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Abstract: This paper constructs a spatiotemporal feature fusion network (STNet) to enhance the
influence of spatiotemporal features of signals on the diagnostic performance during motor fault
diagnosis. The STNet consists of the spatial feature processing capability of convolutional neural
networks (CNN) and the temporal feature processing capability of recurrent neural networks (RNN).
It is used for fault diagnosis of motor vibration signals. The network uses dual-stream branching
to extract the fault features of motor vibration signals by a convolutional neural network and
gated recurrent unit (GRU) simultaneously. The features are also enhanced by using the attention
mechanism. Then, the temporal and spatial features are fused and input into the softmax function
for fault discrimination. After that, the fault diagnosis of motor vibration signals is completed. In
addition, several sets of experimental evaluations are conducted. The experimental results show
that the vibration signal processing method combined with spatiotemporal features can effectively
improve the recognition accuracy of motor faults.

Keywords: spatiotemporal feature fusion; convolutional neural network; gated recurrent unit; attention
mechanism; fault diagnosis

1. Introduction

The asynchronous motor is the most widely used mechanical drive equipment in
industrial production and has become an important component in fields such as machin-
ery manufacturing [1–3] and intelligent transportation [4,5]. Due to the harsh working
environment, overload, and complex electromagnetic relationships, the motor is prone
to stator winding inter-turn short circuit, broken rotor strips, air gap eccentricity, and
bearing wear [6–8]. During operation, the failure of asynchronous motors may cause huge
economic losses and casualties. Therefore, it is very important to evaluate the working state
of the motor and detect potential faults to prevent mechanical accidents. Fault diagnosis of
motors plays an important role in equipment maintenance, which can improve the quality
of machines and reduce maintenance costs.

The common way of motor fault diagnosis is to use vibration signals for analysis. Vibra-
tion signals can be collected using acceleration transducers. Abnormal vibration signals can
characterize equipment faults, such as asymmetry of the shaft system [9], a loose connection
of components [10], and damaged rotor bearings [11]. Therefore, the acquisition and analysis
of vibration signals have also become a common fault diagnosis scheme in the field of rotating
machinery [12,13]. Fault diagnosis methods based on vibration signals [14,15] mainly include
two stages: feature extraction and pattern recognition. The key to the asynchronous motor
fault diagnosis technique is extracting feature information from non-smooth vibration signals
with time-varying characteristics. In the time domain, some works [15,16] acquired amplitude,
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root mean square, and kurtosis for the analysis and diagnosis of vibration signals. However, it
was susceptible to environmental noise and the methods have limitations. Some works [17,18]
used Fourier transform to convert the signal from the time domain to the frequency domain.
But the frequency characteristics of the vibration signal over time cannot be extracted ef-
fectively. The time-frequency domain analysis was performed by wavelet transform [19],
short-time Fourier transform [20,21], and empirical mode decomposition [22,23], which ex-
tracted both time-domain and frequency-domain features. But the above methods are only
effective for specific features and have poor adaptivity and robustness.

With the rise of deep learning, some neural networks have been introduced into the field
of fault diagnosis [24–26]. The vibration characteristics of the signal can be obtained adaptively
by learning the nonlinear mapping between the hidden layers in the network. Deep learning-
based methods are less interpretable [27] but have high recognition accuracy. Such methods
overcome the disadvantages of traditional methods that require manual feature extraction and
have poor adaptability. Shi et al. [28] used a long short-term memory neural network (LSTM)
to extract the temporal features of bearing vibration signals. However, the local information
of the signal in the spatial dimension was ignored and the full key information could not be
maintained when the data sequence is too long. Gao et al. [29] combined one-dimensional
convolution and adaptive noise cancellation techniques to suppress the strong interference
components in the one-dimensional time series of gearboxes. However, the time-series feature
of the vibration signal was not fully utilized due to the limitation of the convolutional neural
network field of perception. Zhu et al. [30] reconstructed the one-dimensional time-domain
sequence into a two-dimensional data format and used two-dimensional convolution to
capture the spatial features of the vibration signal. However, the dependencies between the
positions of the spatial features were ignored, resulting in some important features not playing
a significant role. Due to the convolutional stride and weight connection, the convolutional
neural networks [31,32] cannot accurately obtain the temporal features of the vibration signal.
In contrast, recurrent neural networks [33] can handle the temporal features of the signal but
do not consider the information of the spatial dimension.

