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Abstract: Certain progress has been made in fault diagnosis under cross-domain scenarios recently.
Most researchers have paid almost all their attention to promoting domain adaptation in a common
space. However, several challenges that will cause negative transfer have been ignored. In this paper,
a reweighting method is proposed to overcome this difficulty from two aspects. First, extracted
features differ greatly from one another in promoting positive transfer, and measuring the difference
is important. Measured by conditional entropy, the weight of adversarial losses for those well aligned
features are reduced. Second, the balance between domain adaptation and class discrimination
greatly influences the transferring task. Here, a dynamic weight strategy is adopted to compute
the balance factor. Consideration is made from the perspective of maximum mean discrepancy
and multiclass linear discriminant analysis. The first item is supposed to measure the degree of
the domain adaptation between source and the target domain, and the second is supposed to
show the classification performance of the classifier on the learned features in the current training
epoch. Finally, extensive experiments on several bearing fault diagnosis datasets are conducted.
The performance shows that our model has an obvious advantage compared with other common
transferring algorithms.

Keywords: bearing fault diagnosis; cross-domain tasks; domain adaptation; class discrimination;
dynamic balance factor; self-adaptive reweight

1. Introduction

Bearinga are one of the most important components of all mechanical systems, and
their healthy working state is the basic guarantee for all kinds of machines to engage
in production [1–5]. With the continuous progress of measurement technology and the
development of Internet of Things technology [6], massive data measured through sensors
are available, and bearing diagnosis methods based on signal analysis or machine learning
have made great progress in recent work [7–10]. Among fault diagnosis methods based on
signal analysis, common feature extraction methods include wavelet transform, spectral
analysis, empirical mode decomposition, and fast Fourier transform [11–14]. Feng et al.
investigated the correlation between tribological features of abrasive wear and fatigue
pitting in gear meshing and constructed an indicator of vibration cyclostationarity (CS)
to identify and track wear evolution [15]. Cédric Peeters et al. derived blind filters using
constructed envelope spectrum sparsity indicators and proposed an effective method of
fault detection in rotating machinery [16]. In addition, the methods based on machine
learning and deep learning are more and more widely used because they do not rely on
rich expert experience and can learn complex nonlinear relationships effectively [17]. The
common models among them are deep neural networks, sparse coding, and Bayesian
analysis, which optimize the parameters of classifiers by utilizing labeled historical fault
data [18–20].
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Although samples from unlabeled test datasets can often be effectively diagnosed by
these methods, most of them are usually based on an ideal assumption that training datasets
and test datasets are collected from the same part of the same machine and are quite similar
in terms of data distribution [21]. Real world conditions are often very different from ideal
ones because obtaining vibration data with labels from critical parts of some machines is
hard or even impossible [22]. Furthermore, collecting data samples from each machine
and labeling them manually cost a large amount of time and money [23]. Hence, several
training datasets can only be collected from another part of the same machine or from other
similar but different scenarios [24]. This kind of bearing fault diagnosis task with training
data and test data from different datasets is usually called cross-domain fault diagnosis by
researchers. Intrinsic discrepancies are observed in the data distribution between training
datasets (source domain) with labels and test datasets (target domain) without labels. The
discrepancies between source domain and target domain always have an adverse impact
on the diagnostic accuracy, which is the main difficulty of cross-domain diagnosis tasks.
Domain adaptation is the main strategy to solve this difficulty at present, which means
making knowledge from the source domain useful for the target task by eliminating the
distribution discrepancies between two domains.

To bridge the gap between the two domains in cross-domain diagnosis tasks and
avoid the deterioration of performance of source data classifier on discrepant target data,
several transfer learning methods based on domain adaptation have been developed in
recent studies [25,26]. The common strategy of transfer learning methods based on domain
adaptation is to train a domain-invariant classifier by eliminating the distribution mismatch
between source and target domains [27,28]. To reduce the distribution mismatch between
the two domains, distance matching methods and adversarial learning models are two
main types of strategies. As for the former, maximum mean discrepancy (MMD) [3] is
widely applied for distance measurement. For a better, faster computation, multikernel
maximum mean discrepancy (MK-MMD) is proposed [29]. For instance, Xie et al. trained a
domain-invariant classifier for cross-domain gearbox fault diagnosis by transfer component
analysis (TCA) technology [30]. The latter kind of methods train a domain-invariant
classifier through adversarial training between domains inspired from the strategy of
generative adversarial network (GAN) [31]. In adversarial domain adaptation methods, the
discriminator is responsible for distinguishing whether the feature produced by the feature
extractor comes from the source domain or the target domain, whereas the feature extractor
tries to obtain features that can not be distinguished by the discriminator. The competition
between them drives them to promote their performance until the source domain features
and target domain features are indistinguishable. A domain-invariant classifier that can be
applied in source datasets and target datasets is then obtained.

