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Abstract: Data analysis has wide applications in eliminating the irrelevant and redundant compo-
nents in signals to reveal the important informational characteristics that are required. Conventional
methods for multi-dimensional data analysis via the decomposition of time and frequency infor-
mation that ignore the information in signal space include independent component analysis (ICA)
and principal component analysis (PCA). We propose the processing of a signal according to the
continuous wavelet transform and the construction of a three-dimensional matrix containing the
time–frequency–space information of the signal. The dimensions of the three-dimensional matrix are
reduced by parallel factor analysis, and the time characteristic matrix, frequency characteristic matrix,
and spatial characteristic matrix are obtained with tensor decomposition. Through the comparative
analysis of the simulation and the experiment, the time characteristic matrix and the frequency char-
acteristic matrix can accurately characterize the normal and fault states of the mechanical equipment.
On this basis, the authors established a probabilistic neural network classification model optimized
by the improved particle swarm algorithm (IPSO). The parallel factor (PARAFAC) decomposition
algorithm can extract features from the centrifugal pump experimental data for normal and multiple
fault states, establish the mapping relationship of different fault features of the centrifugal pump in
time, frequency, and space, and import the fault features into the model classification. The above
measures can significantly improve the fault identification rate and accuracy for a centrifugal pump.

Keywords: parallel factor analysis (PFA); feature extraction; probabilistic neural network (PNN);
fault diagnosis

1. Introduction

Since the beginning of the computer era, machinery and equipment systems in the
context of Industry 4.0 have become more complex and systematic. For ensuring the
stability and continuity of machinery in industrial production, it is important to precisely
monitor the state of machines in operation and rapidly determine the location of faults.
Enterprises and researchers have paid more and more attention to the related fault diag-
nosis technology. Oil monitoring, accelerometer sensor monitoring, acoustic monitoring,
running state degradation, and NDT flaw detection are the major fault identification tech-
nological approaches in machinery fault diagnosis. The rapid progress in computer science,
measurement technology, and signal processing has promoted mechanical fault diagnosis
from these methods, which include the physical models, signal processing, and the new
process of using data-driven technology [1–3]. While traditional fault diagnosis methods
cannot handle signals collected under complex conditions due to the low computing and
storage capacity of computers, the current modern condition monitoring technology has
been greatly improved in both theory and technology to the extent that the optimized
system can realize data collection on complex equipment at multiple measurement points
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and throughout their whole life. The inspection system will obtain a large amount of data,
machinery, and equipment fault diagnosis experience and gradually approach what is
known as “big data” [4–6].

Centrifugal pumps are extensively used in the aerospace, oil, ocean, agriculture,
chemistry, and nuclear industries, because of their energy efficiency, space savings, and
stability [7–9]. Nowadays, this kind of equipment is mostly in service in the large-scale and
complex processes of industrial production lines that are “non-stop”. Due to the interference
of internal and external factors such as operating and environmental conditions, various
failures such as vibration and wear often occur during operation. If minor faults are not
detected in their early stages and the corresponding fault causes are not investigated, the
actual heavy load and high-speed operating conditions will cause accelerated damage to
the pump body and other important components, leading to the evolution and transmission
of the fault [10–12]. In order to maintain the safe and continuous service of these pumps
and conserve their industrial and economic benefits, the diagnosis and monitoring of
centrifugal pump fault status cannot be ignored [13]. Current research on centrifugal
pumps by scholars from various countries has focused on fault diagnosis and monitoring
the health of rotor system instability, impeller cavitation, and cavitation [14]. As the core
component of the pump, the impeller takes on a direct role in promoting the fluid. In
actual production, the liquid component carried by the centrifugal pump usually contains
solid particles such as sediment and corrosive components. These components frequently
cause damage such as the cavitation, corrosion, and abrasion of the impeller in close
contact with the liquid, which intensifies the vibration of the pump unit and reduces the
overall hydraulic performance and reliability of the pump [15–17]. Therefore, the choice
of centrifugal pump impeller, which is the research object of this paper, has far-reaching
practical significance.