At present, motor fault diagnosis only uses the temporal features or spatial features
of vibration signals for analysis. In this paper, spatial features and temporal features are
combined to construct a spatiotemporal feature fusion network (STNet). The network
solves the problem of accuracy loss caused by excessively long signal sequences and the
lack of dependencies of each position. STNet is constructed for fault diagnosis of motor
vibration signals. The main contributions of this paper are listed as follows.

1. The STNet utilizes the spatial feature extraction capability of a CNN and the temporal
feature extraction capability of a GRU to construct a dual-stream network. The
network combines temporal and spatial features for fault diagnosis of vibration
signals instead of a single temporal or spatial feature.

2. The time series of vibration signals is much longer than the text in natural language
processing. Recurrent neural networks do not preserve all the critical information.
Therefore, a GRU with an attention mechanism is designed to extract temporal features
and effectively synthesize the state and vibration features at different moments.

3. When the CNN extracts the spatial information of vibration signals, channel and
position attention make the network capture the dependencies of each position. The
attention mechanism obtains rich contextual features to enhance diagnostic accuracy.

The structure of this paper is as follows. Section 2 presents the attention-based mecha-
nism for the GRU to capture the temporal features of vibration signals. Section 3 enhances
the data by local mean decomposition and extracts the spatial features of vibration signals
using a CNN with channel and position attention. Section 4 proposes a spatiotemporal
feature fusion network. Section 5 validates the model by experiments.

2. Temporal Feature

When BP neural networks process data, there is no interrelationship between the
front and back inputs of the network. However, the vibration signal of a motor is a one-
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dimensional time series, and the temporal relationship between each sampling point has
an important impact on the performance of the diagnosis. A recurrent neural network
introduces memory units to interconnect the neurons in this layer based on the ordinary
neural network. The state of the hidden layer is related to the input at this moment
and the state of the hidden layer at the previous moment. Therefore, the relationship of
the time dimension can be extracted from the original vibration sequence by recurrent
neural networks.

2.1. Gated Recurrent Unit

The spatiotemporal feature fusion network extracts the temporal features of motor
vibration signals through the variant (gated recurrent unit) of the recurrent neural network.
A gated recurrent unit introduces a gating mechanism to improve recurrent neural networks.
A GRU can selectively forget some unimportant information while memorizing the state of
the previous moment. A GRU alleviates the gradient disappearance of recurrent neural
networks and solves the problem of untimely update of network parameters. The GRU
controls the input, output, and state information of the hidden layer by the update gate zt
and the reset gate rt. The internal structure is shown in Figure 1.
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The update gate zt takes the current moment xt and the previous moment information
ht−1 by the weighting operation. Then the value between [0, 1] is obtained by the sigmoid
function The value controls the effect of historical information on the state of the hidden
layer at the current moment. The equation is as follows

zt = σ(Wtz · [ht−1, xt] + bz) (1)

where σ is the sigmoid function, Wtz, and bz are the weights, ht−1 is the output at the
previous moment, and xt is the input at the current moment.

The reset gate rt operates the current moment xt and the previous moment information
ht−1 with different weights, so that the model selectively forgets historical information that
is irrelevant to the results. The equation is as follows

rt = σ(Wtr · [ht−1, xt] + br). (2)
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The status of the node at this moment is

h̃t = tanh(W · [rt × ht−1, xt] + b). (3)

The final output of the hidden layer ht is the sum of the information to be kept at the
current moment and the information to be kept at the previous moment

ht = (1−zt)× ht−1 + zt × h̃t. (4)

2.2. GRU Temporal Module Based on Attention Mechanism

The length of time series of motor vibration signals is much longer than the length
of text in natural language processing. Although the GRU solves the problem of gradient
disappearance in long sequence learning of recurrent neural networks, it still cannot retain
all the key information when the time sequence is too long. Therefore, this paper not only
selects the state output of the last moment of the GRU but also combines the state features
of each moment of the GRU. Moreover, the attention mechanism is introduced to assign a
weight coefficient to the output of the GRU at each moment. It makes the neural network
pay attention to the data features of the output at different moments adaptively. The GRU
temporal module based on the attention mechanism is shown in Figure 2.
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During the analysis of the vibration sequence, the output state of the GRU at the final
moment determines the result of the fault diagnosis. However, the states of other moments
also have many positive effects on the performance of the network. Therefore, the network
not only relies on the output of the final moment but also considers the states of each
moment in a comprehensive manner. The vibration signal Xt is fed into the GRU, which
captures the vibration characteristics of the signal at each moment. The GRU outputs the
state Gt at each moment as

