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Abstract: A speed-sensorless state-feedback controller for induction machines (IMs) with LC filter
is proposed. The speed and state estimation is based on a speed-adaptive observer, requiring only
the measurement of the filter input currents. The motor currents are controlled by a state-feedback
controller with prefilter and integral control action, in order to achieve fast and asymptotic set point
tracking. Observer and controller gains are calculated offline using linear quadratic regulator (LQR)
theory and updated online (gain-scheduling) in order to attain stability and improve controller
performance in the whole operation range. Implementation aspects, such as discretization of the
control system and reduction of computational effort, are taken into account as well. The proposed
control scheme is validated by simulations and experimental results, even for critical operating
conditions such as speed zero-crossings. It is shown that the overall control system performs very
well under various load- and speed conditions; while its tuning remains simple which makes it
attractive for industrial application such as geothermal electric submersible pumping (ESP) systems.

Keywords: sensorless control; state-feedback control; adaptive observer; induction machine; LC
filter; sine filter; output filter; medium voltage drive; gain scheduling

1. Introduction

In medium-voltage (MV) variable-speed drive applications with long power cables
such as geothermal electrical submersible pumping (ESP) systems [1], an inverter output
(load) LC filter is often employed between voltage source inverter (VSI) and induction
machine (IM) as to (i) decrease voltage deflection at the motor terminals, due to impedance
imbalance between the cable and the motor, and to (ii) reduce steep voltage slopes which
might damage the motor insulation and bearings due to high capacitive discharge [2–4].
However, the additional hardware comes at cost of electric coupling between the filter
and motor currents and voltages, respectively, which in turn complicates the design of
the control system. Although the filter capacitance Cf and inductance Lf are typically
selected such that the resonance frequency ωR1 = 1/

√
CfLf is located in the frequency band

between the rated fundamental frequency and the inverter switching frequency [2], the
filter capacitance may lead to self-excitation of the induction machine within the operational
frequency band [1].

Figure 1 shows magnitude and phase plots (assuming constant slip conditions) of
the transfer functions from the filter output voltage uf to the filter current if and stator
current is, respectively. It can be seen that, in the no load case, the filter current (providing
reactive power only) is heavily damped near ωp = 0.78 p.u., which corresponds to the
self-excitation frequency ωR2 = 1/

√
CfLs, i.e., the frequency at which reactive power is

mainly exchanged between the stator inductance and the filter capacitance. Moreover, the
resonance peak is identified at ωR1 = 10.24 p.u., which corresponds to its designed value.
It can be deduced from the phase plot that the filter load changes from a slightly inductive
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load to a predominantly capacative load in-between the two resonant peaks, while the
machine load remains inductive until the filter resonant frequency is reached. In conclusion,
the LC filter has a strong impact on the dynamics of the filter current and, thus, requires
consideration in the control system. The cable, on the other hand, may be neglected in the
control design, since its impact is negligible due to the LC filter, except for the resistive part
which may be added to the stator resistance of the IM [1].
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Figure 1. Magnitude (a) and phase (b) plots for transfer functions G1(s) =
if(s)
uf(s)

(blue) and G2(s) =
if(s)
uf(s)

(red), assuming constant slip (i.e., ωp −ωr = const.). Plotted for different loads, i.e., line styles
solid, dashed and dotted refer to no-load, half rated load and rated load conditions, respectively.

Regarding the control of IMs with LC filter, typically a system of cascaded propor-
tional-integral (PI) or dead-beat controllers is proposed [5–9]. These controllers, however,
require individual tuning based on heuristic tuning rules, which may be tedious and non-
intuitive. Among the few publications further incorporating a speed-sensorless approach
(i.e., [6,7,9]), the contribution of [6] stands out due to its minimal requirements on the
measurement system, extensive stability analysis and provision of experimental results
for all critical operation regimes. The method extends the (IM only) adaptive observer
presented in [10] to the given electrical drive system of IM and LC filter. However, it has
not been revisited ever since.

As for the standalone IM case (without LC filter), observer-based speed-sensorless
control can be considered a mature research topic, which was constantly developed since
it first appeared in the early nineties [11]. Ever after, main research focus has been on
stabilizing the observer in the whole operation range, in particular in the low-speed
regeneration mode (e.g., [10,12–17]). Recent developments of observer-based approaches
are found in [18–25], including extended Kalman filter (EKF) and sliding mode observer
(SMO) approaches. However, it is pointed out in [26], that in order to achieve so-called
complete stability [27] (i.e., stable operation in all operation regimes except DC excitation) an
analytical selection of the observer gains is essential.

The problem arises when trying to transfer the recent results from the IM only case
to the extended case of IM with LC filter because the extended setup is of higher order
making an analytical gain selection infeasible.

In order to circumvent the problem of manual tuning of the the full-state observer, a
programmatic tuning approach is chosen in this work, i.e., by applying the well-known
linear-quadratic regulator (LQR) method from optimal control theory. In order to account
for the varying speed and load, gain-scheduled FSO implementation is performed. More-
over, tuning guidelines for the choice of the weighting matrices are provided, resulting
in one single design parameter for the observer only. The speed adaption gains on the
other hand are selected based on a linearization analysis. Additional means to stabilize the
system in the low-speed regime—i.e., (i) a stator resistance adaption at low speeds, (ii) an
inverter output correction (both based on [18], which is for IMs without LC filter, though)
and (iii) fast observer sampling (twice per switching period)—are implemented.
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As for the control system, the concept of cascaded PI controllers is replaced by a
single gain-scheduled state-feedback controller (SFC), providing a unified framework
for tuning and to control all system states at once. In addition, set-point tracking for
the stator currents is achieved by employing a prefilter and integral control action. The
feedback gains are likewise tuned using the LQR approach with heuristic guesses for the
weighting matrices, leaving a total of solely three design parameters in contrast to several
tuning parameters if conventional cascaded controller structures are utilized. Moreover,
the inverter delay is considered in the SFC by means of two additional system states. Speed
and flux, respectively, are controlled by outer PI controllers, which provide the current
references for the underlying SFC.

The theoretical results are validated by comprehensive simulation and experimental
results, showing a good overall match of simulations and measurements and that an
excellent, robust and similar control performance as in [6] is achieved while implementation
and tuning is simpler and unified.

The contributions of this work can be summarized as follows:

• a generic discretization framework for simple system and observer discretization and
implementation;

• a novel LQR-based and gain-scheduled state-feedback controller (SCF) with solely
three tuning parameters;

• a novel LQR-based and gain-scheduled full-state observer (FSO) with solely one
tuning parameter; and

• comprehensive simulation and measurement results validating the proposed control
system as simple, effective and robust alternative to available approaches in literature
in the whole speed and torque range.

