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Abstract: Digital twin documents are expected to form a global network of digital twins, a “Dig-
ital Twin Web”, that allows the discovery and linking of digital twins with an approach similar
to the World Wide Web. Digital twin documents can be used to describe various aspects of machines
and their twins, such as physical properties, nameplate information, and communication interfaces.
Digital twin is also one of the core concepts of the fourth industrial revolution, aiming to make
factories more efficient through optimized control methods and seamless information flow, rendering
them “smart factories”. In this paper, we investigate how to utilize digital twin documents in smart
factory communication. We implemented a proof-of-concept simulation model of a smart factory
that allowed simulating three different control methods: centralized client-server, decentralized
client-server, and decentralized peer-to-peer. Digital twin documents were used to store the necessary
information for these control methods. We used Twinbase, an open-source server software, to host
the digital twin documents. Our analysis showed that decentralized peer-to-peer control was most
suitable for a smart factory because it allowed implementing the most advanced cooperation between
machines while still being scalable. The utilization of Twinbase allowed straightforward removal,
addition, and modification of entities in the factory.

Keywords: digital twin; smart factory; simulation; robot operating system; ROS; machine-to-machine
communication; architecture; client-server; peer-to-peer; P2P

1. Introduction

Smart factories are often seen as factories that can quickly adapt to the customers’
needs by offering customized production [1], detailed information of production times [2],
and conditions of the supply chain. Smart factories are designed digitally, and, thus,
their performance can be simulated [3] and evaluated before building actual plants [4].
In the 2010s, one of the megatrends was Industry 4.0, which connects smart factories
to networks and cloud-based services [5,6]. These services can use big data, data mining,
and artificial intelligence for many purposes, such as predictive maintenance [7], anomaly
detection [8], and other monitoring purposes. As smart factories are moving more and
more towards complicated cyber-physical systems [9], there is an increasing need for better
structural ways to build these systems.

Smart factories consist of machines that communicate with each other. In contrast
to legacy factories where machines need to be set up manually for each purpose, the ma-
chines of smart factories adapt to their tasks automatically. Human intervention is only
needed for innovative tasks, such as designing new machines and communication proce-
dures, and problem-solving in case of faulty operations or emergency situations emerging
in the factory. Mundane tasks such as setting up machines are becoming increasingly
automated.

This paradigm change is driven by globally increasing labor costs and requirements
for more flexible production. It is enabled by autonomous mobile robots and delivery

Machines 2022, 10, 225. https://doi.org/10.3390/machines10040225 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10040225
https://doi.org/10.3390/machines10040225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-8319-1903
https://orcid.org/0000-0002-3246-8199
https://orcid.org/0000-0003-3714-748X
https://orcid.org/0000-0003-2197-5969
https://orcid.org/0000-0001-9376-2386
https://doi.org/10.3390/machines10040225
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10040225?type=check_update&version=1


Machines 2022, 10, 225 2 of 13

vehicles. Autonomous machines need to be able to exchange information even if they
have never met before, similarly to people. At the beginning of the digital manufacturing
era, the factories were operated by a centralized computer system or by using simple
programmable logic controllers. Then came the Ethernet-based systems, which were
followed by cloud-based systems. Cloud-based systems made more decentralized systems
and services available [10,11].

Today, more and more machines, devices, and products have DTs (digital twins) [12]
that can be connected to smart factories and other systems [13]. DTs are seen as an essential
piece of smart factory infrastructure [14]. In the engineering domain, DTs have been used
as sophisticated simulation models connected to real data. These kinds of DTs help monitor
machines and predict their maintenance needs. To arrange communication, other types
of DTs are needed. For these information management-oriented DTs [15] standardization is
crucial so that they can understand each other: DTs need to be formatted in similar methods
and talk the same language. An information management-oriented DT aims to provide
access to the information stored in the DT.