In addition to marginal distribution alignment methods based on distance matching
and adversarial training, conditional distribution alignment for unsupervised bearing
health status diagnosis has been recently considered by many researchers. For example,
Li et al. used the over fitting of various classifiers in a proposed adversarial multiclassifier
model to improve class-level alignment [32]. Qian et al. introduced a novel soft label strat-
egy to assist joint distribution alignment of fault source and target domain datasets [33].
Zhang et al. combined a novel subspace alignment model with JDA to achieve joint
distribution alignment in fault diagnosis of rolling bearings under varying working condi-
tions [34]. Wu et al. utilized joint distribution adaptation and a long-short term memory
recurrent neural network model simultaneously to achieve domain adaptation under the
condition of unbalanced bearing fault data [35]. Yu et al. proposed an effective simulation
data-based domain adaptation strategy for intelligent fault diagnosis in which conditional
and marginal distribution alignment is achieved between source data from the simulation
model and target data from mechanical equipment in the actual field [36]. Moreover,
Kuniaki Saito et al. proposed a novel maximum classifier discrepancy (MCD) to reduce
the decision boundary of the classifier and achieved better classification performance [37].
Li et al. measured the completion degree of classification by employing a criterion based
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on linear discriminant analysis (LDA) to enhance the performance of the classifier on the
target domain [38]. Yu et al. quantitatively measured the relative importance of marginal
and conditional distributions of two domains and dynamically extracted domain-invariant
features in a proposed novel dynamic adversarial adaptation network (DAAN) [39].

Although these transfer learning methods have made some progress in cross-domain
bearing fault diagnosis, there are still some challenges that will cause negative transfer.
Positive transfer means the knowledge learned from the source domain can effectively
improve the performance of the model in the target domain. In contrast, the learning
behaviour will be called negative transfer [40,41] when the knowledge from the source
domain hinders the performance of learning in the target task. Obviously, it should be
avoided in cross-domain diagnosis tasks. However, these difficulties that may lead to
negative transfer have not received sufficient attention from previous researchers. The
two main problems leading to negative transfer in cross-domain bearing fault diagnosis
are as follows. First, some samples with poor transferability have not received as much
attention as they deserve, which will lead to negative transfer. Almost all the existing
domain adaptation models assume that all the data have the same influence. Certainly,
this assumption does not hold in many real-world scenarios. Some sample data are more
difficult to align because they are far from the distribution center when there is some
noise in the measurement environment or under non-stationary conditions [42,43]. If
each sample has the same weight in the domain adaptation training, achieving a good
conditional distribution alignment will be difficult no matter how many training epochs are
taken. Moreover, with the continuous updating of model parameters, the good adaptation
performance of features from samples with strong transferability will be destroyed. At this
stage, negative transfer occurs.

Second, the imbalance between the classifier training and domain adaptation may also
cause negative transfer. Training of the fault classifier and the domain adaptation process
are carried out simultaneously in most previous models, but the relationship between
them is ignored and the two processes are considered independently. Indeed, excessive
adaptation is likely to cause the failure of a diagnostic classifier, whereas over completion
of classifier training could cause domain mismatch [44]. Both processes influence the
diagnosis accuracy, that is, the over/under completion of any of the two processes leads to
negative transfer. From the above analysis, we can see that there is a strong motivation to
establish a more advanced method to solve the two challenges that may cause negative
transfer in cross-domain fault diagnosis.

In order to solve the above challenges in the field of cross-domain fault diagnosis, a
novel DRDA method is proposed in this paper. To address the negative transfer caused by
some samples with poor transferability, a soft reweighting strategy inspired by curriculum
learning and conditional information entropy is proposed. Such an indicator can well
measure the adaption performance of each sample in real time to provide more attention
to poorly aligned samples. After proper weight adjustment, the clustering of source and
target domain datasets are strengthened, thus, the conditional distribution alignment can
also be improved. To address the negative transfer caused by the imbalance between the
classifier training and domain adaptation, a balance factor is introduced in our method to
strike a balance between them and obtain a higher accuracy in the final diagnosis on the
target domain dataset. Specifically, MMD is used as an estimator to observe the degree
of domain adaptation.The factor J(w) based on linear discriminant analysis (LDA) [38]
was proposed to estimate the degree of classifier training. An effective balance factor λ
can then be constructed by combining these two items. Sufficient verification experiments
demonstrate that our model outperforms state-of-the-art methods.

The main contributions of our work are as follows.

1. A novel dynamic reweighted domain adaptation method is proposed to address chal-
lenges that will cause negative transfer in cross-domain bearing fault diagnosis. A
reweighted adversarial loss strategy is introduced in DRDA to eliminate negative trans-
fer caused by samples with poor transferability in cross-domain bearing fault diagnosis.
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2. A powerful balance factor λ is constructed in the proposed method to eliminate
negative transfer caused by the imbalance between the classifier training and domain
adaptation in cross-domain bearing fault diagnosis.

This paper is organised into the following sections. The preliminary concept is in-
troduced in Section 2, including the problem description and a brief introduction to the
domain adversarial learning and maximum classifier discrepancy theories. In Section 3,
the proposed DRDA model for cross-domain diagnosis is introduced in detail. Section 4
presents and analyzes the diagnosis performance on cross-location and cross-speed cases.
Finally, this article is concluded in Section 5.