Gt = GRU(Xt). (5)

However, each momentary output of the GRU has a different degree of influence on
the diagnosis results for different types of motor faults. Therefore, the states at each moment
of the GRU are selected by the attention mechanism. The states with high relevance are
kept and the states with low relevance are weakened. Then the weights of each moment
state are obtained by the fully connected layer (FC) and sigmoid function. The weight
parameters w1 are

w1 = σ(w(Gt)+b). (6)
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Finally, the output of GRU at each moment is multiplied by the weight parameter to
obtain the output result O

O = weight× Gt (7)

3. Spatial Features

The GRU extracts the temporal features of vibration signals but ignores the spatially
located information. This paper performs a time-frequency analysis of the vibration signal
by local mean decomposition (LMD). The spatial features of the vibration signal after local
mean decomposition are extracted by the convolutional neural network.

3.1. Local Mean Decomposition

The motor vibration signal is nonlinear and non-smooth. LMD adaptively decomposes
the original vibration sequence into multiple instantaneous frequencies with physically
meaningful product functions (PF). Each PF component is the product of a pure frequency
modulation signal and an envelope signal, which can express the time-frequency distribu-
tion of the signal energy on the spatial scale. Then the vibration signal matrix is constructed
and the original data is enhanced. The process of LMD for vibration signal processing is
shown in Figure 3.
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The original vibration signal x(t) is decomposed by LMD and the mean value mi of
the adjacent local mean points is calculated. The curve is smoothed by the sliding average
method to obtain the mean function mij. Then the envelope function aij is calculated. The
mean function is separated from the original vibration signal to obtain hij(t). Additionally,
hij(t) is demodulated to obtain sij(t). If sij(t) is a pure frequency modulation signal, the PF
component PFi(t) and the residual signal ui

′(t) are calculated based on the instantaneous
amplitude function ai(t). If ui

′(t) is a monotonic function, the decomposition ends and all
PF components are obtained. The results of data decomposition are shown in Figure 4,
where the original data X(t) is decomposed into five PF components by LMD.
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Convolutional neural networks are often used to process two-dimensional image
signals, while the motor vibration signal X(t) is a one-dimensional time-series signal,
as follows

X(t) = [x1, x2, x3, · · ·, xt]. (8)

Therefore, the vibration signal is converted into a two-dimensional matrix
X′(t) ∈ RM×N

X′(t) =


x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·
xm1 · · · · · · xmn

. (9)

Each PF component is converted into two-dimensional data as shown in Figure 5.
The PF components are concatenated with the two-dimensional data X′(t) of the original
vibration signal in the channel dimension. The final input matrix of the convolutional neural
network is obtained. The method enhances the feature representation of the vibration signal
in the spatial dimension.

3.2. CNN Module Based on Attention Mechanism

The convolutional neural network takes the multidimensional matrix of the motor
vibration signal as input and adaptively extracts the spatial features of the signal. The
different features have different effects on the fault diagnosis results. As shown in Figure 5,
the same vibration signal decomposes with different PF components. It leads to huge
differences between the different channels of the input 3D matrix Xin ∈ Rc×M×N. The
different channels have different effects on the diagnosis results for different fault types.
Therefore, the attention mechanism is added to the channel dimension to make the model
adaptively extract different channel features.
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The structure of the channel attention is shown in Figure 6, where the input matrix Xin
is convolved to obtain x ∈ Rc×m×n and ⊗ represents element-by-element multiplication.

x = wi ⊗ Xin + bi (10)
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Then the m × n dimensions are compressed to 1 × 1 by global average pooling. The
global feature distribution of the input matrix in the channel dimension is captured to
obtain the feature map

map =
1

m× n

m

∑
i=1

n

∑
j=1

x(i, j) (11)

The feature maps are adjusted nonlinearly by the fully connected layer (FC). The module
uses the sigmoid function to obtain the attentional weights of the channel dimensions Catte

Catte = σ(ws · (Relu(wr ·map + br)) + bs) (12)

Finally, the input features Xin are multiplied with the channel weights to rescale the
features in the channel dimension.