To allow information flow between machines, their DTs need to talk the same lan-
guage. Machine-readable meanings of words can be communicated globally through
the use of vocabularies, such as SAREF [16], Schema.org [17], and GS1 Vocabulary [18].
(For the purposes of this article, vocabulary is the same as ontology.) These vocabularies are
formatted in JSON-LD and other Linked Data formats. We use the phrase “DT document”
(digital twin document) to refer to the general concept of a document written to describe
a DT. In a previous study, we created a draft specification for DT documents [19], but
now it seems that the general concept of a DT document is a more important outcome
than the presented specification. Nevertheless, the draft served as a good communication
method for concretizing the final goal, and the basic principles described in the paper
are still valid. There are also other specifications for writing DT documents such as Web
of Things Thing Description by World Wide Web Consortium [20], Digital Twins Definition
Language by Microsoft Azure [21], and Asset Administration Shell by Plattform Industrie
4.0 [22]. In this paper, we use our own DT document specification to be able to concentrate
on concepts instead of the format. In the long run, we aim to merge the different methods
into one general approach. To be useful, this general approach must achieve the position
of a standard or de facto standard. In the authors’ opinion, DT document specification
should be developed as a collaborative effort.

Digital Twin Web (DTW) is a network of digital twins formed by DT documents
that describes the contents of DTs and the relationships between the DTs [23]. This type
of network of interlinked DTs seems to be the next phase in the development of DTs.
DTW is analogous to the World Wide Web but consists of digital twins described in DT
documents instead of web pages described in hypertext markup language. As digital
twins are counterparts of real-world entities describing their properties and data, DTW
starts to mirror the real world and enable the discovery of its information interfaces.
When such a network has been built, it can be used in several ways. For example, DT
documents can provide access to product information from supply chains, manufacturing,
and maintenance to employees. This can be used to connect smart factories directly
to products and to alert factory workers when new products of spare parts are needed.

Twinbase is a server solution for managing and distributing DT documents developed by
the authors [24]. Twinbase is a combination of a traditional static web server connected to a Git
repository and additional custom features for managing DT documents. It can also be hosted
free-of-charge at GitHub Pages. In the current study, we used Twinbase to store DT documents
that define the basic properties of a simulated factory and entities of interest in that factory. The
source code of this Twinbase implementation and the DT documents are publicly available at
https://github.com/Zoelz/twinbase (accessed on 15 February 2022). In addition, the user
interface for this Twinbase is available at https://zoelz.github.io/twinbase/ (accessed on 15
February 2022).

https://github.com/Zoelz/twinbase
https://zoelz.github.io/twinbase/


Machines 2022, 10, 225 3 of 13

DT document-based M2M communication differs from traditional machine-to-machine
(M2M) communication by adding a metadata layer on top of the communication. In tradi-
tional M2M communication, each connection needs to be added manually by technicians
based on human-readable documentation. There are ways for devices to find other devices
using systems implemented within communication protocols, like inquiry messages used
in Bluetooth. The device will send the inquiry message in different frequencies so that other
devices that listen to those frequencies can contact it [25]. There are also build systems
such as the LWM2M Meta object, which contains a location for an XML file containing
information about the object [26].

Using DT documents, machines can initiate new connections automatically based
on the standardized interface descriptions found in the DT documents. This proposed
method of using DT documents fills a gap of making M2M communications more scal-
able and automated. The proposed method is investigated with well-known simulation
tools and a DT document distribution solution. The proposed method seems to enable
fundamentally novel architecture for factory M2M communication.

This paper investigates how the early versions of DTW and Twinbase could be used
to control a smart factory, as shown in Figure 1. We implemented a simulation model to com-
pare three types of control methods: centralized client-server, decentralized client-server,
and decentralized peer-to-peer. The source files of the simulation model can be accessed
from https://github.com/Zoelz/simulationModelControl (accessed on 15 February 2022).