2. Principle Knowledge
2.1. Problem Description

Our work mainly focuses on bearing health status diagnosis in cross-domain scenarios
and aims to develop a transferable diagnosis model with strong generalization that can
effectively combat negative transfer and identify fault types corresponding to the target
domain samples accurately utilizing the knowledge learned from samples of the source
domain. Thus, our paper is based on the following several reasonable hypotheses:

1. Massive bearing source domain datasets with labels and target domain datasets
without labels are available for domain adaptation and fault diagnosis.

2. Although most of the samples from the two domains are similar to one another in
terms of data distribution, several are not and are more difficult to align.

To study bearing health status diagnosis for bearing datasets from two different
domains, this paper utilizes two industrial transfer scenarios:

1. Bearing data from different locations of the same mechanical system are used as target
datasets for cross-location domain adaptation.

2. Bearing data from the same mechanical system under different rotation speed condi-
tions are used as target datasets for cross-speed domain adaptation.

In this paper, the source dataset is denoted as Ds, its label is denoted as Ys, and Dt
represents the target domain dataset. Superscript s represents the source domain data, and
t represents the target domain data. This work focuses on four kinds of bearing health
status: ball fault (BF), healthy (H), inner race fault (IF), and outer race fault (OF). In this
paper, the structures of modules with the same name in different methods are exactly the
same, so the same modules in different methods are uniformly represented by unified
symbols (feature extractor: G f , classifier: Gy, domain discriminator: Gd). Details of the
structure and parameters of these modules are shown in the Figure 1.

2.2. Domain Adversarial Learning

The main ideal of adversarial domain adaptation is to apply the min-max optimization
strategy of GAN to extract domain-invariant features [45]. The basic structure of the
adversarial domain adaptation network is shown in Figure 2.

This model has three main components: a feature extractor (G f ), a health status
classifier (Gy), and a discriminator (Gd). The expressions θ f , θy, and θd are the parameters of
G f , Gy, and Gd, respectively. The parameters of the feature extractor and the discriminator
are trained by samples from the source dataset and the target dataset, whereas the classifier
is trained only on the source domain examples with labels. Specifically, the goal of the
discriminator is to discern whether the features obtained by the feature extractor come
from the source domain or the target domain, whereas the feature extractor aims to gain
domain-invariant features that cannot be distinguished by the discriminator. The updating
of parameters will eventually converge to an optimal equilibrium state, where the loss of
the discriminator reaches its maximum corresponding to θ f and minimum corresponding
to θd. The loss can be expressed as follows:
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L(θ f , θy, θd) =
1
ns

∑
xk∈Ds

Ly(Gy(G f (xk)), yk)−
α

ns + nt
∑

xk∈Ds∪Dt

Lda(Gd(G f (xk)), dk) (1)

where ns and nt are the number of samples in the source domain and target domain,
respectively; Ly is the classifier cross-entropy loss, and Lda is the adversarial loss of the
domain discriminator; dk is the label generated by the discriminator to represent the domain
of input data (1 represents the target domain and 0 represents the source domain); and α
is a parameter with the function of trade-off. When the iterative process converges to the
optimal state, the parameters satisfy Equation (2):

(θ̂ f , θ̂y) = arg min
θ f ,θy

L(θ f , θy, θd)

(θ̂d) = arg max
θd

L(θ f , θy, θd)
(2)

Thus, the domain adaptation can be achieved by the counterbalance of adversar-
ial training.

Figure 1. The structure and parameters of the feature generator G f , fault classifier Gy, and domain
discriminator Gd in proposed DRDA and other comparison methods.
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Figure 2. The structure of adversarial domain adaptation.

2.3. Maximum Classifier Discrepancy (MCD)

The main goal of MCD is to narrow the decision boundary of the classification and
eliminate the misclassification of samples whose features are near to the boundary in the
feature space [37]. As shown in Figure 3, this model mainly consists of three modules: a
feature extractor (G f ) and two classifiers (Gy1, Gy2). The feature extractor is optimized to ob-
tain features that could minimize the discrepancy of predictions given by the two classifiers.
Discrepancy loss is defined as follows:

d(Gy1, Gy2) =
1
c

c

∑
k=1
‖p1k − p2k‖

Lcd =
1
nt

∑
xt∈Dt

[d(p1(y|xt)), d(p2(y|xt))]

(3)

where c is the total number of all health status classes and equals 4 in this paper; p1k, p2k
denote probability output of Gy1, Gy2 for class k, respectively. The selection of the norm
is crucial to the final results and L1-norm is adopted, as in the original paper. In MCD,
min-max optimizing class discrepancy is a core procedure. First, the feature generator (G f )
is fixed to maximize discrepancy loss. Next, the two classifiers Gy1 and Gy2 are fixed to
minimize discrepancy loss. Such min-max optimization procedures are all towards target
samples, and source samples are only trained by the fault classifier’s cross entropy loss L.
The optimization details can be expressed as follows:

StepA : min
G f ,Gy1,Gy2

L(Ds, Ys)

StepB : min
Gy1,Gy2

L(Ds, Ys)− Lcd(Dt)

StepC : min
G f

Lcd(Dt)

(4)

Figure 3. The structure of the maximum classifier discrepancy model, where G f is the feature
extractor, and Gy1 and Gy2 are two classifiers.
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3. Proposed Method

For a more robust and positive transfer, this paper introduces two reweighting strate-
gies from two perspectives. First, adversarial loss is reweighted from the perspective of
each sample. Second, a balance between domain adaptation and discrimination is made
from the perspective of the whole dataset. In this section, the method, which mainly
consists of four parts, will be explained in detail.