Scholars in related fields throughout the world have proposed their own unique,
effective, and advanced theories and innovative methodologies in the feature extraction
of fault information, sensor signal fusion with artificial intelligence for the different me-
chanical fault types and characteristics, and have achieved deep and meaningful research
results [18]. Relevant fault diagnosis mainly extracts time–frequency domain features after
denoising the collected signals through modern signal processing technology, and this
type of diagnosis uses the corresponding relationship to extract fault information from
the time–frequency domain features to achieve equipment health monitoring [19]. The
existing signal processing approach mainly includes principal component analysis (PCA),
empirical mode decomposition (EMD), deep belief networks (DBNs), and classification
variable extraction. Compared with these algorithms, the parallel factor has uniqueness
in the decomposition of multi-dimensional data under relatively loose constraints, which
can be applied in the field of signal processing [20]. Zhang et al. applied PARAFAC
decomposition to base radar spatiotemporal signal processing to achieve the automatic
matching of the angle and the frequency [21]. Li used parallel factor analysis to separate
multiple fault sources of mechanical equipment and to achieve ideal results [22]. Nicholas
et al. used PARAFAC analysis for radar signals to detect and locate multiple objects in
a multi-input–multi-output system [23]. Weis et al. used the PARAFAC algorithm for
electroencephalographic data to judge the correlation of various components [24]. The new
research significance of PARAFAC in the field of signal analysis continues to emerge, but in
the field of fault diagnosis, especially in multi-failure mode and adaptive diagnosis, there is
not enough research. Meanwhile, a single research path is no longer applicable to guiding
complex practical industrial processes, and the organic combination of PARAFAC with
multiple theories and methods will be an effective way to correctly analyze and improve
inspection accuracy.

This paper studies the parallel factor decomposition theory. The method for centrifu-
gal pump fault classification was developed based on PARAFAC and PNN and optimized
with particle swarm optimization (PSO). We had the motivation to develop the intelligent
multiple sensor signal analysis and fusion based on the idea of nonlinear system iden-
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tification to diagnose the nonstationary fault multi-mode of the mechanical system by
making use of the vibration data. The oil sand in the pipeline of the oil sand transport
system was the source of excitation of the nonlinear system. The pressure and flow rate
enabled us to control the operating status via parameters such as the rotational speed,
which is the generation source of the casing vibration of the slurry pump. We hope to
develop PARAFAC to process multi-dimensional data including the excitation source data
and the corresponding resulting response data, which are considered to contain abundant
system information including both sensitive and insensitive data on the faulty component
of the slurry pump. PARAFAC has the strong advantage of processing the multi-source
high-dimensional system data in order to delete the insensitive or contradictive data among
sensors. This method of analysis can make use of the advantages of the parallel factor
processing multi-dimensional data as well as the fast convergence and easy training of
a probabilistic neural network, and can thus significantly improve diagnosis speed and
accuracy in fault classification.

2. PARAFAC for Multi-Dimensional Data Analysis
2.1. Principle of PARAFAC

PARAFAC analysis is a psychometrically derived multi-dimensional data decompo-
sition method for any data set that can be described in more than two dimensions (e.g.,
temporal, spatial, frequency, participant, condition, signal features) and that facilitates
the extraction of the different features present [25]. By using the algebraic characteristics
and diversity characteristics of the signal, PARAFAC can obtain the required parameters
to characterize the characteristics from the fitting of the multi-dimensional data set. It
assumes that there is a multi-linear relationship between each independent parameter and
that certain constraint conditions are identifiable via the decomposition of the matrices. In
the traditional two-dimensional matrix, xi,j denotes the component in row i and column j.
Extension to three-dimensional tensors leads to another index of “high” value (expressed in
K). All the elements in the three-dimensional tensor are uniquely determined by xi,j,k. The
three-dimensional tensor is treated as a cube in which each element has three degrees of
freedom. Fixing one degree of freedom determines a sub-matrix which can be regarded as
making a section along a certain direction of the cube. Rank is used to reflect the correlation
between the rows, columns, and heights of the matrix. In order to remove redundancy
and reduce the parameters’ weight, the multi-dimensional tensor is decomposed by a
low rank. The element in the tri-linear tensor X ∈ CI·J·K is assumed to be xi,j,k, for which
i = 1, · · · , I; j = 1, · · · , J; k = 1, · · · , K. The trilinear tensors are decomposed into the form
of the cross-product of a two-dimensional array, as shown below:

X = a1•b1•c1 + · · ·+ aR•bR•cR =
R

∑
r=1

ar•br•cr (1)

where ar ∈ CI , br ∈ C J , cr ∈ CK, and r = 1, · · · , R. • denotes the tensor product. R is the
rank of the tensor X. The low-rank splitting of the tri-linear tensor was the decomposition
model and is named PARAFAC. The decomposition process is shown in Equation (2):

Sd f t =
Nk

∑
k=1

adkbdkcdk + ed f t (2)

The processing objects in this research constitute the data matrix S(Nd ·N f ·Nt). Nd, N f ,
and Nt, which are composed of vibration signals by wavelet transform, are expressed as
channels, frequency step size, and data points, respectively. The tensor is expanded with
three-dimensional diversity, as shown in Figure 1 below.
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Figure 1. Multiscale PARAFAC decomposition model.

The structure for achieving the strong identification results consists of the two-dimensional
matrices A, B and C, and is made of the vectors ak = {adk}, bk =

{
b f k

}
and ck = {ctk}

which are the spatial signal, spectral signal, and time signal of each atom. The variable ed f t
represents the error. By satisfying the equation rank(A) + rank(B) + rank(C) ≥ 2Nk + 2,
it is guaranteed that the matrices A, B and C have identifiability and the decomposition of
Formula (2) is achieved by solving (3), in which the vectors ak(Nd×1), bk(N f×1), and ck(Nt×1)

represent the k-th components of the space, spectrum, and time signals, respectively:

min‖Ŝd f t −
Nk

∑
k=1

adkb f kctk‖ (3)

Ŝd f t =
Nk

∑
k=1

adkb f kctk (4)

The PARAFAC model is decomposed with the trilinear least squares algorithm. The
specific procedures are as follows:

(1) Multi-dimensional analysis of time–frequency signal;
(2) Set the values of component f ;
(3) Set the initial loading for two-dimensional arrays B and C;
(4) Estimate matrix A with the least mean square. The formula is A = XZ′ (ZZ′ )−1,

Z = (b⊗ c);
(5) Calculate B and C;
(6) Return to step (4) and repeat the continuous calculation until convergence is achieved.

2.2. Algorithm Testing by Numerical Simulation

A simulation test was carried out on the simulation signal. The normal and fault
simulation signals are as follows:

Y1(t) = 0.01 cos(1000πt− 5)e−
25(100t−1)2

8 (5)

Y2(t) = 0.01 cos(1000πt− 5)e−
25(100t−1)2

8 + 0.01 cos(1400πt− 5)e−
25(100t−5)2

18 (6)

In Figure 2, the variation law in relation to the amplitudes of the simulated signal with
the time and frequency is demonstrated. Figure 3 shows the distribution of the signal in a
three-dimensional spectrum after wavelet transform analysis. According to the analysis in
Figures 2 and 3, the corresponding frequency of the wave crest under normal conditions is
500 Hz, while the fault signal simulated by the simulation signal has two frequencies, 500
and 700 Hz. The frequency of 700 Hz is considered to be the main frequency containing
fault information, and it is inferred that there is a fault simulation signal in the frequency
range of 600–750 Hz.
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Figure 2. (a) Simulation signal and spectrum by Equation (5). (b) Simulation signal and spectrum by
Equation (6).

After being transformed by the continuous wavelet, the simulation data were pro-
cessed by the PARAFAC algorithm to establish the frequency, time, and channel factor
decomposition. Figure 4 shows the comparison of the frequency characteristic matrix and
the time characteristic matrix of the normal and fault signals. In the frequency decom-
position signal of the normal signal, it can be observed that the amplitudes of the three
components appear at the frequency of 500 Hz, and the frequency decomposition signal of
the fault signal also shows amplitude changes at 500 and 700 Hz. The time information
when the fault occurs can also be presented within the decomposition signal in the time
domain. The methodology of the fault condition monitoring proposed in this paper is thus
verified as effective.
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3. PNN Parameter Optimization with IPSO
3.1. Principle of PNN

Probabilistic neural networks (PNNs) have high training efficiencies and can easily
capture characteristics across signals. They have been widely used in pattern classifica-
tion [26]. A PNN is an artificial neural network based on statistical principles, probability
density estimation, and Bayesian decision theory. In some cases, a PNN can achieve ar-
bitrary nonlinear transformation, and the final judgment extracted by this type of feed
forward network converges towards the Bayesian optimal solution [27].