The main contributions of the paper are as follows:

1. Method for using DT documents to enable machine-to-machine communication
in smart factory;

2. Implementation of a simulation environment of DT document-based M2M communi-
cations in factory with open-source software (Robot Operating System (ROS), Gazebo,
Python, and Twinbase);

3. Comparison of three different architectures for controlling a factory.

Figure 1. Overview of the factory operation and its DT documents. The gray arrows 1–4 show
the operating logic of the factory, i.e., unloading rolls, storing them in a warehouse, and maintaining
them on a grinding machine. Each object and the factory itself have corresponding DT documents that
are stored in Twinbase. The DT documents have parent–child relationships to enable the discovery
of other machines located in the factory.

https://github.com/Zoelz/simulationModelControl
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2. Methods

In order to test the general functionality of factory control and communication, we
established a high-level mission to move material in the factory. As the first step, our aim
was to receive an unfinished roll from the truck in the loading area. The second step was
for the crane to pick up the roll in the loading area and move it to the grinding machine.
The roll was ground and transported to the warehouse in the third step. In the final step,
the finished roll was made available for further use in the warehouse.

To examine the different control methods of a smart factory, we implemented a simula-
tion model using open-source software. The simulation model can be divided into operation
environment and control implementations. We implemented three types of communication
methods: centralized client-server, decentralized client-server, and decentralized P2P (peer-
to-peer). In the centralized implementation, all communication went through the same
central node compared to decentralized implementation with no central node. In this
paper, we use the term “system” when we refer to the whole simulation model, including
the operating environment and a certain control implementation.

The control implementations followed either a client-server or P2P model. In a client-
server model, nodes are either clients or servers. Client nodes contact servers that respond
to clients, thus, all communication is initiated by clients. In P2P implementations, all
the nodes are peers that can act as both clients and servers. P2P systems are described by
Milojicic et al. [27] as follows: “As a mind set, P2P is a system and/or application that
either (1) takes advantage of resources at the edge of the system or (2) supports direct
interaction among its users.”

Client-server and P2P models use the request-response communication method. Request-
response is a communication method in which one node sends a request to another node
that responds to it. An alternative for this method is the publish-subscribe model, in which
publishers send data to the event manager from which subscribers can then request the data they
want. The space decoupling, in which publishers do not know who is subscribing for the data
and the subscribers who are publishing the data, can be considered one of the main strengths
of the publish-subscribe model [28]. However, the request-response method is more suited
for control implementations than the publish-subscribe method because the arrival of a message
is acknowledged by the sender [29]. Therefore, we judged the request-response method as
being more reliable than the publish-subscribe method and used it in control implementations.
However, it is important to note that ROS, which was utilized to build the simulation model,
uses the publish-subscribe method in its internal communication.

2.1. Operating Environment

The operating environment represented the physical counterpart of the system.
This physical counterpart mimicked a part of a smart factory and it consisted of a crane,
a grinding machine, and a truck. The operating environment was created using Gazebo,
Gazebo OPC UA server bridge, and OPC UA servers, as seen in Figure 2. The operating envi-
ronment was not modified when the control implementation of the system was changed.

Gazebo was used as the physics engine and to visualize smart factory operations. Sim-
plified 3D models for machines were created to represent those machines in Gazebo. ROS
and “differential_drive_controller” package [30] were applied to control the machines. ROS
publish nodes were used to publish commands for the “differential_drive_controller” pack-
age and subscribe nodes to get data from machines in a Gazebo environment.
There were specified areas in the Gazebo environment: a warehouse, a loading area,
and a factory. These areas did not have 3D models, but instead, the control server and DT
document represented the warehouse in the simulations. The loading area and the factory
only had DT documents as they were merely static objects represented with fixed data. On
the contrary, the warehouse also included dynamic data: other entities could ask whether
the warehouse has space in it.
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Figure 2. OPC UA servers act as an API for the system in the operating environment, and Gazebo is
a physics engine and visualization for the system. Gazebo OPC UA server bridges transfer data between
an OPC UA server and Gazebo. The arrows indicate that the communication can be initiated and
data can flow in both ways.

OPC UA servers functioned as an API for communicating with machines from outside
of the operating environment. These servers allowed both giving commands to machines
and getting information from them. The OPC UA server of the crane followed the same
structure as its real-world counterpart, Ilmatar crane [31] OPC UA server. However, OPC
UA servers for other machines were not based on existing servers.