3.1. Expanding MCD

Original MCD and much derived research achieve this idea using two classifiers [46].
However, in the final step, several methods may be used for eventually classifying target
samples. For example, several methods may use the best result between Gy1, Gy2. Several
methods may combine two classifiers’ probability outputs and compare the sum to identify
the final label. To remove such ambiguity, three classifiers are utilized, as shown in
Figure 4, where Gy is the main fault classifier; Gy1 and Gy2 are the two classifiers used only
for computing discrepancy loss. Discrepancy loss contains three parts, and the equation
below is our optimization objective:

min
θ f ,θy

max
θy1 ,θy2

Lcd(θ f , θy, θy1 , θy2)

=
1
nt
{‖Gy1(G f (xt

j))− Gy2(G f (xt
j))‖1

+ ‖Gy(G f (xt
j))− Gy1(G f (xt

j))‖1

+ ‖Gy(G f (xt
j))− Gy2(G f (xt

j))‖1)}

(5)

where G f , Gy, Gy1, Gy2 are the feature generator and three fault classifiers that can be
trained by the source domain data, respectively; θ f , θy, θy1, θy2 are their parameters; xt

j is
the target domain sample that is input into the model. In our model, Gy is used as the
main classifier. Fixing θ f and θy maximize the discrepancy between Gy1 and Gy2 in the
target domain, and the target data excluded by the support of the source can be detected.
Next, θy1 and θy2 are fixed and the discrepancy is minimized by training G f and Gy to learn
strong discriminating features.

Figure 4. The overall structure of proposed DRDA method. G f is feature generator, Gd is domain
discriminator, Gy, Gy1 and Gy2 are three fault classifiers. d is the domain label generated by Gd. y, y1

and y2 are class labels generated by Gy, Gy1 and Gy2 ,respectively.

3.2. Reweighted Adversarial Loss

In realistic domain adaptation scenarios, domain distributions that embody multi-
mode structures prone to negative transfer are always a great challenge. Previous studies
were aimed at finding excellent domain adaptation but rarely considered the role of each
sample. They assumed that all the samples have equal transferabilities and make equal
transfer contributions.
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To promote positive transfer, it should be noticed that the transferability of each
sample in the source domain or the target domain is different [47]. Different samples
do not align well at the same time, that is, several samples with strong transferability
may generate easily good transferable feature and have excellent performance in earlier
iterations, whereas others may be just the opposite. Therefore, introducing an effective
indicator to estimate such differences is needed. Inspired by information theory, entropy
can measure uncertainty [48], and a reweighting strategy is proposed in this work to
measure the degree of adaptation for each sample. The well-aligned samples obtain a lower
entropy, whereas the poorly-aligned samples always have a higher entropy.

In the domain adaptation process, poorly aligned or slowly aligned samples should be
given more attention. Hence, probability of a classifier is utilized to compute conditional
entropy and reweight the domain adversarial loss of each sample. The traditional domain
adversarial loss Lda can be extended as follows:

Lda(θ f , θd) = −
1
ns

∑
xs

i∈Ds

log(Gd(G f (xs
i )))−

1
nt

∑
xt

j∈Dt

log[1− Gd(G f (xt
j))] (6)

where Gd is the domain discriminator, and θd is its parameters. Joint with self-adaptive
weight, domain adversarial loss can be rewritten as follows:

Lda(θ f , θd) = −
1
ns

∑
xs

i∈Ds

ws
i · log(Gd(G f (xs

i )))−
1
nt

∑
xt

j∈Dt

wt
j · log[1− Gd(G f (xt

j))]

where ws
i = 1 +Hp(xs

i ) = 1−
c

∑
k=1

pk
xs

i
· log(pk

xs
i
)

wt
j = 1 +Hp(xt

j) = 1−
c

∑
k=1

pk
xt

j
· log(pk

xt
j
)

(7)

where ws
i is the weight of source sample xs

i and wt
j is the weight of target sample xt

j ; pk
xs

i
and

pk
xt

j
are the probabilities for each class k towards xs

i and xt
j , respectively, computed by the

main fault classifier Gy; andHp is the conditional information entropy. The larger Hp of a
sample means its worse adaptation performance in the current epoch of training. Therefore,
its corresponding weight ws

i or wt
j in domain adversarial training will be larger. Through

this mechanism of paying more attention to poorly aligned samples, the negative transfer
caused by samples with poor transferability could be effectively eliminated.

3.3. Balance Factor for Domain Adaptation and Class Discrimination

In the former section, two main approaches are introduced to solve the domain
adaptation problem. First, represented by a deep adversarial neural network (DANN),
such methods aim to pursue feature representations that make both domains align well,
and these common features can have a good transferability between domains. Second,
similar to MCD, such methods believe that features aligning well are not sufficient, and
obtaining excellent performance in the target domain task is the ultimate goal. For this
purpose, these methods try to find class-specific features, and this process is so-called class
discrimination.