The structure of a PNN is made of an input level, a sample level, a summation level,
and a competitive level, as seen in Figure 5.
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The value of the feature samples is received by the network through the input layer,
and the amount of feature value corresponds to the amount of input layers. The sample
layer is used to calculate the probability needed to obtain the distance between each vector
and neuron, and it then outputs the matching degree with a Gaussian function. In the
sample layer, the amount of the neurons is equal to the amount of input used for training
the sample vectors. The j-th neuron of the i-th mode in the sample level affects the mapping
between the input vector X and the output value Y. Equation (7) is the definition formula:

Φij(x) =
1

(2π)1/2σd
e−

(x−xij)(x−xij)
T

σ2 (7)

In the expression, i = 1, 2, · · · , m, m is the total class amount of samples, d represents
the dimensions of the array, and the smoothing parameter is σ, which is the only adjustable
parameter for improving the network accuracy, generally between 0 and 1. xij represents
the i data of the j sample. The summation layer further divides the sample layer, and the
pattern units belonging to the same class are classified and integrated into the neurons of
this layer, so the amount of neurons is equal to the amount of classifications. By calculating
the weighted average of the outputs of each type of hidden neuron in the sample layer, the
category of the input vector is obtained by the following equation:

νi =

L
∑

j=1
Φij

L
(8)
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The variable vi denotes the output of class i and L denotes the amount of neurons of
class i. The largest category in the summation layer is filtered by the competitive layer as
the output category:

y = argmax(νi) (9)

3.2. Improving the Particle Swarm Optimization Algorithm

As a traditional intelligent algorithm, PSO has strong advantages in dealing with
complex optimization problems, but it has the disadvantages of premature convergence
and difficult constraints. Therefore, the authors adopted an IPSO algorithm to give a precise
determination of the super smooth parameters of a PNN. Based on the PSO algorithm
shown in Equations (10) and (11), the new dynamic inertia weight and the optimized parti-
cle velocity and position update strategy are introduced to stop the algorithm performing
local optimization, which enhances the generalization performance of the SVM model [28]:

νk
id = ωiν

k−1
id + c1r1

(
pbi − xk−1

id

)
+ c2r2

(
pg − xk−1

id

)
(10)

xk
id = xk−1

id + νk
id (11)

Here, the parameter i = 1, 2, · · · , m, and d = 1, 2, · · · , n, for which m denotes the
size of the particles; the parameter n is the dimension of the solution vector space; the
parameters c1 and c2 are two normal numbers; and the parameters r1 and r2 are two
independent random numbers in the range of (0, 1). ωi represents the momentum term
coefficient, pbi represents the optimal position experienced by the current particle, and pg
represents the optimal position in the whole population.

The construction of the IPSO algorithm suggested in this thesis benefits from the
improvement of the traditional PSO algorithm in the following two aspects:

(1) An IPSO algorithm is proposed in which the influence of the other particles of the
population on the particle optimization is considered in the iteration. The velocity of each
particle in the solution space is trained in real time based on three factors of its own optimal
solution pbi, neighborhood optimal solution qb, and global optimal solution pg.

In the iteration, the distance between each particle and the other particles is calculated,
the distance lmn between the current m particle and any particle n is recorded, the maximum
distance is lmax, and the ratio is calculated with lmn

lmax
. The threshold value changes according

to the number of iterations k, and its expression is:

ξ =
0.3k + 0.6kmax

kmax
(12)

The maximum number of iterations is the set value kmax. When ξ < 0.9, if lmn
lmax

< ξ,
the n particle is considered to be in the neighborhood of the m particle. Accordingly, a new
learning factor c3 and a random number r3 are introduced to update the particle velocity
according to the following formula:

νk
id = ωiν

k−1
id + c1r1

(
pbi − xk−1

id

)
+ c2r2

(
pg − xk−1

id

)
+ c3r3

(
qb − xk−1

id

)
(13)

If ξ > 0.9 or if the ratio lmn
lmax

> ξ, the particle velocity is updated according to
Equation (10).