When machines contacted other machines, they contacted their control servers rather
than their OPC UA servers, as opening up OPC UA verification each time would have
taken eight messages before any data can be read or written [32]. Another reason to prefer
control server communication was the opportunity to run higher-level functions based
on given commands without adding extra nodes to the OPC UA servers. As an example
of a higher-level command for a machine, we could ask the crane to drive next to the truck,
which also requires finding the (constantly changing) location of the truck.

Gazebo OPC UA server bridge enabled communication between the OPC UA server
of a machine and Gazebo environment in Figure 2. These Gazebo OPC UA server bridges
represented PLC logic of the machines for OPC UA servers. Gazebo OPC UA server bridge
communicated with Gazebo using ROS publish and subscribe nodes. OPC UA binary over
TCP was utilized for communicating with OPC UA servers.

2.2. Controlling Implementations

In this paper, three control implementations were created: centralized client-server,
decentralized client-server, and decentralized P2P, defined at the beginning of this chapter.
All the control implementations were connected to the operating environment, including
Gazebo and OPC UA servers in Figure 3. Control servers communicated with the OPC UA
servers of the operating environment using OPC UA binary over TCP.
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Figure 3. Centralized client-server control implementation corresponds to the traditional way of im-
plementing factory communications. Twinbase use is voluntary in this architecture, and it can be
integrated to be a part of the client. The arrows indicate the direction in which communication can be
initiated, but data can still flow in both directions.

In the centralized client-server implementation, only one client controlled the sys-
tem. The client initiates all communication between machines and the client, as shown
by the arrows in Figure 3, although data flows both ways. There was no high-level em-
bedded intelligence in machines nor in the client. Instead, the implementation relied on
manual control.

In order to realize our high-level mission of moving material in the factory, the client
connects to Twinbase to get the IP address of the truck from the truck’s DT document.
After that, the client fetches the DT document of the loading area, reads the location
of the area from the document, and drives the truck to the location. Finally, the client
uses the factory DT document to find all entities located in a factory. This is possible since
these entities, which include both machines and non-physical objects like loading area,
are stored as a child of the factory in the document. Finally, the client sends commands
to the machines that are needed to process the roll.

Multiple clients control the system in the decentralized client-server implementation.
Each client is responsible for executing a part of the production process by controlling
machines. For example, getting an item from a warehouse, machining it, and then returning
it to a different warehouse. When a certain part of the process is finished, another client
is then responsible for performing the next part of the process. Clients can be spawned
as needed. Decentralized client-server control implementation does not have high-level
intelligence in the machines. Contrary to the centralized implementation, multiple nodes
control the decentralized system, as can be seen in Figures 3 and 4. These nodes cannot
communicate with each other . Instead, they can only send commands to machines and
Twinbase, which then execute these commands. Besides that, this system works similarly
to the centralized model.

In the decentralized P2P implementation (Figure 5), machines have intelligence, mean-
ing a capability to execute their part in high-level mission. These intelligent machines then
control the system. For example, the truck knew that it should bring the roll to the loading
area and find a machine to have the roll brought to a warehouse, and the grinding machine
knew to look for a new roll from the warehouse, find a machine to bring the roll to it, and
after getting the roll ready, finding a machine to put the finished roll to the warehouse.
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Figure 4. In the decentralized client-server control implementation, N number of clients together
control the factory by sending commands to machines, but the clients do not communicate with each
other. The arrows indicate the direction in which communication can be initiated, but data can still
flow in both directions.

Figure 5. In the decentralized P2P control implementation, machines control the factory by commu-
nicating with each other. The arrows indicate the direction in which communication can be initiated,
but data can still flow in both directions.

