for each case.
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The material presented in the current study is essential for manipulator control and
motion planning. Let us also mention several directions for future research. The first one,
based on the performed velocity analysis, includes a dynamic study of the manipulator
that will require the determination of accelerations of its links and composing equations of
motions. The second possible direction is an optimal design problem: we can use the results
of the singularity analysis to identify manipulator geometrical parameters that provide the
required accuracy and stiffness and guarantee that the manipulator does not attain any
singular configuration within its workspace. The results obtained in this paper can also be
extended to other hybrid manipulators.

Author Contributions: Conceptualization, P.L., A.A. and A.F.; methodology, P.L., A.A., A.F. and T.E.;
software, P.L., A.A. and A.F.; validation, P.L., A.A. and A.F.; formal analysis, P.L., A.A. and A.F.;
investigation, P.L., A.A. and A.F.; resources, P.L., A.A. and A.F.; writing—original draft preparation,
P.L., A.A. and A.F.; writing—review and editing, P.L., A.A., A.F. and T.E.; visualization, P.L., A.A. and
A.F.; supervision, P.L., A.A. and A.F.; project administration, P.L., A.A. and A.F.; funding acquisition,
P.L., A.A. and A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Russian Science Foundation (RSF) under grant No.
21-79-10409, https://rscf.ru/project/21-79-10409/ (accessed on 10 April 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Kumar, S.; Wöhrle, H.; Fernández, J.G.; Müller, A.; Kirchner, F. A survey on modularity and distributivity in series-parallel hybrid

robots. Mechatronics 2020, 68, 102367. [CrossRef]
2. Wen, K.; Harton, D.; Laliberté, T.; Gosselin, C. Kinematically redundant (6+3)-dof hybrid parallel robot with large orientational

workspace and remotely operated gripper. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation,
Montreal, QC, Canada, 20–24 May 2019; pp. 1672–1678. [CrossRef]

3. Liu, Q.; Huang, T. Inverse kinematics of a 5-axis hybrid robot with non-singular tool path generation. Robot. Comp.-Integr. Manuf.
2019, 56, 140–148. [CrossRef]

4. Carbone, G.; Ceccarelli, M. A stiffness analysis for a hybrid parallel-serial manipulator. Robotica 2004, 22, 567–576. [CrossRef]
5. Lai, Y.-L.; Liao, C.-C.; Chao, Z.-G. Inverse kinematics for a novel hybrid parallel–serial five-axis machine tool. Robot. Comp.-Integr.

Manuf. 2018, 50, 63–79. [CrossRef]
6. Oba, Y.; Kakinuma, Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel

mechanism polishing machine. Precis. Eng. 2017, 49, 24–32. [CrossRef]
7. Tanev, T.K. Kinematics of a hybrid (parallel–serial) robot manipulator. Mech. Mach. Theory 2000, 35, 1183–1196. [CrossRef]
8. Moosavian, S.A.A.; Pourreza, A.; Alipour, K. Kinematics and dynamics of a hybrid serial-parallel mobile robot. In Proceedings of

the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1358–1363. [CrossRef]
9. Zheng, X.Z.; Bin, H.Z.; Luo, Y.G. Kinematic analysis of a hybrid serial-parallel manipulator. Int. J. Adv. Manuf. Technol. 2004, 23,

925–930. [CrossRef]
10. Nazari, A.A.; Moosavian, S.A.A.; Hasani, A. Kinematics analysis, dynamic modeling and verification of a CRRR 3-DOF spatial

parallel robot. In Proceedings of the 2nd International Conference on Control, Instrumentation and Automation, Shiraz, Iran,
27–29 December 2011; pp. 1067–1073. [CrossRef]

11. Kucuk, S.; Gungor, B.D. Inverse kinematics solution of a new hybrid robot manipulator proposed for medical purposes. In
Proceedings of the 2016 Medical Technologies National Congress (TIPTEKNO), Antalya, Turkey, 27–29 October 2016; pp. 1–4.
[CrossRef]

12. Zhang, D.-S.; Xu, Y.-D.; Yao, J.-T.; Zhao, Y.-S. Analysis and optimization of a spatial parallel mechanism for a new 5-DOF hybrid
serial-parallel manipulator. Chin. J. Mech. Eng. 2018, 31, 54. [CrossRef]

13. Xu, P.; Cheung, C.-F.; Li, B.; Ho, L.-T.; Zhang, J.-F. Kinematics analysis of a hybrid manipulator for computer controlled
ultra-precision freeform polishing. Robot. Comp.-Integr. Manuf. 2017, 44, 44–56. [CrossRef]

14. Gim, K.G.; Kim, J.; Yamane, K. Design of a serial-parallel hybrid leg for a humanoid robot. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 6076–6081. [CrossRef]

https://rscf.ru/project/21-79-10409/
http://doi.org/10.1016/j.mechatronics.2020.102367
http://doi.org/10.1109/ICRA.2019.8793772
http://doi.org/10.1016/j.rcim.2018.06.003
http://doi.org/10.1017/S0263574704000323
http://doi.org/10.1016/j.rcim.2017.09.002
http://doi.org/10.1016/j.precisioneng.2017.01.006
http://doi.org/10.1016/S0094-114X(99)00073-7
http://doi.org/10.1109/ROBOT.2009.5152746
http://doi.org/10.1007/s00170-003-1782-z
http://doi.org/10.1109/ICCIAutom.2011.6356809
http://doi.org/10.1109/TIPTEKNO.2016.7863076
http://doi.org/10.1186/s10033-018-0251-4
http://doi.org/10.1016/j.rcim.2016.08.003
http://doi.org/10.1109/ICRA.2018.8460733


Machines 2022, 10, 276 15 of 15
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