
����������
�������

Citation: Cheng, Z.; Huang, K.;

Xiong, Y.; Sang, M. Dynamic Analysis

of a High-Contact-Ratio Spur Gear

System with Localized Spalling and

Experimental Validation. Machines

2022, 10, 154. https://doi.org/

10.3390/machines10020154

Academic Editors: Sven Matthiesen

and Thomas Gwosch

Received: 12 January 2022

Accepted: 14 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Dynamic Analysis of a High-Contact-Ratio Spur Gear System
with Localized Spalling and Experimental Validation
Zhenbang Cheng 1,2, Kang Huang 1,3, Yangshou Xiong 4,* and Meng Sang 1,3

1 School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China;
chzhbang@mail.hfut.edu.cn (Z.C.); hfhuang98@hfut.edu.cn (K.H.); sangmeng1995@mail.hfut.edu.cn (M.S.)

2 School of Mechanical and Vehicle Engineering, West Anhui University, Luan 237012, China
3 AnHui Key Laboratory of Digit Design and Manufacture, Hefei 230009, China
4 AnHui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment,

Hefei 230009, China
* Correspondence: xiongys@hfut.edu.cn

Abstract: The dynamic characteristics and tooth spalling fault features are studied for the high-
contact-ratio spur gear bearing system. The bending torsional dynamic model is proposed in this
study for the gear bearing system with an ellipsoid spalling fault. This model also considers time-
varying meshing stiffness, tooth friction, fractal gear backlash, and comprehensive transmission error.
The meshing stiffness of the system is evaluated using the potential energy method. The bifurcation
diagram, time-domain waveform, Poincaré map, phase map, frequency spectrum, and related three-
dimensional map are used as tools to analyze the system’s dynamic response qualitatively. The
results reveal that the system’s motion with ellipsoid tooth spalling defect exhibits rich dynamic
behavior. The response of the proposed dynamic model is consistent with experimental results in
the frequency domain. Therefore, the developed dynamic model can predict the system’s vibration
behavior with localized spalling fault. Hence, it could also provide a theoretical foundation for future
spall defect diagnosis of the gear transmission system.

Keywords: high-contact-ratio gear; tooth spalling; meshing stiffness; nonlinear dynamic behavior

1. Introduction

The contact ratio is an important index to indicate the smoothness and the uniformity
of the gear system’s transmission load [1]. By increasing the addendum coefficient, en-
hancing the number of teeth, reducing the pressure angle, and adjusting the modification
coefficient, an involute spur gear with a contact ratio greater than two can be obtained,
called high-contact-ratio spur gear [2]. Compared with standard gears, high-contact-ratio
spur gear has more pairs of teeth meshing at the same time. As a result, high-contact-ratio
gear has the advantages of high load carrying capacity [3]. Thus, it is widely used in auto-
mobiles, power tools, and other fields. As a common failure form of gear, tooth spalling is
frequently encountered under excessive load, which initially occurs at the local position of
the tooth surface. Localized tooth spalling induces serious damage to the gear transmission
system gradually. Three main aspects are considered while characterizing tooth spalling
fault: meshing stiffness, dynamic characteristics, and experimental validation. The model
of damaged gear pairs is analyzed to estimate the mesh stiffness. The mesh stiffness is
imported into the gear dynamic model to evaluate the non-linear dynamic characteristics.
The dynamic response obtained from the simulation is compared with the experimental
results to verify the dynamic model.

Tooth spalling affects the tooth profile and results in a change of meshing stiffness.
Several researchers have developed many methods to estimate the meshing stiffness of
the gears. Wang [4] and Zhan [5] have developed the finite element methods. The finite
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element method can accurately simulate the contact state of the system, but it is time-
consuming. The analytical method is very efficient in terms of computation [6]. For
example, Sun [7] studied the mesh stiffness of spur gear pairs with tooth modifications
based on the thin slice assumption. For the gear with rectangular tooth spalling, Chaari
researched the mesh stiffness of spur-gear pair [8], Jiang [9] and Han [10] studied the
helical gear, while Luo studied the planetary gear [11]. In references [12,13], the meshing
stiffness of gears with rectangular spalls of various widths, lengths, and positions were
compared. Saxena et al. [14] estimated gear mesh stiffness for rectangular, circular, and
V-shaped spalling. It is assumed that the bottom of the tooth spalling is flat in the literature.
In practice, the shape of the tooth spall usually has a curvilinear bottom with a gradually
changing dent depth rather than a suddenly decreased tooth thickness. Compared to
rectangular solid, the ellipsoid is close to the actual geometry of the tooth spalling. This
geometric model makes the calculation of mesh stiffness more accurate. The mesh stiffness
of the gear with ellipsoid tooth spall is analyzed in detail in this work.