Xiao et al. [44] proposed that the importance of two said items are different during
algorithm iteration. For example, in the beginning of algorithm training, domain adapta-
tion is more important than class discrimination. With an increase of training iterations,
domain-share features are learned better and the class discrimination should receive more
consideration. Inadequate and excessive domain adaptation or discriminant learning are
harmful to positive transfer. Thus, how to balance these two items dynamically matters.
It is well known that MMD is a good choice to measure the difference between two dis-



Machines 2022, 10, 245 9 of 20

tributions. Naturally, MMD is used in this work as an estimator to observe the degree of
adaptation between the two domains. MMD is defined as follows:

MMD(Ds, Dt) =‖
1
ns

∑
xi∈Ds

G f (xi; θ f )−
1
nt

∑
xj∈Dt

G f (xj; θ f )‖2
(8)

For class discrimination, J(w) based on linear discriminant analysis (LDA) [38] was
proposed to estimate this item. LDA’s optimization objective of conventional two-category
classification is defined as follows:

max
w

J(w) =
wTSbw
wTSww

(9)

where Sw is the intra-class scatter matrix, and Sb is the inter-class scatter matrix [49];
Sb indicates the mutual distance of clusters having different labels; and Sw shows the
compactness of data having the same labels. From this point, the class discrimination can
be well measured. Expanding this idea to multiclass learning problem, the corresponding
indicator is defined as follows:

max
W

J(W) =
tr(WTSbW)

tr(WTSwW)
(10)

The above discussion shows that MMD can depict the overall degree of domain
adaptation. It can be applied in transfer learning, and the J(w) can be used to measure the
feature’s degree of class discrimination. Combining these two items, a proper computation
for balance factor λ can be found. However, it should be noticed that J(W) and MMD(Ds, Dt)
may have different magnitudes, and normalization is necessary; M̃MD and J̃(W) are defined
as the corresponding normalized value:

M̃MD =
MMD(Ds, Dt)−MMD(Ds, Dt)min

MMD(Ds, Dt)max −MMD(Ds, Dt)min

J̃(W) =
J(W)− J(W)min

J(W)max − J(W)min

(11)

where M̃MD and J̃(W) are all located in interval [0,1]. The balance factor can be computed
as follows:

λ =
M̃MD

M̃MD + (1− J̃(W))
(12)

Notably, λ is the weight of domain adaptation loss, and 1− λ is the weight of class
discrimination loss. Thus, the loss after adding the balance factor for domain adaptation
and class discrimination is written as follows:

min
θ f ,θy

max
θd ,θy1 ,θy2

λ · Lda(θ f , θd) + (1− λ) · Lcd(θ f , θy, θy1 , θy2) (13)

A smaller M̃MD means better domain adaptation, and a larger 1− J̃(W) indicates
worse class discrimination. If domain adaptation is much better than class discrimination,
the M̃MD and J̃(W) can be very small and the corresponding λ is close to 0. If domain
adaptation is much worse than class discrimination, the M̃MD and J̃(W) will be close to
1 and λ approaches 1. If λ equals to 0.5, these two loss items have the same weight. The
factor λ can dynamically adjust the weight of loss items and effectively control excessive or
insufficient domain adaptation and class discrimination.
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3.4. Dynamical Reweighted Domain Adaptation (DRDA)

The concrete architecture of the proposed DRDA model can be seen in Figure 4.
According to the three parts, the overall optimization objective can be obtained:

min
θ f ,θy

max
θd ,θy1 ,θy2

Ly(Gy(G f (xs; θ f ); θy), ys) + λ · Lda(θ f , θd) + (1− λ) · Lcd(θ f , θy, θy1 , θy2 ) (14)

The first item is classifier cross-entropy loss, the second item is reweighted adversarial
loss (RAL), and the last item is class discrimination loss. The last two items multiply
their own balance factor. Through the dynamic reweight for adversarial loss and balance
factor to tune up the importance of domain adaptation and classifier training, our model
effectively avoids negative transfer phenomenon and obtains a robust end-to-end cross
domain bearing fault diagnosis system.

3.5. Training Steps

To obtain the optimal solution of the proposed model in the previous discussion, a
feature generator, three fault classifiers, and one domain discriminator need to be trained.
In the last subsection, the optimization objective was given, and how to solve this problem
in four steps will be shown next. The expression η is hyper parameters learning rate and in
the experiments, 0.01 or 0.001 is selected; λ is the balance factor. The concrete computing
method was given before, and only the detailed procedure of parameters updating will be
discussed here.