The channel dimension completes the rescaling of the original features, and the channel
attention adjusts the different channel features. However, there are also large differences
in the data of different fault types of vibration signals in the same channel, as shown in
Figure 7. Convolutional neural networks also need to consider the influence of different
location features on the diagnosis results when extracting features. Therefore, this paper
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makes the network focus on the features of vibration signals in spatial dimensional features
by position attention.
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The structure of the position attention is shown in Figure 8. The input features
x ∈ Rc×m×n are computed separately for max pooling and average pooling to obtain feature
maps fmax ∈ R1×m×n and favg ∈ R1×m×n. Then the feature maps are concatenated in the
channel dimension. Finally, the feature maps adopt convolutions and a sigmoid activation
function to obtain the position attention Patten

Patten = σ(conv(concat( fmax, favg))). (13)
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4. Spatiotemporal Feature Fusion Network

The structure of the spatiotemporal feature fusion network is shown in Figure 9. The
STNet uses a GRU to extract the temporal features of one-dimensional vibration signals. The
GRU branch introduces the attention mechanism to synthesize the effect of each moment
state on the performance in the long sequence signal. Meanwhile, the original vibration
sequence is decomposed by LMD for time-frequency analysis. The original vibration data
and each PF component are converted into multidimensional matrices as the input of the
CNN. The CNN branch adaptively extracts the spatial features of the input matrix by
convolutions. Meanwhile, considering the channel features and the influence of different
fault features, the CNN branch adds channel attention and position attention to selectively
enhance the spatial features of the signal. The attention mechanism acquires rich contextual
information. Finally, the spatial and temporal features of the vibration signal are fused, and
the softmax layer classifies the fused features.
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STNet is a dual-stream network consisting of a GRU branch and CNN branch. The
specific network layers are shown in Table 1, where Conv-BN denotes the convolution
layer and batch normalization layer, and FC is the fully connected layer. The input of the
CNN branch is the vibrational signal matrix with the size of 6 × 32 × 32. The network
uses the convolution kernel with the size of 3 × 3 to extract features. The padding type of
the convolution kernel is “SAME”. Then, the kernel is normalized by the BN layer with
a Relu activation function. The CNN branch recalibrates the original features by channel
attention and position attention. The spatial resolution of the feature map at each stage
becomes half that of the previous stage, and the number of channels becomes twice that of
the previous stage. The network obtains a feature map with the size of 128 × 8 × 8 by three
stages of feature extraction. The captured features are then fed into the fully connected
layer with 1024 neurons. The input of the GRU branch is the original vibration signal with
1024 sampling points. The network obtains the temporal features through the 2-layer GRU
attention unit, and the features are fed into the fully connected layer with 128 neurons.
The fully connected layers of the CNN branch and GRU branch are concatenated, and the
number of neurons is 1152. The network is nonlinearly adjusted by two fully connected
layers. Finally, the diagnosis results of eight faults are output by the softmax function.

When the STNet extracts features, there are significant differences between the spatial
features extracted by the CNN and the temporal features extracted by the GRU. Therefore,
the CNN auxiliary loss function and GRU auxiliary loss function are added respectively
during the training process. The auxiliary loss function supervises the temporal features
and spatial features extracted by the network separately to reduce the generation of invalid
information. The auxiliary loss function not only promotes the backpropagation of the
network but also enhances the canonical representation of temporal and spatial features.
The final loss function (Ltotal) of the network is shown as follows

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic log(pic) (14)

Ltotal = αLCNN + βLGRU + Lloss (15)

where M is the number of categories; yic is the symbolic function; pic is the probability that
sample i belongs to c; α and β are the weights of the auxiliary loss function.
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Table 1. The STNet’s structure.