The estimation of mesh stiffness lays a foundation for gear dynamics. Dynamic
analysis is valuable for operating status monitoring and gear fault diagnosis [15,16]. Using
statistical methods to evaluate spall severity was suitable under low velocity and low
excitation [17]. Dadon et al. [18] researched the effect of different gear imperfections on
fault detection. Ma and Chen [19] studied the differences in vibration signals of tooth
crack and tooth spall. Modification coefficients were introduced to research the impact
of the spalls on gear dynamics [20]. Chen et al. [21] compared the mesh characteristics
of helical gears with spalling faults using analytical and finite-element methods. Based
on the theoretical and experimental study, Huangfu et al. [22] investigated the meshing
and dynamic characteristics of a spalled gear system. Luo et al. [23] demonstrated that
tooth spall and sliding friction have an evident effect on kinetic performance. Shi et al. [24]
discussed the dynamic characteristics of the gear with double-teeth spalling fault. In terms
of global dynamics, Ma [25] employed the singularity theory to evaluate the bifurcation
characteristics of the gear system with tooth spalling.

Two drawbacks in these previous models are found. Mesh stiffness of the high-contact-
ratio gear with ellipsoid spalling defects is not calculated. Secondly, motion state analysis
of the gear with localized spalling defects under excitation frequency and gear backlash is
not considered. The above deficiencies are the main contributions of this study. Highlights
of this paper are listed as follows.

(1) Modeling of the mesh stiffness of the high-contact-ratio gear system with localized
ellipsoid spalling.

(2) Bifurcation characteristic of the high-contact-ratio gear system with localized ellipsoid
tooth spalling fault is discussed.

(3) Experiments are carried out for vibration measurement to validate the proposed
dynamic model.

The rest of the article is arranged as follows. Section 2 describes the modeling of the
mesh stiffness through the precise tooth profile equation of the high-contact-ratio gear
and the ellipsoid equation. Section 3 illustrates the proposed dynamic model of the gear-
bearing system. Section 4 discusses the numerical results. Section 5 is about the vibration
experiments. The conclusions are presented in Section 6.

2. Mesh Stiffness Computation

The alternating meshing process of two and three gear pairs causes the variation of
mesh stiffness. It also plays the role of internal excitation of the gear system. It is of great
significance to develop an analytical model to calculate the mesh stiffness.

2.1. Accurate Tooth Profile Equation

The tooth profile of high contact ratio gear comprises tooth tip arc line, involute tooth
profile, and tooth root transition curve. The motion of a rack-type cutting tool is equivalent
to the meshing of the rack and pinion. In the process of machining, the cutter’s machining
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pitch line is always tangent to the gear’s machining pitch circle [26]. The profile of the rack-
type cutting tool is shown in Figure 1. As presented in Figure 2, during gear machining,
the involute part of the tooth profile is cut directly by the straight part of the cutter (BC),
and the fillet part of the cutter (AB) cuts the transition part. The transition part is the
isometric curve of the extended involute. This extended involute is depicted by the center
of the tool’s rounded corner. An x–y coordinate system with the center of the gear as the
origin is shown. The gear teeth are usually considered as a cantilever beam of a variable
cross-section. The coordinates of any contact point: i, on the involute part are expressed
as follows. {

xi = rb[(αi + θb) sin αi + cos αi]

yi = rb[(αi + θb) cos αi − sin αi]
(1)

rb denotes the radius of the gear base circle. αi is the working load angle acting on the
contact point: i. θb is half of the tooth base arc angle (θb = (π/2 + 2X·tanα0)/N + invα0).
x is the displacement coefficient. N is the number of teeth. inv(·) represents the involute
function of the pressure angle. Coordinates of point: j, on the transition curve are defined
as follows. {

xj = r cos ϕ− (a1/sin γ + rρ) sin(γ− ϕ)

yj = r sin ϕ− (a1/sin γ + rρ) cos(γ− ϕ)