Step A :The main fault classifier Gy and feature generator G f are trained to make the
main fault classifier more discriminantive and to classify the source data correctly. The
network is trained to minimize the cross entropy loss Ly and update the parameters, θ f , θy:

θ f ← θ f − η ·
∂Ly

∂θ f

θy ← θy − η ·
∂Ly

∂θy

(15)

Step B :Re-weighted domain adversarial loss Lda is minimized. The feature generator
G f is fixed, and only the domain adversarial module Gd is trained. The parameters θd are
updated as follows:

θd ← θd − η · ∂Lda
∂θd

(16)

Step C : The feature generator G f is fixed, and three fault classifiers are trained
to increase the discrepancy, which means minimizing −Lcd. As MCD, the main fault
classifier’s cross entropy loss Ly is also added to −Lcd. Parameters θy, θy1 , and θy2 are
updated as follows:

θy ← θy − η · (
∂Ly

∂θy
− ∂Lcd

∂θy
)

θy1 ← θy1 + η · ∂Lcd
∂θy1

θy2 ← θy2 + η · ∂Lcd
∂θy2

(17)
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Step D : Finally, the balanced reweighted domain adversarial loss Lda and discrepancy
loss Lcd are optimized. In this step, fault classifiers Gy, Gy1 , Gy2 and domain adversarial
module Gd are fixed to update parameter θ f :

θ f ← θ f − η · (λ · ∂Lda
∂θ f

+ (1− λ) · ∂Lcd
∂θ f

) (18)

4. Experiments

The advantage of the proposed DRDA is demonstrated through evaluation experi-
ments on two cases: a bearing fault dataset from Case West Reserve University (CWRU) and
a rotor test dataset (RT). Various previous cross-domain diagnosis models are introduced
for a thorough comparison. The performance of the proposed method is compared with
the following cross-domain bearing fault diagnosis methods in previous studies: CNN
without domain adaptation, transfer component analysis (TCA), joint distribution analysis
(JDA), deep adversarial neural networks (DANN), fine-grained adversarial network-based
domain adaptation (FANDA), and maximum classifier discrepancy (MCD).

4.1. Cross-Location Diagnosis on CWRU Case

The bearing fault datasets from CWRU are available from its official website [50].
Bearings with faults are placed at either the fan end (FE) or the drive end (DE) in each test.
The bearing types at the FE and DE are SKF 6203-2RS and SKF 6205-2RS, respectively. The
parameters of the bearings at both ends are listed in Table 1.

Table 1. Parameters of bearings in CWRU case.

Location Bearing Type Ball Diameter Outside Diameter Inside Diameter Number of Balls

Drive End (DE) 6205-2RS 7.94 mm 52.00 mm 25.00 mm 9
Fan End (FE) 6203-2RS 6.75 mm 40.00 mm 17.00 mm 8

The bearing data samples are divided into four classes according to health status: outer
race fault (OF), inner race fault (IF), ball fault (BF), and health (H). These bearing faults are
all obtained by artificial processing. The frequency of the sampling instrument is 12 kHz,
and the depth of every fault is 0.007 inches. Specific working conditions corresponding to
each dataset are shown in Table 2.

Table 2. Description of experimental setting of CWRU case, which includes four categories and
four domains.

Faulty Type Ball Health Inner Race Outer Race Working Conditions

Damage Diameter (in.) 0.007 —– 0.007 0.007 —–
Class Label 0 1 2 3 —–
Domain A1 1000 1000 1000 1000 0 HP (1797 r/min)
Domain A2 1000 1000 1000 1000 3 HP (1730 r/min)
Domain B1 1000 1000 1000 1000 0 HP (1797 r/min)
Domain B2 1000 1000 1000 1000 3 HP (1730 r/min)

Data from A1 and A2 are collected from the bearing at the DE and their working
loads are 0 HP (1797 r/min) and 3 HP (1730 r/min), respectively. Similarly, B1 and B2 are
collected from the bearing at the FE and their working loads are also 0 HP (1797 r/min)
and 3 HP (1730 r/min), respectively. Every dataset has 4000 examples, and the data shape
of each time series example is 4096× 1. As shown in Figure 5 the CWRU case has four
cross-location diagnosis tasks, i.e., A1 → B1, B1 → A1, A2 → B2, B2 → A2. In each task, the
former is the source domain with labels and the latter is the target domain without labels.
The performance of each model is measured by the accuracy of fault predictions, which is
defined as follows:
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Accuracy =
Number o f correct predictions
Total number o f predictions

(19)

The diagnosis results of the four cross-location tasks are listed in Table 3. First,
as expected, the performance of CNN is the worst among all the models because the
distribution mismatch is not eliminated at all. The performance of CNN shows great
difference in two reversed tasks, in which the source and target domains correspond to
two identical datasets but the roles are reversed. For example, the diagnosis accuracy
reached 69% in the task A1 → B1, but this number is reduced to approximately 44% in the
corresponding reversed task B1 → A1, probably because of the large statistical distribution
discrepancy between the two domains. This situation is clearly improved in other domain
adaptation based models, and this confirms the necessity of domain adaptation in cross-
domain bearing fault diagnosis.

Figure 5. Cross-location bearing diagnosis tasks in CWRU case. Data samples with inner race faults
are used for illustration.

Table 3. Accuracy (%) of different models for CWRU case tasks.