The outline of the remainder of the paper is illustrated in Figure 2 as overview block
diagram of the complete system consisting of physical system [ ] (see Section 2), the
observer system [ ] (see Section 3) and the control system [ ] (see Section 4). The
proposed overall control system including FSO, SFC and outer speed/torque controller
is implemented and validated by simulations and measurements in Section 5. Section 6
summarizes the results of this paper and gives a short conclusion.

Software (DSP)
Hardware

PHYSICAL SYSTEM

CONTROL SYSTEM OBSERVER SYSTEM
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Figure 2. Components of the electrical drive system comprising power electronics, LC-filter and
induction machine.
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2. Description and State Space Model of Physical System

The complete electrical drive system is depicted in the upper part of Figure 2 (physical
system). However, only the following components are considered in the drive model:

(i) Voltage source inverter (VSI),
(ii) inverter output filter (LC filter) and
(iii) three-phase squirrel-cage induction machine (IM).

The VSI produces modulated phase voltages uabc
f := (ua

f , ub
f , uc

f )
> at its ouput terminals

(according to the implemented modulation scheme). The phase currents iabc
f := (ia

f , ib
f , ic

f )
>

flow from the inverter output to the LC filter input. The LC filter output is in turn connected
to the machine terminals. The (filtered) stator voltages uabc

s := (ua
s , ub

s , uc
s)
> drive the stator

currents iabc
s := (ia

s , ib
s , ic

s)
>. Due to magnetic coupling between stator and rotor of the

machine, the induced voltages in the rotor windings (cage) produce currents resulting in
the rotor flux linkage ψabc

r := (ψa
r , ψb

r , ψc
r)
>. The IM rotates at mechanical angular velocity

ωm, which is proportional to the electrical angular velocity ωr = npωm with number np of
IM pole pairs. The produced electromagnetic torque is denoted by mm (load torque ml and
friction torque mf act against mm).

In Figure 2, all electrical quantities of the real system (upper part) are given in three-
phase abc-coordinates. However, the modeling and control (lower part) will be conducted
using space vector notation in the rotating dq-reference frame which is aligned with the rotor
flux linkage (details are omitted), i.e., applying Clarke and Park transformation to all quanti-
ties above leading to xdq := TP

(
φp
)−1xαβ := TP

(
φp
)−1TCxabc with x ∈ {us, uf, ir, is, ψr, . . . }

(for details see [28] [Chapter 14]). Hence, the dq-reference frame rotates at synchronous
speed ωp and is displaced by the angle φp from the stationary αβ-reference frame.

The following assumptions (An) are imposed on the system:

(A1) Magnetic saturation is negligible and flux linkages depend linearly on the currents,
i.e.,

ψ
dq
r = Lmidq

s + Lri
dq
r

ψ
dq
s = Lsidq

s + Lmidq
r

}
(1)

(A2) Quasi-constant speed: The mechanical system is significantly slower than the electrical
system and, hence, ωm can be considered a slowly time-varying parameter.

(A3) Quasi-constant load: The load torque ml is a slowly varying disturbance and, hence,
the synchronous speed ωp becomes a slowly time-varying parameter, too.

(A4) Measured quantities: Only dc link voltage udc and filter (input) currents iabc
f are

measured and available for feedback.

2.1. Continuous-Time (CT) System Description

Based on Assumptions (A1)–(A4), the dynamics of IM and LC filter can be derived in
the rotating dq-reference frame as (see [1])

d
dt xdq

x (t) = Ax→x(t)xdq
x (t) + Bxudq

f (t),

ydq(t) = Cxdq
x (t) (= idq

f )

 (2)

where xdq
x := (idq

f

>
, udq

s
>

, idq
s
>

, ψ
dq
r
>
)> ∈ R8 and ydq = idq

f

>
are the system state vector

and output, resp., and
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Ax→x(t) :=


− 1

Tf
I2 − 1

Lf
I2 02×2 02×2

1
Cf

I2 02×2 − 1
Cf

I2 02×2

02×2
1

σLs
I2 − 1

T̃s
I2 − 1

L̃m
(ωr(t)J − 1

Tr
I2)

02×2 02×2
Lm
Tr

I2 ωr(t)J − 1
Tr

I2

−ωp(t)J8,

Bx :=
[

1
Lf

I2 02×2 02×2 02×2

]>
,

C :=
[
I2 02×2 02×2 02×2

]
,


(3)

denote the system matrix (Ax→x ∈ R8×8), input matrix (Bx ∈ R2×8), output matrix (C ∈
R2×8), resp., and J8 ∈ R8×8 is a block matrix with J :=

[ 0 −1
1 0

]
matrices as block diagonal

elements. The subscript x→x of the system matrix indicates that states x act on states
x, whereas e.g., u→x means that inputs u act on states x (will be used later). Moreover,
Tf := Lf

Rf1
, T̃s := σLs

Rs
and Tr := Lr

Rr
are the filter, stator and rotor time constants; Lf, Cf and Rf

are the filter inductance, capacitance and series resistance; Ls := Lm + Lsσ, Lr := Lm + Lrσ,
Lm, Lsσ and Lrσ are the stator and rotor self inductances, the main inductance and the stator
and rotor leakage inductances; σ := 1− L2

m
LsLr

is the leakage coefficient; Rs and Rr are the
stator and rotor resistances and L̃m := σLsLr

Lm
is an auxiliary inductance term (for details,

see [1]).

2.2. Generic Discrete-Time (DT) System Description

Since low switching frequencies are used in medium-voltage applications, observer
and controller design in the discrete domain is mandatory and yields a better and more
robust implementation. Assuming a zero-order hold (ZOH) input and sampling time tS,
the discrete time system is given by

xdq
x (k + 1) = Ax→x(k)xdq

x (k) +Bx(k)u
dq
f (k),

ydq(k) = Cxdq
x (k)

 (4)

with k ∈ N and discrete system matrices

Ax→x(k) ≈ I8 +

=:SN(k)︷ ︸︸ ︷(
N

∑
i=1

ti
S
i! Ax→x(k tS)

i−1

)
Ax→x(k tS)

Bx(k)
ZOH
:= ≈ SN(k)Bx

C := C.


(5)

Calculation of the exact matrix exponential requires N = ∞, which is typically approx-
imated by chosing a finite value for N. Moreover, by introducing the matrix SN , calculating
the inverse of Ax→x(ktS) is circumvented. Note that N = 1 yields the simple forward
Euler discretization method, which is known to cause stability issues at lower sampling
frequencies. Therefore, it is recommended to chose N ≥ 2.