(2) The standard PSO algorithm uses a linear reduction of ωi to reduce the search step
size and make the iteration gradually converge to the extreme point. The disadvantage
of this method is that the algorithm is excessively sensitive and can easily enter the local
optimal solution. In order to improve the global convergence capability, the parameter ωi
is reduced by the S shape function; that is, ωi changes dynamically. When the search has
started, the value of ωi is convenient for the global search, and when the search process is
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close to the end, the value of ωi becomes smaller, which is conducive to the local search.
The weight expression in the IPSO algorithm is as follows:

ω =
ωmax −ωmin

1 + exp(2e · t/tm − e)
(14)

The procedure of the IPSO algorithm is developed as such:
Step 1: Determine the relevant parameters of IPSO, such as the learning factor, particle

swarm size, and upper limit of iterations;
Step 2: Assume that the best position in history that the particle has experienced is

pbi = (xi1, xi2, . . . , xin), the corresponding extreme value is pb f , the global extreme value
position is pgi =

(
xg1, xg2, . . . , xgn

)
, and the corresponding global extreme value is pg f ;

Step 3: Calculate all particle fitness values pi;
Step 4: Compare and obtain pbi, pb f , pg, pg f ;
Step 5: Update the position of the particles within a limited range:
If xij(k + 1) > xmax, then xij(k + 1) = xmax.
If xij(k + 1) < xmin, then xij(k + 1) = xmin.
xmax and xmin are the maximum position and the minimum position, respectively;
Step 6: The iteration ends after the number of iterations or the cut-off accuracy is

reached. Otherwise, return to step 2 to continue the calculation.

4. Experimental System

A centrifugal pump is a very complex nonlinear system. There are many reasons
for the failure of a slurry pump. The common failures of the centrifugal pump impeller,
including perforation damage to impeller F2, outer edge wear for impeller F3, and blade
wear for impeller F4, are compared with the normal impeller F1.

For the purpose of acquiring the characteristic information data of the nonlinear
multi-fault modes, the mechanical multi-source dynamic signal monitoring system was
established, as shown in Figure 6. The system includes signal source acquisition and analy-
sis systems such as the vibration signal, pressure signal, and flow signal, with respective
motor speeds of 1200 rpm. The temperature, pressure, flow, vibration, and other signals
can be locally displayed on the instrument through the multi-channel acquisition of the
system to simulate the actual work of a nonlinear fault by altering the pressure and the
flow of the mechanical state information.
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The different running conditions of the slurry pump were simulated by replacing
different impellers and changing the rotational speed, pressure, and flow. The vibration
signals are collected by the accelerometers on three different positions that are on the
chassis of the pump and outside the frame near the outlet and the bearing. The steps are



Machines 2022, 10, 155 10 of 16

as follows: (1) The normal centrifugal pump uses the normal impeller F1. We adjust the
impeller speed to 1200 rpm. The experimental data are collected by the datal acquisition
system. The data acquisition time of each group is 20 s and the acquisition frequency is
9 KHz; (2) We use F2, F3, and F4 to replace the set-up of the stable operating status, and
repeat step 1 to collect the multi-source data such as vibration data, pressure data, and flow
rate data.

5. PARAFAC-IPSO-PNN for Multi-Dimensional Data Analysis

The identification model for mechanical nonstationary multi-fault mode consists of
PARAFAC and IPSO-PNN, as shown in Figure 7. The procedure of the classification model
implementation is as follows: (1) The multi-channel vibration signals are collected by
three accelerometers; (2) The vibration signals are transformed to be the representation of
time–frequency by continuous wavelet; (3) The time–frequency domain data are used to
construct the three-dimensional arrays; (4) The arrays are decomposed by the PARAFAC to
obtain the time domain loading factors and frequency domain loading factors; and (5) The
PARAFAC loading factors are used as features to be input to IPSO-PNN classifiers to obtain
the modes.