Twinbase, hosted in GitHub, was used to host DT documents. In all the implemen-
tations, the controlling unit or units requested necessary DT documents from the Twin-
base for static information such as an IP address or available commands. On the other
hand, the controlling unit requested dynamic information from OPC UA servers or control
servers. Dynamic information contained, for example, the status of a machine or its location.
Section 3.2 presents details on information available within the DT document.

3. Results
3.1. Control Implementations

The comparison of control implementation is presented in Table 1. In the centralized
implementation, metadata can also be stored directly to the client. However, this makes the
replacement of a client, for example, in case of maintenance, more challenging compared
to storing data into Twinbase. When replacing the client while using Twinbase, a new
client can fetch data from Twinbase. In the two decentralized implementations, Twinbase is
always needed, or otherwise each controlling unit would need to duplicate all data stored



Machines 2022, 10, 225 8 of 13

in Twinbase. Keeping this information up to date when machines are added, removed,
replaced, or maintained, is virtually impossible.

Table 1. Comparison of advantages and disadvantages of different implementations. Adopted
from [33].

Centralized Client-Server Decentralized Client-Server Decentralized P2P

Twinbase Beneficial Needed Needed

Control server representing warehouse Not required Required Required

Scalability Poor Good Good

Robust Poor Decent Decent

Changing production Good Decent Bad

Complex production algorithms Client Client Peer (client & server)

Implementing production algorithm Decent Poor Good

The centralized client-server model does not require a program presenting a control
server for the warehouse, unlike the two decentralized models. This is because there is only
one node that can contact a warehouse and, thus, all data can be saved within the client.
Although, using a control server for a warehouse in a centralized model allows easier
replacing of the central client.

The centralized implementation has worse scalability than the other two implementa-
tions, as it is possible to use only one client that controls everything. In the decentralized
client-server implementation, each client only controls the machines it needs for that part
of the production, reducing the connections. In the decentralized P2P implementation,
each node only needs to contact other nodes in the same space, reducing the connections
per peer.

Because only one entity controls the centralized implementation, it is not very robust.
The other two control implementations use Twinbase, a centralized system, which reduces
the robustness. However, robustness can be increased by having a backup Twinbase or
using cache.

Changing production is very simple in the centralized implementation, as only one
client is needed to be changed. Because in the decentralized client-server implementation
a new client is spawned to handle each portion of the production, current clients are
not needed to be modified. In the P2P implementation, changing production is the most
laborious, as it might require making changes to multiple peers.

Complex production algorithms in client-server implementations have to be imple-
mented within the clients. This is because machines are servers, unlike in the P2P im-
plementations where they are peers, thus cannot send any requests. Because of this,
for example, when machines are moving, they cannot get the location of other machines
to avoid collisions. Implementing algorithms is the most complex task in the decentralized
client-server system, as clients cannot communicate with each other, and multiple clients
control the system. On the other hand, implementing a production algorithm is a bit
simpler in a centralized implementation, as only one entity controls the whole system
and therefore needs to know the location for all the machines. Finally, implementing
a production algorithm is most straightforward in the P2P implementation as each machine
can control itself and get the location of other machines.

3.2. Digital Twin Document

Twinbase hosted DT documents in each implemented system. These documents
contained various information, such as the name of the entity they represented, description
of it, and its functionalities. The required information is shown in Table 2. The description
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of the required fields is below. The DT documents used in this paper are listed in Table 3.
These documents can be accessed by clicking the DTID (Digital Twin Identifier)

Table 2. Table of variables in a DT document and their descriptions.

Variable Description

DTID Digital Twin Identifier: URL that redirects to a DT document.

IP address Control servers IP address.

Location Location for stationary objects.

Type Type of the entity. For example, “Transport 3D” for the crane.

Parent DTID for the parent if it exists.

Children DTIDs for its children in DTW.

Functions List of possible paths for control server with possible parameters.

Table 3. List of names and descriptions for entities that have a DT document and links to those DT
documents. DT documents used in this paper can be found using their DTIDs, which are URLs,
from this table. All DT documents can be read at https://zoelz.github.io/twinbase/ (accessed on 15
February 2022).