3. Observer System

The observer system is depicted in the bottom right part of Figure 2 and combines
various subcomponents, which each contribute to reproducing the actual system state.
Given the low switching frequencies in medium-voltage (MV) drives, the observer is
sampled at a higher rate 1/to, using buffered measurements of the filter currents and
reconstructed mean voltages.
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3.1. Oversampling and Voltage Reconstruction

Eventhough typical switching frequencies fc for MV drive applications do not exceed
1 kHz, the analog-to-digital conversion (ADC) sampling rate fo = M fc can be chosen
higher, with M ∈ N denoting the oversampling factor. The ADC results are stored in a
buffer of size M, i.e., , for example, the filter current buffer iabc

f,buf ∈ R3×M and the DC link
voltage buffer udc,buf ∈ R1×M, and emptied upon control routine excecution. Using the
filled measurement buffers, the observer routine can be executed retroactively in a loop,
with the final result representing the predicted states for the current time instant. Naturally,
the loop execution requires more computation time than a single observer step, which is
acceptable, though, due to the low switching frequency. Since the inverter output voltage
udq

f is not measured, it must be reconstructed with the same resolution as the measurements.
The voltage reconstruction is illustrated in Figure 3. In this paper, symmetrical pulse-

width modulation (PWM) with execution of the controller interrupt routine ctr() at the
end of each switching period is employed, which gives an output delay of tdt = tc (time
between calculation of the next control step and the PWM update upd()). This way, using
the previous voltage command, the voltage waveform over the interval spanning from
the actual to the next control step, can be reconstructed. This interval of length tc is
subdivided into M time windows, for which the mean voltages are calculated and stored in
the voltage buffer uabc

f,buf ∈ R3×M. Moreover, the sample-and-hold event s/h() is triggered
for each window, such that the corresponding current and dc link voltage measurements
are available. Knowledge of the modulation scheme (e.g., space vector modulation) and
(buffered) measurements for udc allow to compute the mean voltages for each subinterval
yielding precise inputs for the observer.

0 0.5 1 1.5 2
0

2
3 udc

E ctr()

E s/h()

tc
totdt

actual
mean

E s/h()
E upd()
E s/h() E s/h()

Time / tc

Ph
as

e
vo

lt
ag

e
/

V

Figure 3. Exemplary voltage reconstruction of the partial mean voltages for oversampling factor
M = 4 (Please note that M = 2 is often the best compromise from practical point of view).

3.2. Luenberger Observer with Gain-Scheduling

Assuming perfect parameter knowledge—except for the mechanical speed ωr— the
discrete-time Luenberger observer is given by

x̂dq
x (k + 1) = Âx→x(k)x̂dq

x (k) + B̂x(k)u
dq
f + L̂(k)Cedq

x (k)

ŷdq(k) = C x̂dq
x (k),

 (6)

with observed states x̂dq
x ∈ R8, outputs ŷdq ∈ R2, state error edq

x := ydq − ŷdq ∈ R8 and
(estimated) speed-dependent discrete system, input and observer gain matrices Âx→x ∈
R8×8, B̂x ∈ R8×2 and L̂ ∈ R8×2, respectively. The observer has two inputs, namely the
inverter output voltage udq

f and the state error edq
x . Since the angular velocity ωr is not

measured, the observer system matrix depends on the speed estimate ω̂r, which in turn
propagates into the input matrix due to the discretization (only for N > 1). Note that the
sampling time tS for the calculation of the discrete-time system matrices in (6) according
to (5) is selected as to for the observer.
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Most publications dealing with speed-adaptive observers for induction machines
focus on the selection of feedback gains by pole placement, in order to achieve stable
operation over a wide operation range (see e.g., [17,29]). In this paper, a programmatic
approach is chosen, which is based on the well-known linear quadratic regulator (LQR) theory,
in combination with the concept of gain-scheduling as to account for the time-varying
parameters ωp and ω̂r. It can be shown that for sufficiently large N (discretization order)
and small sampling time to, the error difference can be approximated as

edq
x (k + 1) ≈ (Ax→x(k)−LC)edq

x (k)− to Ã(k)x̂dq
x (k), (7)

where

Ã := Ax→x − Âx→x =


02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 − 1

L̃m
J

02×2 02×2 02×2 J

eωr (8)

and eωr := ωr − ω̂r is the speed estimation error. Details on the derivation can be provided
by the authors upon request.

For the feedback gain calculation, a zero speed-estimation error is assumed, i.e.,
eωr = 0. The objective is to find a feedback gain matrix L, such that the error difference is
asympotically stable, and, hence, the state error converges to zero (i.e., all eigenvalues are
located inside the unit circle of the complex plane). Since the eigenvalues of (Ax→x −LC)
are equal to the eigenvalues of its transpose (Ax→x −LC)> (dual system), finding the
optimal observer gain matrix L can be reduced to a control problem.

The objective of the LQR approach is to find the feedback gain matrix L, for which
the control law ǔdq = L> x̌dq

x minimizes the quadratic cost function

J(k) =
∞

∑
k=1

x̌dq
x (k)>QL x̌dq

x (k) + ǔdq(k)>RLǔdq(k) (9)

where x̌dq
x ∈ R8 and ǔdq ∈ R2 are the state and input vectors of the respective dual system,

QL ∈ R8×8 is a positive (semi)-definite symmetric state weighting matrix and RL ∈ R2×2

is a positive definite symmetric input weighting matrix. The optimal solution is given
by L> = (CPC> + RL)

−1CPA>x→x, where the matrix P ∈ R8×8 is the infinite horizon
solution of the discrete-time Ricatti equation (for details see Section 10-8 in [30]). The
solution of the LQR problem is calculated by software (e.g., in MATLAB with the dlqr(...)
command). The weighting matrices, can be chosen in the following simple manner: (i)
Use diagonal matrices for QL and RL, (ii) normalize the diagonal elements with respect to
the rated (nominal) state or input variables (subscript ‘R’) and (iii) introduce a weighting
factor αL ∈ (0, 1) to prioritize state weighting matrix QL or input weighting matrix RL. The
following weighting matrices

QL = αL



1
‖idq

f,R‖2
I2 02×2 02×2 02×2

02×2
1

‖udq
s,R‖2

I2 02×2 02×2

02×2 02×2
1

‖idq
s,R‖2

I2 02×2

02×2 02×2 02×2
1

‖ψdq
r,R‖2

I2


,

RL = (1− αL)
1

‖idq
f,R‖2

I2.


(10)

are chosen. Note that the only tuning factor is αL, which makes the observer design a
straight forward and simple task.

Due to the fact that the system matrix depends on the parameters ω̂r and ωp, the
observer gains are adapted online, i.e., L = L(ω̂r, ωp) holds. This is achieved by offline
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calculation of the observer gains using the LQR method for several (but constant) values of
ω̂r and ωp and storing the results in individual look-up tables (LUTs). During operation,
the gains are updated in each sampling instant using 2D linear interpolation based on the
new values of ω̂r and ωp.