Layer Node Stride Output Size Layer Node Stride Output Size

CNN Branch GRU Branch

6 × 32 × 32 1024
Conv-BN 32 2 32 × 16 × 16 FC 990 - 990

Channel-Position Attention - 1 32 × 16 × 16 GRU 330 - 330
Conv-BN 64 2 64 × 8 × 8 Attention - - 330

Channel-Position Attention - 1 64 × 8 × 8 GRU 110 - 110
Conv-BN 128 2 128 × 8 × 8 Attention - - 110

Channel-Position Attention - 1 128 × 8 × 8
FC 128 - 128FC 1024 - 1024

Concat (1152)
FC (512)-FC (128)

Softmax (8)

5. Experiments
5.1. Data

The main types of faults in the experimental motor vibration data are inter-turn
short circuit, air gap eccentricity, rotor broken strips, bearing seat damage, bearing wear,
etc. There are 8 kinds of samples, the number of samples is 8000, and the number of
sampling points per second is 1024, as shown in Table 2. The deep learning framework
is PaddlePaddle 1.8.4. The CPU of the training platform is Intel Xeon Gold 6171C. The
GPU is Nvidia Tesla V100 (16G). GPU acceleration is performed by CUDA 10.1, and the
experimental dataset is divided into training and test sets (7:3).

Table 2. Fault types.

Label Types Numbers

0 Normal 1000
1 2 turns short circuit 1000
2 4 turns short circuit 1000
3 8 turns short circuit 1000
4 Air gap eccentricity 1000
5 Broken rotor strip 1000
6 Bearing seat damage 1000
7 Bearing wear 1000

5.2. Experiment Analysis

When the network extracts features using the GRU, only the features in the time
domain of the vibration signal are captured. However, the vibration signal also contains
rich features in the frequency domain. Therefore, the original vibration data is decomposed
by LMD. The decomposition results of each fault type are shown in Figure 10. When
abnormal vibration occurs in the accelerometer, each PF component can show the amplitude
modulation and frequency modulation signals of the abnormal vibration. The vibration
signal is enhanced so that the CNN extracts the vibration features by the original vibration
sequence and each PF component.
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A convolutional neural network has unique superiority in two-dimensional image
recognition due to the special structure of local weight sharing and the presence of the local
perceptual field. The visualization results of each fault signal transformed into the two-
dimensional matrix are shown in Figure 11. The original vibration signal is 1024 sampling
points, and the size of the transformed 2D matrix is 32 × 32. Similarly, each PF component
is also transformed into a two-dimensional matrix and connected to the two-dimensional
matrix of the original vibration signal in the channel dimension. Finally, the input size of
the CNN branch is 6 × 32 × 32. The visualization results of the two-dimensional matrix
show that the PF component matrices of different faults have large differences in different
dimensions, and the fault features extracted by the CNN would have a positive effect on
the performance of diagnosis.
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The input size of the CNN branch is 6 × 32 × 32, and the sequence length of the GRU
branch input is 1024. The number of network training epochs is 100. The batch size is 600.
The model parameters are updated using the Adam optimization algorithm. The learning
rate adjustment strategy is “Poly”, with an initial learning rate of 0.001 and a power of
0.9. The loss function is the cross-entropy loss function. The weight of the CNN network
auxiliary loss function is 0.1. The weight of the GRU network auxiliary loss function is 0.9.
The evaluation index is the accuracy rate. The loss and accuracy curves of the training set
and test set with the number of epochs are shown in Figure 12.
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The test set loss increases sharply in the first 10 rounds of training, but the training set
and test set losses gradually decrease with the increase of iterations. It indicates that the
model is converging and approaching 0. After 60 epochs, the training set loss and test set
loss are close to overlapping. The waveforms do not have large fluctuations and there are
no overfitting problems.

The model is validated for each type of fault after training, and the results are shown
in Table 3. The number of error samples for inter-turn short circuit fault is three, and the
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number of error samples for bearing seat damage is three. The recognition accuracy of each
type of fault is above 99%. The model has high recognition accuracy.

Table 3. The result of each category of fault identification.

Label Types Accuracy

0 Normal 100%
1 2 turns short circuit 99.67%
2 4 turns short circuit 99.33%
3 8 turns short circuit 100%
4 Air gap eccentricity 100%
5 Broken rotor strip 100%
6 Bearing seat damage 99%
7 Bearing wear 100%

To verify the performance of each module in the STNet, five ablation experiments are set
up. The results are shown in Table 4. The accuracy of the temporal features extracted from the
vibration signal using the GRU is 98.58%, while the accuracy of the spatial features captured
from the vibration signal using the CNN is 98.83%. The CNN + GRU model with the fusion
of temporal and spatial features improves the accuracy by 0.39% and 0.04%, respectively.
Compared with the single branch, it indicates that both temporal and spatial features of the
vibration signal are indispensable parts for fault diagnosis. The CNN + GRU + attention
model with the attention module on the CNN branch and GRU branch improves the accuracy
by 0.59% compared to the model without attention. The attention mechanism considers the
importance of different features and makes the important features play a significant role in the
network. The final accuracy of the STNet with auxiliary loss function is 99.75%. The auxiliary
loss function facilitates the network backpropagation to update the parameters and enhances
the feature representation of each branch.