Name Description
DTID

Factory
Area in which all other entities are located.

https://dtid.org/d1816959-8a88-40b1-9bfd-8a670b629083
(accessed on 15 February 2022)

Warehouse 1
Area where rolls can be stored.

https://dtid.org/59319824-39d9-423b-b6de-616047063152
(accessed on 15 February 2022)

Loading area 1
Area for loading and unloading trucks.

https://dtid.org/7606d2f2-2592-4073-a64b-de66c10ea585
(accessed on 15 February 2022)

Ilmatar Crane
Crane for moving objects in the factory.

https://dtid.org/a346d686-fa08-4eab-86b7-1e5367d46e98
(accessed on 15 February 2022)

Truck 1
Truck for moving objects to the factory.

https://dtid.org/dde9d093-05bd-4512-8a23-1241e8809612
(accessed on 15 February 2022)

Grinding machine 1
Grinding machine that is used to grind rolls.

https://dtid.org/3f31bdc2-1398-497f-be7d-3386a79523a6
(accessed on 15 February 2022)

DTID is used to identify and access DTs and their DT documents.
IP address is required to contact control servers.
Location for static objects. This could also be saved within objects’ OPC UA servers

or control servers, but this would require additional messages to get that information
compared to having that information saved in Twinbase.

Type of entity, so that the controlling unit can choose an entity of the needed type.
Type is required in automated systems, so the controlling unit knows which entity they
should use and what each entity is capable of doing.

DTIDs for parent and children DTs. Listing parent DTs allows finding the environ-
ment in which the machine operates. The parent’s children can be used to fetch other en-
tities, such as machines, in the same environment. Children of a machine can also represent
its subcomponents.

https://zoelz.github.io/twinbase/
https://dtid.org/d1816959-8a88-40b1-9bfd-8a670b629083/
https://dtid.org/59319824-39d9-423b-b6de-616047063152/
https://dtid.org/7606d2f2-2592-4073-a64b-de66c10ea585/
https://dtid.org/a346d686-fa08-4eab-86b7-1e5367d46e98/
https://dtid.org/dde9d093-05bd-4512-8a23-1241e8809612/
https://dtid.org/3f31bdc2-1398-497f-be7d-3386a79523a6/
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Functions provided by DT. This allows the controlling unit to find functions it can
call and their parameters. Functions should have standardized names and functionality.
Similar machines should have the same functions with the same parameters so that when
a system is automatized, the controlling entity only needs to find a machine with the right
type and check that the correct function exists for it.

3.3. Twinbase in Practice

Figure 6 demonstrates the usages of Twinbase in practice. The first client requests the DT
document for the loading area from Twinbase. After that, the client gets the loading area’s
location from DT documents and sends this as a target value for the truck’s drive function.
After the truck arrives at the loading area client requests from Twinbase the DT document
for the parent of the loading area using the parent’s DTID in the loading area’s DT document.
Using this parent’s DT document, which is the factory, the client gets all of its childrens’ DTIDs
and requests DT documents for them. From these DT documents, the client looks for a transport
type of machine, and when it finds one, it commands it to drive to the loading area and pick up
the roll from the truck. In this description, it was assumed that the client knew the information
from the DT document of the truck beforehand.

Figure 6. Practical example of applying Twinbase to find entities in the same operating area.

4. Discussion

This paper used DT documents to enable the control of machines in a smart fac-
tory, and three types of control methods, P2P, centralized client-server, and decentralized
client-server, were investigated more carefully. To examine these control methods, we
created a proof-of-concept simulation model using ROS and Gazebo. The simulation model
and qualitative analysis showed that the P2P control model offers the most flexible way
of implementing control in a smart factory. Flexibility is seen as one of the main goals
for the production management in Industry 4.0. The P2P control model allows each machine
to communicate with all the other machines and allows self-organization of production.
This paper opens discussion on how control of machines could benefit from digital twins
and how machines should be controlled in a smart factory.
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4.1. Communication Methods in Smart Factory