Remark 1. In order to improve computation and data efficiency, the quasi-complex property of the
gain matrix can be exploited, i.e., each 2-by-2 gain block can be written as Rk I2 + Ik J for gain blocks
k ∈ {1, . . . , 4} and Rk, Ik ∈ R representing quasi-real and quasi-imaginary part. This way, only
half of the entries of L need to be stored in and extracted from the LUT.

3.3. Speed Adaption

Typically, a PI-controller is used for the online adaption of the speed estimate ω̂r

(e.g., [6,10,15]). Input to the controller is the “error torque” e>is
Jψ̂

dq
r , resulting from the IM

stator current estimation error eis := idq
s − îdq

s and the rotor flux linkage estimate ψ̂
dq
r .

However, since only the filter currents idq
f are available for feedback [see Assumption (A4)],

a different input to the PI-controller is needed. Salomäki et al. [6] were the first to propose
the use of a slightly different error torque

ε = e>if
Jψ̂

dq
r (11)

depending on the filter current estimation error eif := idq
f − îdq

f (instead of eis) and ψ̂
dq
r ,

leading to the adaption law

ω̂r = Kp,ω̂r ε + Ki,ω̂r

t∫
0

ε dτ, (12)

with proportional gain Kp,ω̂r ∈ R and integral gain Ki,ω̂r ∈ R.

Remark 2. The gains Kp,ω̂r and Ki,ω̂r have a significant impact on the observer stability and
must be chosen with care. To do so, the linearization analysis as proposed in [18] for IMs only
(i.e., without LC filter) has been extended and conducted for the IM+LC system here. It allows to
find valid combinations, which guarantee local stability if good parameter knowledge is assumed.
For this work, such analysis has been conducted. However, in practice it was found that a purely
integral adaption law constitutes the most robust solution.

Steady-state (indicated by �̄) analysis of the state estimation error edq
x —i.e., by setting

d
dt edq

x = 08 or edq
x [k + 1] = edq

x [k] and solving (7) for edq
x [k]—shows that the current error

substitution is indeed feasible. The steady-state error torques are given by

ē>if
Jψ̂

dq
r = γ?

if
(ωr, ωp)‖ ¯̂ψ

dq
r ‖

2eωr , (13)

ē>is
Jψ̂

dq
r = γ?

is
(ωr, ωp)‖ ¯̂ψ

dq
r ‖

2eωr , (14)

with speed dependent “constants” γ?
if
(ωr, ωp) ∈ R and γ?

is
(ωr, ωp) ∈ R. Calculating both

constants numerically (e.g., with parameters in Table 1) for different values of ωr and ωp,
reveals that γ?

if
≈ γ?

is
(see Figure 4). Clearly, small deviations are observed, yet no switch

of sign occurs and, as a consequence, using the filter current error for the speed adaption is
a viable alternative.
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Figure 4. Numerical calculation of the ratio γ?
if

/γ?
is

of error torque constants γ?
if

and γ?
is

for different
values of ω̂r and ωp.

3.4. Flux Angle Detection

For rotor flux linkage orientation of the rotating dq-reference system, the speed ωp of
the synchronously rotating reference frame and the respective angle φp have to be defined.
By assuming that the entire flux linkage is concentrated in the d-component, it follows that
ψ

q
r = 0 and d

dt ψ
q
r = 0. Hence, the flux linkage dynamics of the q-component can be solved

for ωp, yielding

ωp = ω̂r +
Lm
Tr

îqs
ψ̂d

r
and φp =

t∫
0

ωp dτ. (15)

3.5. Stability of the Observer

Stability proofs of speed-adaptive observers have extensively discussed in literature,
since a first observer was used for induction machines by Kubota et al. [11] in the early
nineties. Kubota tried to prove stability using a Lyapunov function yielding a simple inte-
gral adaption rule. However, the proof neglected an immeasurable flux term which weak-
ens its validity. At the same time, other authors—e.g., Schauder [31] and Yang [32]—tried to
prove stability using the concept of hyperstability. As pointed out by e.g., Suwankawin [33]
in 2002, their proofs were wrong. In 2007, Sangwongwanich et al. were, as the first, able
to provide a proof for complete stability under strict conditions on the observer gains [17].
Harnefors and Hinkkanen used a different approach to proof complete stability, by using
a linearization approach [29]. To conclude: Proving complete stability is considered to be
solved under strict conditions but not in general. Nevertheless, since the focus of this work
is on the overall state-feedback control system and not on a rigor stability proof, the authors
refer to earlier publications by e.g., Salomäki [6] and to the experimental and simulative
validation as a proof of concept.

4. Control System

The control system is depicted in the lower left part of Figure 2. A classical PI-
speed controller is used to control the machine speed by passing a torque reference to the
underlying feed-forward torque controller. The torque controller translates the torque set
point into stator current setpoints. Finally, the state-feedback controller actively controls the
stator currents in compliance with the given set point values, while the remaining system
states are controlled indirectly. Instead of using and tuning several cascaded PI controllers
(as e.g., in [6]), the proposed state-feedback controller tuning is straight forward. Employing
the LQR tuning method ensures a simple design process and requires only three tuning
parameters (see Section 4.3.4). Moreover, (overall) closed-loop stability is guaranteed.
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4.1. Proportional-Integral Speed Controller with Anti-Windup

In view of the limited machine torque available, the considered PI-controller is im-
plemented with anti-windup and is given by the following control law (see Section 10.4.1
in [28])

m?
m = Kp,ωeωm + Ki,ωξω,

d
dt ξω = f (m?

m)eωm ,

}
(16)

with proportional Kp,ω and integral Ki,ω gains, integrator output ξω and control error
eωm := ω?

m −ωm. The anti-windup decision function (conditional integration)

f (m?
m) :=

{
0, for |m?

m| > mm,max
1, else.

(17)

disables integration in (16) when the absolute value |m?
m| of the machine torque set point

exceeds the maximally available IM torque mm,max to suppress windup effects. Tuning of
the gains Kp,ω and Ki,ω can be done e.g., by using analytical methods like the symmetrical
optimum criterion (see Section 4.4.4 in [34]).

4.2. Feed-Forward Torque Controller and Rotor Flux Controller

The reference torque m?
m can be mapped to a pair of stator current set points id?

s and
iq?
s . Typically, in the non-field weakening operation regime, a constant flux is used, i.e., the

d-component of the stator currents is fixed to its nominal value, whereas the q-component
is used to realize the given torque reference. The motor torque can be stated as

mm = 3
2 np

Lm
Lr

ψd
r iq

s . (18)

Hence, for estimtated rotor flux linkage ψ̂d
r and given torque reference m?

m, the q-current
reference becomes

iq?
s = m?

m
3
2 np

Lm
Lr

ψ̂d
r

, (19)

whereas the the d-current reference is obtained as output from the rotor flux linkage
PI-controller

id?
s = Kp,ψeψ + Ki,ψξψ,

d
dt ξψ = f (id?

s )eψ,

}
(20)

with proportional Kp,ψ and integral Ki,ψ gains, integrator output ξψ and flux linkage control
error eψ := ψd

r
? − ψ̂d

r . The anti-windup decision function f (id?
s ) is similar to (17) with

maximum admissible d-reference current id,∗
s,max as treshold (instead of mm,max) and disables

integration in (20). Tuning of the gains Kp,ψ and Ki,ψ can be done e.g., by the magnitude
optimum criterion, see Section 4.4.4 in [34].