The centrifugal pump system was tested. A total of 120 groups of data for the normal
running conditions and the three fault conditions were acquired to identify the operation
states of the slurry pump for fault diagnosis and classification. Ninety groups of vibration
data from three accelerometers were input to train the fault diagnosis model as described
in Figure 7. We obtained the fault diagnosis model for four operating conditions that were
F1, F2, F3, and F4. Then, there were 10 groups of testing data for each operating condition.
Forty groups of testing data were input to the trained fault diagnosis model to obtain
mode category.

1 
 

 

Multi- 
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acquisition 
system 

PARAFAC  
Decomposition 

IPSO-PNN 

Time loading and 
frequency loading factors 
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High-dimensional 
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Figure 7. Procedure about Fault diagnosis model of four operating conditions.

5.1. PARAFAC for Data Decomposition

The objective of the optimized probabilistic neural network model was to explore the
data processing ability. The performance after the different fault characteristic signals were
input was tested, the time–frequency features extracted by the PARAFAC decomposition
of multi-source signals were calculated by the PNN model and the IPSO-PNN model as
feature parameters. The classification accuracy of the two models was compared. The
corresponding states of the PNN model output and the centrifugal pump are shown in
Table 1.

Table 1. Neural network output corresponding to each state of the centrifugal pump.

Pattern F1 F2 F3 F4

Output of PNN 1 2 3 4
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PARAFAC was used to process the test data. The algorithm can simultaneously
integrate the three-way vibration signals of a single measuring point and the one-way
vibration signals and flow signals of multiple measuring points in the data set. Then, a
correct parallel factorization model was established with the nuclear consistency diagnosis.
The factor number was two. The decomposition results are shown in the figure below.
Figure 8a shows that the core consistency is 99.4% when the factor number equals 2.
Figure 8b shows that the core consistency is 31.2% when the factor number equals 3. Here,
the yellow line is the target, the green data should be zero, and red data are non-zero.
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The PARAFAC algorithm requires the accuracy of factor F. Excessively high values of
factor F would increase the model error. A meaningful solution can also not be obtained
with excessively low values of factor F. The appropriate values of the factors can be deter-
mined according to the core consistency theory. Core consistency is the difference between
the super diagonal array and the core three-dimensional data array in the constructed
PARAFAC model. The theoretical basis for the ideal model is that the super diagonal
array is completely consistent with the core data array. The low kernel consistency value
indicates that the model deviates from trilinearity. When the value is greater than 60%, the
model is considered to be close to trilinear. As shown in Figure 6, the kernel consistency is
only 31.206% when the number of factors is 3. When the number of factors is 2, it is close to
the ideal value. It can be judged that the appropriate number of factors is 2.

Figures 9–11 show that the three-channel vibration signals are decomposed by PARAFAC
to obtain the spatial loading factors, frequency loading factors, and time loading factors,
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which are used as feature values to be input to the PNN for training classifier models.
We compared the PARAFAC analysis for the data under normal conditions (F1) and fault
conditions (F2). It is demonstrated that the characteristics are different in terms of the
frequency factors, as shown in Figure 10, and time factors, as shown in Figure 11. In
Figure 10, the major difference of the loading factor is the peak frequencies, which are
approximately 1000 Hz for F1 but low frequency components for F2. In Figure 11, the
loading factors contain much more noise for F2 than that for F1. Based on the characteristic
features in Figures 10 and 11, the time and frequency loading factors are chosen as features
for training the PNN models.
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5.2. IPSO-PNN for Classification

The 40 groups of original data collected under four working conditions were divided
into two: 30 groups as training samples versus 10 groups as test samples. For this example,
the particle swarm size was set to 100, and iterations are performed 20 times. After PNN
processing, the IPSO model is selected for further classification. To confirm the training
effect of the IPSO-PNN classification model, the characteristic signals are input to the non-
optimized and optimized neural network model to output the faulty categories. Figure 12
shows that there are two errors between the true value and predicted value. Figure 13
shows that there is one error between the true value and predicted value. By the comparison
between Figures 12 and 13, the IPSO is used to improve the performance of PNN for the
identification of the data category. The IPSO-PNN is proposed as classifier to identify the
operating status in the following section.
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5.3. Multiple-Source Data Analysis for Classification