CNN TCA JDA DANN FANDA MCD DRDA

A1 → B1 69.85 52.85 55.42 73.52 81.13 82.52 98.20
B1 → A1 44.70 48.60 49.72 78.93 83.30 83.15 84.33
A2 → B2 67.07 78.87 79.12 90.83 91.47 89.12 91.67
B2 → A2 75.83 61.85 62.05 82.63 83.30 83.30 85.15
Average 64.36 60.54 61.58 81.41 84.80 84.52 89.38

Second, the mean accuracy of the proposed method in this paper is 89.38%, which
outperforms that of all the comparison models. In addition, domain adaptation models
that align both marginal and conditional data distribution of the two domains perform
better than those that only align marginal distribution. The mean accuracy of FANDA
and JDA exceeds 84%, whereas for the DANN aligning marginal distribution only, the
mean accuracy is under 82%. The DANN utilizing adversarial domain adaptation performs
better than TCA utilizing MMD criterion. Moreover, MCD performs better than TCA, JDA,
and DANN due to the longer distance between the feature of each sample and the decision
boundary, and it performs slightly worse than FANDA, probably because of an insufficient
degree of domain adaptation.
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The confusion matrices of task A1 → B1 shown in Figure 6 are introduced to analyze
the results in more detail. The diagnosis accuracies of both FANDA and DANN are low,
and the classifiers learned from them are unable to identify ball fault (BF) and outer race
fault (OF) effectively. Part of the classification error of BF is corrected by MCD, whereas the
misclassification phenomenon of OF is still evident. As can be seen from the figure, the
proposed DRDA can accurately distinguish four kinds of bearing health status.

Figure 6. Confusion matrices for the task A1 → B1 in CWRU case: (a) TCA, (b) JDA, (c) CNN,
(d) DANN, (e) FANDA, (f) MCD, and (g) DRDA. The horizontal axis represents the predicted labels,
and the vertical axis represents the true labels.

4.2. Cross-Speed Diagnosis on RT Case

Another dataset is collected from a rotor test in a practical scenario [51], and the
schematic diagram of the test rig is shown in Figure 7. The power source of this rotor rig
is a three-phase induction motor. The motor is connected to a shaft that is supported by
a few bearings through a coupling. The bearings to be monitored are located at the right
end of the shaft, and radial loads are provided by a loaded device. The vibration sensor
for data collection is installed at point A. The bearing type in this diagnosis case is HRB
6010-2RZ (Harbin Bearing Manufacturing Co., Ltd., Harbin, China), and the related details
are shown in Table 4.
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Figure 7. The schematic diagram of the bearing test and sensor placement.

Table 4. Parameters of tested bearings in RT case.

Bearing Type Ball Diameter (mm) Outside Diameter (mm) Inside Diameter (mm) Number of Balls

HRB 6010-2RZ 9 80 50 13

Similarly, data samples are divided into four classes according to health status: outer
race fault (OF), inner race fault (IF), ball fault (BF), and health (H). Three kinds of faults are
processed manually by wire electrical discharge machining. As shown in Figure 8, the rota-
tional speed of the motor for domains C, D, and E is set to 3000, 5000, and 8000 revolutions
per minute (rpm) during the measurement, respectively. Every domain has 4000 samples,
and the data shape of each time series sample is 4096× 1. The frequency of the sampling
instrument is 65,536 Hz, and the load exerted on the shaft and bearings by the radial loaded
device is 2.0 kN. According to the said description, the details of RT case datasets are listed
in the Table 5.

Figure 8. Cross-speed bearing diagnosis tasks in RT case. Data samples with inner race faults are
used for illustration.

Table 5. Description of experimental setting on RT case, which includes four categories and three domains.

Faulty
Type Ball Health Inner Race Outer

Race
Radical

Load
Rotation
Speed

Class Label 0 1 2 3 —– —–
Domain C 1000 1000 1000 1000 2.0 kN 3000 r/min
Domain D 1000 1000 1000 1000 2.0 kN 5000 r/min
Domain E 1000 1000 1000 1000 2.0 kN 8000 r/min
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The designed RT case has six cross-domain diagnosis tasks in d, namely C → D,
D→ C, C→ E, E→ C, D→ E, E→ D, and their results are listed in Table 6.

Table 6. Accuracy (%) of different models for RT case tasks.

CNN TCA JDA DANN FANDA MCD DRDA

C→ D 51.82 26.55 27.05 99.05 99.77 99.95 100.00
D→ C 49.80 24.52 26.42 63.05 58.42 69.67 75.00
C→ E 49.58 22.08 24.45 81.95 97.90 99.72 100.00
E→ C 25.00 22.90 22.90 51.52 48.52 49.83 50.00
D→ E 52.00 40.15 43.62 97.75 99.85 100.00 100.00
E→ D 56.83 40.63 46.30 74.78 81.70 72.75 78.20

Average 47.51 29.47 31.79 78.02 81.06 82.00 83.87

Previous work in signal processing showed that the knowledge for fault diagnosis at
variable speeds becomes more difficult to extract [52]. Moreover, the excellent performance
of the proposed DRDA confirms that our model can robustly extract domain-invariant
features under cross-speed diagnosis scenarios. First, as listed in Table 6, the performance
of TCA and JDA degenerates more seriously than that of the other cross-domain diagnosis
models. Their accuracies are under 30% in most cross-speed scenarios. For example, TCA
and JDA only achieve an accuracy of 22.90% in the task of E→ C. In accordance with the
CWRU case, JDA performs slightly better than TCA in almost all tasks.