4.3. State-Feedback Control of the Drive System

A state-feedback controller is designed which controls all system states simultane-
ously. Instead of using and tuning several and cascaded PI-controllers (as e.g., in [6]), the
state-feedback controller tuning is simple and holistic. Employing the well-known LQR
tuning method in combination with gain-scheduling ensures an easy design process and
guarantees (overall) closed-loop stability. Control objective is reference tracking of the
stator currents of the electric machine and suppression of oscillations in the remaining
system states (due to the LC filter). Based on the Separation Principle (see e.g., Chapter 8.4
in [35]), the controller is designed for system (4); assuming all states are available for feed-
back. Once the controller is derived, controller and observer are merged and implemented
altogether.
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4.3.1. Discrete-Time Inverter Approximation

The VSI produces the modulated output voltage udq
f according to the reference vector

udq?
f by pulse width modulation (PWM). This output voltage generation comes with a

time delay tdt (see Figure 3), which depends on the employed modulation scheme and is
inversely proportional to the switching frequency of the inverter.

For MV drive applications, typically a low switching frequency is used, which in-
creases the time delay and thus necessitates its consideration in the model. Formalizing the
ideas of Figure 3 for the case M = 1 (switching frequency equals sampling frequency of the
controller), the discrete-time inverter model can be stated as

udq
f (k) = tdt

tc
xdq

u (k) + tc−tdt
tc

udq?
f (k),

xdq
u (k + 1) = T−1

P
(
tcωp(k)

)︸ ︷︷ ︸
Bu(ωp)

udq?
f (k)

, (21)

where the new state xdq
u ∈ R2 is the back-rotated version (inverse Park transform with

argument tcωp) of the previous time step filter reference voltage. Moreover, the (partial)

input matrix Bu(ωp) ∈ R2×2 determines the impact of the input udq?
f on the state xdq

u . For
the sake of simplicity, it is assumed in the following that the switching delay equals the
(controller) sampling time, i.e., tdt = tc holds. As a consequence, the inverter voltage
becomes equal to the inverter state, i.e., udq

f = xdq
u , and (21) simplifies to

udq
f (k + 1) = Bu(ωp)u

dq?
f (k). (22)

4.3.2. Continuous-Time Augmented System

The classical state-feedback controller does not allow for tracking of state reference
values. Therefore, a new input idq?

s ∈ R2 is defined, which represents the set point vector of
the stator currents. Note that, since the system has two inputs only, merely two states can
be controlled independently.

In order to ensure asymptotic set point tracking, i.e., limt→∞ idq?
s − idq

s = 02, the
system is extended by two additional integrator states ξ

dq
i ∈ R2 which represent the

respective integrals over the state tracking errors. The dynamics of the new states are
defined as

d
dt ξ

dq
i = Ax→ξxdq

x − idq?
s = idq

s − idq?
s , (23)

where Ax→ξ := [02×4, I2, 02×2] ∈ R2×8 selects the stator currents idq
s from the state vec-

tor xdq
x .
Finally, the overall augmented system is given by

d
dt x̄dq = Āx(ω̂r, ωp)x̄dq + B̄xudq

f + Ēxidq?
s

ydq
c = C̄x x̄dq(= idq

s )

 (24)

where x̄dq := (xdq
x
>

, ξ
dq
i
>
)> ∈ R10 and ydq

c := idq
s ∈ R2 are the augmented state vector and

control output, resp., and
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Āx(ω̂r, ωp) :=
[

Ax→x(ω̂r, ωp) 08×2
Ax→ξ 02×2

]
B̄x :=

[
B>x 02×2

]>,

Ēx :=
[
02×8 I2

]>,

C̄x :=
[
Ax→ξ 02×2

]
,


(25)

are the augmented system matrix Āx ∈ R10×10, input matrix B̄x ∈ R10×2, set point matrix
Ēx ∈ R10×2 and control output matrix C̄x ∈ R2×10.

For implementation and controller tuning, this system must be discretized with the
controller sampling time tc by invoking (5). The details are omitted as this step is straight
forward. However, the resulting discrete-time matrices

Āx(ω̂r, ωp) :=
[
Ax→x(ω̂r, ωp) 08×2
Ax→ξ(ω̂r, ωp) I2

]
, B̄x :=

[
Bx
Bξ

]
and Ēx :=

[
02×8
tc I2

]
,
}

(26)

with respective partitioning, will be used in the following. The discrete-time integral error
system which is required for the controller implementation can now be stated as

ξ
dq
i (k + 1) = ξ

dq
i (k) +Ax→ξ(ω̂r, ωp)xdq

x (k) +Bξ(ω̂r, ωp)u
dq
f (k) + tcidq?

s (k). (27)

4.3.3. Overall Discrete-Time System

Finally, the overall discrete-time system can be constructed from the partial results of
the previous steps, i.e.,(

udq
f (k + 1)

x̄dq(k + 1)

)
=

[
02×2 02×10

B̄x(ω̂r, ωp) Āx(ω̂r, ωp)

](
udq

f (k)

x̄dq(k)

)

+

[
Bu(ωp)

010×2

]
udq?

f (k) +

[
02×2

Ēx(ω̂r, ωp)

]
idq?
s (k). (28)

The new control input is udq?
f (instead of udq

f ), i.e., a control law using udq?
f is to

be found.

4.3.4. State-Feedback Control Law with Prefilter

Since the augmented system (28) is fully controllable, a state-feedback controller of
the following form can be designed

udq?
f (k) = −K

(
udq

f (k)
x̄dq(k)

)
+Kpidq?

s (k), (29)

with feedback gain matrix K := [Ku |Kx|Kξ] ∈ R2×12, and where Ku ∈ R2×2, Kx ∈ R2×8

and Kξ ∈ R2×2. Moreover, using the gain matrix Kp ∈ R2×2 a feedforward term or prefilter
is introduced.

Similar to the observer gain selection, the controller gain matrix is calculated using the
(discrete) LQR approach with the following weighting matrices
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QK = αK



I2

‖udq
f,R‖2

02×2 02×2 02×2 02×2 02×2

02×2
I2

‖idq
f,R‖2

02×2 02×2 02×2 02×2

02×2 02×2
I2

‖udq
s,R‖2

02×2 02×2 02×2

02×2 02×2 02×2
I2

‖idq
s,R‖2

02×2 02×2

02×2 02×2 02×2 02×2
I2

‖ψdq
r,R‖2

02×2

02×2 02×2 02×2 02×2 02×2 βK I2


,

RK = (1− αK)
1

‖udq
f,R‖2

I2.