The vibration signals along the X axis directions of the three accelerometers from three
measurement points are obtained, which are used as the data driven and signal processing
by PARAFAC to calculate the features for classification. PNN and IPSO-PNN are used to
recognize the PARAFAC atoms to identify the multiple fault modes of the slurry pump. The
test set accuracy and running time are used to assess the capability of PNN and IPSO-PNN.
As shown in Table 2, the classification accuracy by PNN and IPSO_PNN are 82.5% and 85%,
which suffices to demonstrate the advantages of IPSO-PNN and the effectiveness of IPSO
for optimizing and improving the capability of PNN. The running time of classification
by IPSO-PNN is 0.026, which is much less than that of PNN—0.125 s. The IPSO-PNN has
potential applications for the recognition of the slurry pump under online conditions due
to the benefits of a shorter running time.

Table 2. Classification accuracy of the vibration signals of three sensors along x axis by PARAFAC.

Test Set Accuracy Time (s)

PNN 82.5% 0.125
IPSO-PNN 85% 0.026
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In this paper, we had the motivation to develop intelligent multiple-sensor signal
analysis and fusion to diagnose the nonstationary fault multi-mode of mechanical system
by making use of vibration data. The vibration data are excited by the oil sand in the
pipeline of the oil sand transport system. The pressure and flow rate are enable the control
over the operating status via parameters such as rotational speed, which is the source of the
generation source of the chassis vibration of slurry pump. We hope to develop PARAFAC
to handle multi-dimensional data including the causing source data and corresponding
resulting response data, which are supposedly contain abundant information including
both sensitive and insensitive data on the faulty component of slurry pump. PARAFAC
has the strong advantage of processing multi-source high-dimensional system data. There
are five sensors that provide the five-channel data which are three vibration sensors, one
pressure sensor, and one flow sensor. The PARAFAC was designed to be a data-driven
methodology that processes multi-sensor data by constructing the three dimensional signal
representation. Multi-dimensional data analysis based on the PARAFAC theory algorithm is
used to eliminate irrelevant and redundant components in signals and reveal the important
characteristic information required, which establishes the intrinsic matching relationship
among the vibration, pressure, and flow data sources. It is just because of reducing the
irrelevant information distortion effects of inter-channel interaction on the intrinsic features
that is excited by the fault mode mechanism that the classification accuracy is improved by
PARAFAC in comparison to PNN and IPSO. Additionally, the more data sources it has, the
stronger capability in classification accuracy the PARAFAC has. Table 3 shows the three
vibration sensors, one pressure sensor, and one flow sensor signal fusion by PARAFAC.
The classification accuracy with five-source data analysis with PARAFAC is 95% with
PNN and 97.5% with IPSO-PNN. It is demonstrated that the 95% classification accuracy
with the analysis of data from five sources by PNN is higher than that of 82.5% which is
obtained with the analysis of data from three sources by PNN. The 97.5% classification
accuracy with five sources’ data analysis by IPSO-PNN is higher than that of 85% obtained
by the analysis of data from three sources by IPSO-PNN. This definitely verifies that IPSO
effectively increases the classification accuracy by comparison between PNN and IPSO-
PNN, as shown in Tables 2 and 3. It also definitely verifies that the data fusion by the
vibration, pressure, and flow, is much better than that which just has vibration data by
comparison between the classification accuracy in Tables 2 and 3.

Table 3. Classification accuracy of the vibration, pressure, and flow signals of five sensors by PARAFAC.

Test Set Accuracy Time (s)

PNN 95% 0.033
IPSO-PNN 97.5% 0.025

6. Conclusions

The parallel factor algorithm was studied by applying the advantages of PARAFAC in
multi-source data information processing under the condition monitoring of the centrifugal
pump. The PNN algorithm is optimized by the IPSO algorithm, which has achieved
good results in fault diagnosis. Compared with the traditional time–frequency domain
processing methods, the PARAFAC algorithm characteristically analyzes multi-dimensional
data information, processes complex signals, removes redundant signals, and retains the
important features. Compared with PNN, the classification accuracy of the optimized PNN
is significantly improved and is of greater value for future applications. The analysis of
many more data sources by combing the vibration, pressure, and flow is only superior to
the analysis of vibration data of a slurry pump in multi-fault mode, which was strongly
verified. In future research, the parameters of the fault diagnosis model must undergo
further optimization to achieve correction rates of 100%.
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