Each machine in the simulation model had an OPC UA server that mimicked the func-
tionalities of the real OPC UA server of the machine. Therefore, by only changing
the IP addresses of the OPC UA servers, the developed control methods can be applied
to a real factory. OPC UA servers are becoming the standard solution to communicate
with machines and their PLC systems: An OPC UA server allows reading the internal
sensor values of the machine, and sending control commands to it. In this paper, a control
server that accepted HTTP requests was implemented on top of each OPC UA server.
This enables interoperability with almost any device since HTTP is the most widely used
Internet protocol. Based on the simulation model and feature comparison of different
control models, the distinguishing factors of the control methods are flexibility, scalability,
and where the production algorithms are implemented. We also noted that implementing
production algorithm and self-adapting systems is easier with the P2P control model.

4.2. DT Document as an Enabler for Control in Smart Factory

This paper follows the information-oriented view on digital twins [15]. In this view,
the most important functionality of a digital twin is to make the information from the real-
world entity available. To make information available, the information sources and digital
twin metadata are described with a DT document. The goal of the DT document is
to provide information on how to access all information of the machine. This information
also includes the communication interfaces and the supported communication methods.

In this paper, the DT document was the central element that allowed communica-
tion between the machines. The machines used the DT document to find the variables
of other machines shown in Table 2. These variables contain information, such as IP ad-
dress, location, type and relations between machines. Use of DT documents ensures that
the most recent information is available to all entities. The only control model that does
not necessarily need DT documents is the centralized client-server model. In this method,
the information of the machines is stored to a centralized database of the centralized
control unit.

The need to describe a machine and its capabilities, is also recognized by large com-
panies and associations. Examples of standardization efforts towards unified digital twin
description include: World Wide Web Consortium Web of Things Thing Description, Mi-
crosoft Digital Twin Definition Language, and Asset Administration Shell. In this paper,
the DT document, first introduced in our previous paper [19], was used to describe the dig-
ital twin. Nevertheless, we are carefully following the development of the other standards,
and may adopt these standards in the future.

4.3. Future Work

The next phase in the development of DTs is the standardization of their descriptions
using DT documents. In the best-case scenario, there is only one dominating DT standard
in the future. Another major step in the development of DTs will be the network of DTs.
DTW is required to make digital twins discoverable and accessible. In the future, similar
search engines such as Google, could also be developed on top of DTW.

Finally, the simulation model should be modified to represent a whole smart factory
with a real production process. Currently, the model only represents an artificial subtask
of a larger production process in which a roll is ground. Based our preliminary tests our
operating environment can be scaled and also be used simulating larger tasks, but if it is
not able to be scaled it can be replaced for instance with the Rviz as it is a visualization
tool, unlike Gazebo, which has a physics engine included. Although, the visualization
of the simulation could be improved with Unity, which we are currently researching. After
improving the simulation model, measurements could be performed using the model
to support the qualitative analysis of control methods in this paper.
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5. Conclusions

This paper investigated different methods to implement the control of machines us-
ing DT documents and their distribution service, Twinbase. A DT document provides
up-to-date description of the features and interfaces of cyber-physical entities, e.g., ma-
chines, to all stakeholders in a smart factory. Via these interfaces, the cyber-physical entities
can communicate with each other. For the investigation of control methods, a ROS and
Gazebo based proof-of-concept simulation model of a smart factory was created. This
model is freely available on Github (https://github.com/Zoelz/simulationModelControl,
accessed on 15 February 2022). The proof-of-concept simulation showed that P2P commu-
nication allows maximal flexibility when implementing communication between machines.

The paper shows that creating a network of DTs—called Digital Twin Web or DTW—is
beneficial for the creation of self-adapting smart factories. DTW allows distribution and
discoverability of DT documents analogously to the early World Wide Web that allowed
accessing (hyper-)text documents. Storing DT information in an easily accessible form is
a necessity for the wide adoption of digital twins in smart factories and enables the control
of machines. Future work includes scaling the simulation model up and continuing
the standardization efforts of the unified description of digital twins.
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