(30)

The factor βK in QK constitutes an additional tuning factor, weighting the integral-action. It
is important to note, that for the SFC, solely two parameters (i.e., αK and βK) must be tuned.

In analogy to the observer, gain-scheduling is used, i.e., the controller gains are
updated in each control cycle. Therefore, the LQR algorithm has to be repeated offline
for several combinations of ωr and ωp, yielding 2D LUTs for each entry of K and, hence,
K = K(ω̂r, ωp) holds. Note that, as for the observer gains, only half of the gains need to
be stored and looked-up during operation.

4.3.5. Prefilter Calculation

It remains to determine the prefilter gain matrix Kp, which allows for faster set-point
tracking by supporting the integral part of the controller. The idea is to anticipate the
required voltage udq?

f for a given stator current reference idq?
s by evaluating the steady-

state equation

lim
k→∞

idq?
s (k)− idq

s (k) = idq?
s,∞ − idq

s,∞
!
= 02, (31)

which can be solved for Kp. Note that the steady-state integral error ξ
dq
i,∞ cannot be known

a-priori (otherwise it would not be needed), so that only the inverter and the IM + LC
systems are considered in the equation, while the integral action states ξ

dq
i are left out. The

solution to (31) is given by (details are ommitted due to lengthy derivation)

K?
p(ω̂r, ωp) =

[02×2 Ax→ξ

][I2 +Bu(ωp)Ku Bu(ωp)Kx

−Bx(ω̂r, ωp) I8 −Ax→x(ω̂r, ωp)

]−1[
Bu(ωp)

08×2

]−1

(32)

where the submatrices Bx and Ax→x are obtained from partitioning B̄x and Āx, accordingly.
Finally, an additional tuning factor γK ∈ [0, 1] is introduced, which allows to reduce the
impact of the feedforward control action (if necessary), i.e.,

Kp(ω̂r, ωp) = γKK?
p(ω̂r, ωp). (33)

This has proven useful in practice, as the sensivity to modeling and parameter errors is
reduced and, hence, large overshooting can be avoided. Note that Kp(ω̂r, ωp) depends on
ω̂r and ωp, which requires its recalculation in each control step or the use of an additional
LUT. Although the equation can be greatly simplified using symbolic calculations (many
zero entries), using gain-scheduling for the 2-by-2 feedforward gain matrix is advisable as
the solution of the inverse of a 10-by-10 matrix is usually computationally expensive.

4.3.6. Output Saturation

Since the output voltage of the VSI is constrained, the controller output must be
limited, too. Therefore, the magnitude of the reference voltage is limited by
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udq?
f,sat =

 udq?
f , for ‖udq?

f ‖ ≤ uf,max(udc)

udq?
f · uf,max(udc)

‖udq?
f ‖

, else, (34)

where the maximum voltage uf,max(udc) ∈ R depends on the dc-link voltage and the
employed modulation scheme (e.g., for space vector modulation, uf,max = udc/

√
3 holds).

The saturated output udq?
f,sat ∈ R2 is passed on to the modulator.

4.4. Implementation of the Control System

For the implementation of the overall system, observer and control system are imple-
mented independently of each other, as both potentially use different sampling times to
and tc, respectively. The observer is realized according to (6), with speed estimation (12)
and estimated rotor flux orientation (15). The estimated states x̂dq

x and speed ω̂r, as well as
the electrical frequency ωp, are fed to the control system, which only needs to realize the
inverter delay (22) and the integral error system (27). By looking up the controller gains,
depending on the current values of ω̂r and ωp, the control output udq?

f can be calculated.
The reference voltage, in turn, is used by the observer to reconstruct the voltage input.

Lastly, an overview of the complete system with speed-adaptive observer, state-
feedback controller and speed & torque controller is shown in Figure 5.

SFC with
PREFILTER

INV.
APPR. OBSERVER

ωp-EST.

ωr-EST.

TORQUE & FLUX
CONTROL

SPEED
CONTROL

OP. MAN.

ω?
m

β

α

d
q

φp
MEASUREMENT

iαβ
f

x̂dq
x

ωp

φp

ω̂r

udq?
f

udq
fidq?

sm?
e

β

α

d
q

φp
SVM / PWM

uαβ?
v

idq
f

Figure 5. Overviewof the control system and the interdependecies between the subsystems.

5. Experimental and Simulative Validation

In this section, simulative and experimental validation of the proposed control scheme
are shown for a system described by the parameters given in Table 1. Since the controller is
supposed to run on a digital signal processing (DSP) unit, the derived control system is
discretized. The implementation itself is done in MATLAB and Simulink R2017a for both,
simulation and experiment. The simulation environment, as well as the experimental setup
are briefly described. Finally, the results are discussed and evaluated.
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Table 1. Parameters of the test setup.

Parameter Variable Value Unit

V
SI DC-link voltage udc 580 V

Switching frequency fS 4000 Hz

Fi
lt

er
Rated current (amplitude) îf,R 22 A
Inductance Lf 4.5× 10−3 H
Capacitance Cf 30× 10−6 F
Resistance Rf 0.1 Ω

In
du

ct
io

n
m

ac
hi

ne

Rated speed (nameplate) ωm,R 298.4 rad s−1

Rated torque mm,R 10.05 N m
Rated voltage (amplitude) us,R 327 V
Rated current (amplitude) is,R 8.1 A
Rated power factor cos(ϕR) 0.93 1
Rated flux (amplitude) ψr,R 1.2 Wb
Number of pole pairs np 1 1
Stator resistance Rs 1.85 Ω

Rotor resistance Rr 1.55 Ω

Main inductance Lm 340× 10−3 H
Stator leakage inductance Lsσ 16.5× 10−3 H
Rotor leakage inductance Lrσ 16.5× 10−3 H

C
on

tr
ol

sy
st

em

P-gain (speed estimator) Kp,ω̂r 0 rad s−1 N−1 m−1

I-gain (speed estimator) Ki,ω̂r 1500 rad s−2 N−1 m−1

P-gain (speed control) Kp,ω 0.42 N m s rad−1

I-gain (speed control) Ki,ω 10.43 N m rad−1

P-gain (flux control) Kp,ψ 26.7 H−1

I-gain (flux control) Ki,ψ 670 H−1 s−1

1. weighting factor (obs.) αL 1.2× 10−8 1
1. weighting factor (contr.) αK 0.5 1
2. weighting factor (contr.) βK 1× 104 1
3. weighting factor (contr.) γK 0.3 1

5.1. Simulation

The control system is implemented as a discrete block in Simulink, triggered at the
center of each PWM period, just as in the experimental setup. The two-level VSI is supplied
by a constant DC-link voltage, while the switching signals are generated using space-vector
modulation (SVM). The LC filter and the (linear) induction machine are simulated based
on model (2), while continuous-time integrators are used to solve the first-order differential
equations. Moreover, a simplified mechanical model with viscous friction and arbitrary
load torque is used. The fixed-step solver ode3 runs with a sampling time of 100 ns.