Table 4. Ablation experiments.

Model Accuracy

GRU 98.58%
CNN 98.83%

CNN + GRU 98.97%
CNN + GRU + Attention 99.56%

CNN + GRU + Attention + Auxiliary Loss 99.75%

To further investigate the effect of the attention module on the network performance,
the attention matrices of the GRU branch and the CNN branch are visualized. Figure 13a
represents the channel attention for the three-stage feature extraction in the CNN branch
with channel dimensions of 32, 64, and 128. The shallow layer of the CNN branch requires
sufficient feature extraction of the vibration signal to preserve all feature information as
much as possible. Therefore, the attention varies from 0.48 to 0.51, which is not a large range.
Due to the number of network layers increasing and the number of channels increasing, the
redundant features are increased. The network needs to suppress the redundant channels,
while the effective channel features are enhanced. So, the range of variation of channel
attention increases. Figure 13b represents the position attention of the three-stage feature
extraction in the CNN branch with dimensions of 16 × 16, 8 × 8, and 8 × 8. The position
attention becomes more and more focused because the local features of the convolutional
neural network are extracted. Figure 13c represents the attention of the output features of
the second GRU in the GRU branch. The GRU module outputs the prediction results of
multiple time series. The output represents the impact of each moment on the diagnostic
results. It retains the results with high relevance by the attention mechanism, so the GRU
attention does not fluctuate greatly.
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To further verify the fault diagnosis capability of the STNet, it is compared with BP,
1D-CNN, multichannel-CNN, and inception-LSTM models. The experimental results are
shown in Table 5. The BP network diagnoses the fault types by nonlinear mapping without
considering the temporal and spatial features of the signal. Therefore, the recognition
accuracy is only 96.12%. The 1D-CNN model uses 1D convolution to obtain the abstract
features and local features of the vibration signal. The 1D-CNN model improves the
accuracy by 2.12% compared to the BP network. The multichannel-CNN model weights
different receptive fields and captures contextual information at different scales. The
inception-LSTM model extracts temporal information under several different receptive
fields with an accuracy of 99.34%. Compared with BP, 1D-CNN, multichannel-CNN, and
inception-LSTM models, the STNet obtains the highest accuracy of 99.75%. The STNet
combines spatial features and temporal features instead of single features, compared with
BP, 1D-CNN, and multichannel-CNN models. Compared with the inception-LSTM model,
STNet uses the attention mechanism to select features adaptively. Therefore, both temporal
and spatial features have a positive impact on the performance of diagnosis during the
analysis of vibration signals. The number of parameters of STNet is 9.2876 M and the
number of floating-point operations (FLOPs) is 0.02 G.

Table 5. Model comparison experiments.

Model Accuracy

BP 96.12%
1D-CNN 98.24%

Multichannel-CNN 99.17%
Inception-LSTM 99.34%

STNet 99.75%
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6. Conclusions

In the paper, the fault diagnosis for motor vibration signals has been investigated
based on spatiotemporal feature fusion. The method has used gated recurrent units and
convolutional neural networks to extract the temporal and spatial features of vibration
signals. Since the time series of vibration signals were too long to retain all the key
information, a GRU has extracted the temporal features by an attention mechanism to
effectively synthesize the states of different time series and the vibration features at different
moments. When extracting spatial features, the one-dimensional time-domain signal has
been converted into a two-dimensional matrix using local mean decomposition and matrix
transformation to extend the data dimensionality. The CNN model based on the attention
mechanism adaptively has extracted the channel and location features of the signal. In the
experimental evaluation of eight different vibration signals, the vibration signal processing
method combined with spatiotemporal feature fusion has obtained 99.75% recognition
accuracy. The method has improved the diagnostic performance effectively, which is
important for the safe detection and stable operation of the system.
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