Second, the proposed DRDA performs better than other domain adaptation methods
in almost all tasks, with a mean accuracy of 83.87% and an accuracy of 100% in tasks C→ D,
C → E, and D → E. Similarly, FANDA based on marginal and conditional distribution
adaptation outperforms DANN in most tasks. In addition, the performances of almost
all methods in tasks with a high speed dataset as the source domain and a low speed
dataset as the target domain are unexpectedly much worse than those in reversed tasks
(with a low speed dataset as the source domain and a high speed dataset as the target
domain). For instance, the accuracies of FANDA, MCD, and DRDA are all above 95% in
task C→ E, whereas the numbers greatly reduce to approximately 50% in task E → C,
because samples obtained under the working condition of high rotating speed have more
noise, and extracting effective domain-invariant information for diagnosis is much more
difficult when high speed datasets are set as the source domain.

To demonstrate the effectiveness of the proposed DRDA method more intuitively, the
t-distributed stochastic neighbor embedding (t-SNE) technology [53] is utilized to visualize
features by mapping them into 2D space. The t-SNE visual renderings of all the models on
task D→ C are shown in Figure 9. TCA and JDA almost fail completely on this difficult
task in the RT case. CNN can only align a small part of the features with IF and OF. The
confusion between IF and OF is serious in both DANN and FANDA. The confusion between
IF and OF is remarkably improved in MCD, but the discrimination performance between
H and BF deteriorates sharply. It is shown in Figure 9(g) that the distribution boundary
of features from each class is tighter in DRDA, and the domain adaptation of features of
samples with H, IF, and OF is clearly improved. In addition, another F1 score metric is
also introduced to verify the effect of the proposed DRDA method in eliminating negative
transfer in difficult diagnosis tasks and improving the final diagnosis performance. The F1
score is defined as

F1 score =
2× precision× recall

precision + recall
(20)

where precision is the proportion of bearing samples given the correct label to all bearing
samples in the predicted class. Recall is the proportion of bearing samples given the correct
label to all bearing samples in the real class. The F1 score of four models that perform well
under the accuracy metric in A1 → B1 and D→ C tasks are shown in Table 7. As shown in
the table, the diagnosis performance of the proposed DRDA method is still obviously im-
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proved compared with other three methods under the F1 score metric. Moreover, compared
with the traditional DANN and FANDA methods based on domain adversarial learning,
the proposed DRDA has a greater improvement in diagnosis performance under the F1
score metric than under the accuracy metric.

Figure 9. The t-SNE features visualization of D → C task in RT case: (a) TCA features, (b)
JDA features, (c) CNN features, (d) DANN features, (e) FANDA features, (f) MCD features, and
(g) DRDA features.
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Table 7. F1 score (%) of DANN, FANDA, MCD, and DRDA in A1 → B1 and D→ C tasks.

DANN FANDA MCD DRDA

A1 → B1 73.00 80.92 81.63 98.19
D→ C 54.57 52.81 66.16 73.75

4.3. Ablation Study

The effects of the RAL and balance factor for domain adaptation and class discrimina-
tion on enhancing the diagnosis accuracy are analyzed through comparative experiments.
The performance of DRDA with or without RAL and balance factor on task E→ C in the
RT case is shown in Table 8. The diagnosis performance in this task is enhanced when
RAL strategy and balance factor or one of them is introduced. Furthermore, our RAL
strategy is introduced to the traditional DANN model. The performance of DANN with or
without RAL module on task B1 → A1 in the CWRU case and task D→ C in the RT case
are shown in Figure 10, where great improvement can be noticed. This finding shows that
the proposed RAL strategy can also promote positive transfer when used in other domain
adaptation methods based on adversarial training.

Table 8. Accuracy (%) of DRDA with or without RAL and balance factor on task E→ C in the RT case.

RAL Balance Factor Accuracy (%)

× × 47.17
X × 48.33
× X 49.85
X X 50.00

Figure 10. The performance of DANN and DANN with RAL on B1 → A1 task in the CWRU case
and D→ C task in RT case. The horizontal axis represents the training epochs, and the vertical axis
represents the diagnosis accuracy.

5. Conclusions

A novel domain adaptation method named DRDA for cross-domain bearing fault
is proposed in this paper. The negative transfer caused by samples with poor transfer-
ability in cross-domain bearing fault diagnosis is eliminated in DRDA by introducing
a reweighted adversarial loss strategy. The negative transfer caused by the imbalance
between the classifier training and the domain adaptation in cross-domain bearing fault
diagnosis is eliminated in the proposed method by constructing a powerful balance factor
λ. The performance of the DRDA measured by accuracy and F1 score are better than other
comparison methods in cross-location and cross-speed diagnosis tasks, as can be seen
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from Tables 3, 6 and 7. After eliminating the negative transfer caused by the imbalance
between the classifier training and domain adaptation, the percentage of samples correctly
classified by the DRDA method in each class has been improved, as can be seen from
the confusion matrix in Figure 6. The improvement of the DRDA in terms of marginal
alignment and conditional distribution alignment after eliminating the negative transfer
caused by samples with poor transferability is shown in the t-SNE features visualization
of Figure 9. In addition, the ablation study shows that the two modules proposed in this
article can still improve the diagnosis performance by eliminating negative transfer when
they are introduced into the diagnosis model separately. To sum up, sufficient compara-
tive experiments prove the feasibility and the superiority of the proposed novel domain
adaptation method for cross-domain bearing fault diagnosis.
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