5.2. Experimental Setup

The testbench (see Figure 6) comprises a 3 kW induction machine and load machine,
both equipped with position encoders, a torque sensor, a custom-built LC filter, 2-level
VSIs and the dSPACE real-time system.The modular dSPACE system runs on a DS1007
processing unit, with a DS5101 module for the PWM generation, a DS2004 A/D module,
and a DS3002 encoder board. Note that, unlike stated in the beginning of this chapter, stator
currents, voltages and rotor speed are measured here. However, this data is only used for
evaluation; it is not fed back to the control system.
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Figure 6. Testbench: (A) LC filter, (B) IM, (C) torque sensor, (D) load machine, (E) VSI, (F) real-time
system, (G) host PC.

5.3. Results & Discussion

To validate the proposed control and observer systems, a 60 s experiment (see Figures 7–9)
has been conducted which includes four critical Scenarios (S1)–(S4) besides start-up and
transition phases in order to show stability, functionality and performance of the closed-
loop system under various speed and loading conditions in one realistic run:

• Scenario (S1)—Speed reversal (t ∈ [4 s–24 s]): In the first scenario, A speed reversal
is performed under full load in order to evaluate the low speed performance of the
closed-loop system. It is well-known that observability of electrical machines is lost
at standstill (i.e., ωm = 0). For induction machines, it is lost at zero excitation, i.e.,
ωp = 0, which occurs twice during the test and makes it most critical and crucial for
validation in order to judge robustness of the speed-adaptive observer in terms of its
zero-crossing capabilities.

• Scenario (S2)—Standstill (t ∈ [28 s–38 s]): The second scenario covers a standstill
test under varying load. After a short period of full load, the load is ramped down
slowly to zero. This test is conducted in order to evaluate and proof the low-speed
capabilities of the closed-loop system at complete standstill and varying loads.

• Scenario (S3)—Field weakening (t ∈ [39 s–45 s]): In the third scenario, the high-
speed capabilities of the closed-loop system are validated by performing a no-load
acceleration from 0 rad s−1 to 1.5 ωm,r. After a short interval of high-speed operation,
the speed is reset to standstill by means of active braking (generating mode). For a
constant magnetic field, the induced voltage increases almost linearly with the speed,
such that for rated excitation the voltage limit is reached for rated speed and load.
Therefore, the magnetic field (rotor flux linkage) needs to be decreased in order to
reach higher speeds than rated speed.

• Scenario (S4)—Load variations (t ∈ [47 s–59 s]): For the fourth scenario, step-like
load variations disturb the closed-loop system while the speed must be kept constant
at its rated value. Besides operation near the voltage limit which potentially triggers
the anti-windup strategy (coniditional integration) of the integral control actions,
the full controller bandwidth is evaluated and validated. The last scenario can be
considered as typical (conventional) mode of operation in real-world ESP systems.

The validation results of the closed-loop system consisting of LC filter, IM and discrete
implementation of observer and control system include measurement and simulation data
and are shown in Figures 7–9; whereas system data and tuning parameters are listed
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in Table 1. A detailed discussion of the results follows in the two next subsections. In
the figures, the different phases (time intervals) and Scenarios (S1)–(S4) are seperated by
vertical lines [ ] and shaded areas, respectively. Since the flux linkages could not be
measured, either the estimated and/or simulated values are shown in the respective plots.

5.4. Experimantal Validation of the Control System

Figure 7 shows the experimental results which allow to evaluate the performance of
the control system using the measured filter currents id

f , iq
f , the estimated stator currents

îd
s , îq

s , the estimated stator (capacitor) voltages ûd
s , ûq

s and the estimated mechanical angular
velocity ωm as feedback. Measured (sampled) data is plotted as solid blue lines [ ],
whereas references and constraints (voltage limit) are drawn as dashed [ ] and dotted
[ ] red lines, respectively. In the top-most first subplot, the timeseries of the mechanical
speed ωm and its estimate ω̂m [ ] are shown. Both do track the reference speed ω?

m
[ ] almost perfectly for all four Scenarios Scenarios (S1)–(S4). The speed rise-time is
only limited due to the torque (current) limit of the IM. However, as visible in particular
during the fast but ramp-like accelerations in Scenario (S3) or during the transition phase
between Scenarios (S3) and (S4), the rated torque is not fully needed for accelaration as the
reference speed is low-pass filtered and, therefore, less steep. For geothermal ESP systems,
very fast speed changes are not admissible nor advisable which motivates the reference
speed filtering. In the second subplot, the corresponding (measured) machine torque mm is
plotted. The torque of the speed-controlled IM is equal to the overall load and acceleration
torque; including friction. It can be seen that the control system is able to follow the
reference torque with high accuracy. Minor deviations are only observed during standstill
operation (i.e., Scenario (S2)) The oscillations around 27 s are due to the elastic behavior
of the torque sensor which is excited by the step-like speed change. The third and fourth
subplots show the estimated stator currents îd

s and îq
s and their respective set points id?

s and
iq?
s as outputted by flux and speed controller. Again, all references can be tracked very well

by the control system. The d-currents changes within a band of about 0.2 p.u. only, the
q-current (being proportional to the torque) varies between 1.25 times negative to positive
rated stator current of the IM. The factor of 1.25 has been set as upper limiting factor for the
speed controller output. The estimated rotor flux linkage ψ̂d

r is shown in the fifth subplot.
As a flux controller is utilized, the flux linkage set-point ψd

r
?

is mostly constant and, only
during Scenario (S3) (field weakening), it must be reduced. The commanded set-points are
nicely tracked by the control system for all four Scenarios (S1)–(S4). The bottom-most (last)
subplot shows the magnitude of the filter voltage reference udq?

f (VSI voltage command)
and the respective voltage limit udc/

√
3 [ ] depending on the measured (and varying)

DC-link voltage udc. As expected, the required voltage is close to its threshold only for
higher speeds. Field weakening in Scenario (S3) proves to be feasible and works properly
as the voltage limit is not exceeded. Generative braking from 1.5 times rated speed to
standstill results in a steep but only temporarily rise of the DC-link voltage udc, until the
resistive chopper braker in the VSI becomes active. Also, for rated (motor) torque and rated
speed in Scenario (S4), the voltage limit is (almost) reached. Nevertheless, the load changes
do not perturb the system seriously and constant (rated) speed operation is assured. In
conclusion, the control performance of the closed-loop system consisting of observer and
control system is very acceptable and satisfactory. It is robustly stable and is able to track
the references with (very) high accurary for all four scenarios.
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(S1) (S2) (S3) (S4)

Figure 7. Experimental validation of the control system for Scenarios (S1)–(S4): Physical quantities ωm,
mm, îd

s , îq
s , ψ̂d

r , reference voltage norm ‖udq?
f ‖ and voltage limit udc/

√
3 (from top to bottom) with

measured or estimated quantities [ ] and respective reference values or limits [ ].
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5.5. Experimantal and Simulative Validation of the Observer System

The observer performance over the whole experiment including all four scenarios
is illustrated in Figure 8, showing the evolution of the system and observer states, and
Figure 9, showing the evolution of the speed estimation error. In both figures, experimental
[ ] and simulation [ ] results are presented.

In Figure 8, the d- and q-components of filter currents, stator voltages, stator currents
and rotor flux linkages are shown from top to bottom. The measured states are plotted as
solid red [ ] (simulation results) and solid blue [ ] (experimental results) lines, whereas
the estimated states are plotted as dashed red [ ] (simulation results) and dashed blue
[ ] (experimental results) lines. As the rotor flux linkage can not be measured during the
experiment, the respective time series are missing in the respective subplots.

The core objective of the observer system is to estimate all physical system states
correctly, i.e., id

f , iq
f , ud

s , uq
s , id

s , iq
s , ψd

r , ψ
q
r (see Figure 8 and ωm (see indirectly Figure 9). Com-

paring the measured [ ] and estimated [ ] states in Figure 8, it can be seen that for
almost all transition intervals and scenarios a (very) good match between eastimated and
real quantitites is achieved by the observer. Slight devations for d and q filter currents (see
first and second subplots) occur in particular during Scenario (S1) & (S2) which is due to
the critical non-observability condition close or at standstill. The estimation performance
for the d and q stator currents (see fifth and sixth subplots) is similar to that of the filter
currents. the d and q stator voltages (see third and fourth subplots), the estimation errors
are (very) small for lower speeds, but increases slightly in the d-component at higher
speeds; i.e., during Scenarios (S3) and (S4). The estimation of the d and q rotor flux linkages
(see seventh and eighth subplots) can only be evaluated using simulation results (as the
flux linkage was not measured). As expected due to lack of observerability, zero speed and
non-zero load conditions during Scenarios (S1) and (S2) are more problematic for the rotor
d-flux linkage estimation. Nevertheless, the overall closed-loop system never becomes
unstable and is capable of robustly estimating all states with good to very good accuracy.

Besides, a very good match between simulation and measurement data was achieved
which underpins the quality of the model. Solely, the d filter and stator currents do not
match nicely in particular for Scenarios (S1) & (S2) which can be explained by the simplified
magnetic model (neglecting saturation) used for the simulations.

Finally, in Figure 9, the speed estimation performance is shown. First note that
the speed estimation error never exceeds ±2–2.5% of the rated angular velocity which
shows the (very) high estimation accuracy for all four scenarios (including standstill
and low speed operation). Most, peak-like but short deviations occur during transient
conditions (transisition phases between differeent scenarios). As expected, highest and
longest deviations occur during the critical Scenarios (S1) & (S2). The slight mismatch
between simulation and experimantel speed estimation error can again be traced back to
the simplified magnetic model of the IM used for simulations.



Machines 2022, 10, 87 20 of 23

(S1) (S2) (S3) (S4)

Figure 8. Part I of experimental and simulative validation of the observer system for Scenarios (S1)–(S4):
Physical system states id

f , iq
f , ud

s , uq
s , id

s , iq
s , ψd

r and ψ
q
r (from top to bottom) with measured [ ] and

estimated [ ] experimental data and measured [ ] and estimated [ ] simulation data.
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(S1) (S2) (S3) (S4)

Figure 9. Part II of experimental and simulative validation of the observer system for Scenarios (S1)–
(S4): Speed estimation error eω̂ = ωm− ω̂m with experimental [ ] and simulative [ ] validation.

6. Conclusions

A speed-sensorless state-feedback control system for an induction machine with LC
filter for geothermal electric submersible pumping systems has been derived. The con-
trol system can be utilized for a wide range of high/medium-voltage applications with
long cables where an LC-filter is mandatory to (i) minimize bearing life time (common
mode voltage reduction) and (ii) to eliminate high dv/dt, overvoltages, cable ringing or
motor overheating (due to converter induced harmonic content). Example applications are
pumps, conveyors, compressors, elevators or cranes. The validity of the speed-sensorless
state-feedback control system with state-feedback observer was verified in simulations and
experiments, which showed a good overall match, and decent and robust controller and
observer performance. The main advantage of the presented approach is its easy implemen-
tation, including a tuning approach, which relies on well-known methods (e.g., LQR) and
requires only four tuning parameters (one for FSO and three for SCF). For implementation,
clear guidelines for tuning (e.g., weighting factor selection) and discretization have been
provided. For larger systems and lower sampling times, it might be recommendable to use
an even higher degree of discretization, which, however, can easily achieved with the help
of the proposed framework in this paper. Future work comprises stability improvements
in the zero-speed range and incorporation of a nonlinear flux linkage model (covering
saturation effects) in order to improve the angle, current and flux linkage estimation
even further.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Conversion
DSP Digital Signal Processor
SFC State-Feedback Controller
FSO Full-State Obserer
LQR Linear Quadratic Regulator
IM Induction Machine
PI Proportional-Integral (controller)
VSI Voltage Source Inverter
MV Medium-Voltage
PWM Pulse Width Modulation
SVM Space Vector Modulation

Notation

N,R: natural, real numbers; x :=(x1, . . . , xn)> ∈ Rn: column vector, n ∈ N where “>”
and “:=” mean “transposed” and “is defined as”, resp.; a>b := a1b1 + · · ·+ anbn: scalar

product of vectors a & b; ‖x‖ :=
√

x>x =
√

x2
1 + · · ·+ x2

n: Euclidean norm of x; X ∈
Rn×n: matrix (n rows & columns); X−1, X−>: inverse, inverse transpose of X (if exist),
resp.; In := diag(1, . . . , 1) ∈ Rn×n: identity matrix; 0n := (0,. . ., 0)> ∈ Rn: zero vector;
0n×m := [0n,. . ., 0n] ∈ Rn×m: zero matrix; TP

(
φp
)

:=
[

cos(φp) − sin(φp)
sin(φp) cos(φp)

]
: Park transformation

matrix with φp & ωp=
d
dt φp (Park transformation angle and angular velocity, respectively);

J := TP(π/2) =
[

0 −1
1 0

]
: rotation matrix (by π

2 ); x̂, x̂ or X̂: estimates of quantities, vectors or
matrices for observer design.
Remark: All physical quantities are introduced and explained in the text to ease reading.
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