(α0 ≤ γ ≤ π/2)

(2)

r and rρ are the radii of the gear pitch and the top corner of the tool, respectively. a is the
distance from the center of the top corner to the center line of the tool (a = (ha* + c*)m − rρ,
a1 = a − xm, ϕ = (a1/tanγ + b)/r, b = πm/4 + ha*·m·tanα0 + rρ·cosα0).
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Figure 1. Rack-type cutting tool profile.
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2.2. Analytical Model of Meshing Stiffness

Many tooth surface spalls have progressively varying depth and a curved base surface
in practice as shown in Figure 3. The ellipsoid tooth spall is formed by removing the
intersection of the gear and the ellipsoid. As shown in Figure 4, the ellipsoid tooth spall’s
maximum width, length, and center depth are ws, ls, and hs, respectively. The starting
and ending position is denoted by xstart and xend, respectively. θs is the angle between the
tangent of tooth spall and involute curve. In this work, the position (xstart, θs) and the
severity (ws, ls, hs) are fixed.
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Table 1 displays the comparison of key geometry parameters of the ellipsoid tooth
spall for healthy and spall gear.

Table 1. The ellipsoid tooth spall data.

Case ws (mm) ls (mm) hs (mm) θs (◦) xstart (mm)

Healthy gear 0 0 0 0 0
Spall gear 4 16 2 18 66

An ellipsoid’s parametric function is defined as follows.

x2

a2 +
y2

b2 +
z2

c2 = 1 (3)

a, b, and c are the radii of the ellipsoid along x, y, and z axis. Equations (4) and (5) are
derived assuming a and b as equal.

a = b = rs_max =
(0.5ws)

2 + h2
s

2hs
(4)
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c =
1
2

√
r2

s_maxl2
s

2rs_maxhs − h2
s

(5)

In the x–y plane, the coordinates of the ellipsoid center are derived as follows. xos = xstart + rs_max cos
(

π
2 − θs − arcsin

(
0.5ws
rs_max

))
yos = − tan(θs)(xos − xstart) + y(xstart) +

rs_max−hs
cos θs

, (hs < rs_max)
(6)

Figure 4b shows the cross-section of the ellipsoid tooth spall at a distance x, The ellipse
equation is as follows.

ys
2

bx2 +
zs

2

cx2 = 1 (7)

bx =

√
b2(1− (xos − xt)

2

a2 ) (8)

cx =

√
c2(1− (xos − xt)

2

a2 ) (9)

The length lxs is calculated is expressed as follows.

lxs =

√
c2

x

(
1− (yos − hx)

2/b2
x

)
(10)

As shown in Figure 4b, hx is the half-height of the gear tooth cross-section at a distance
x. The gear tooth contact length Le is given as follows.

Le = L− 2lxs (11)

L denotes the gear tooth width. The maximum depth of the ellipsoid tooth spall at a
distance x is determined as follows.

hxs = bx − (yos − hx) (12)

The corresponding area of the portion of the ellipse is deduced as follows.

Axs = 2
∫ −(yos−hx)

−bx

√(
1− ys2

b2
x

)
c2

xdys (13)

The cross-section area Ax of the ellipsoid tooth spall at a distance x is given below.

Ax = 2hxL− Axs (14)

Ax causes a shift in the cross-neutral section’s axis. The corresponding displacement
δxs between these two central axes is calculated as follows.

δxs =
Axshoxs

Ax
(15)

The area moment of inertia of the ellipse segments is expressed as follows.

Izs =
∫ −(yos−hx)

−bx
2ys

2

√(
1− y2

s
b2

x

)
c2

xdys − Axs(yos − hoxs)
2, (hx ≤ yos) (16)
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Under the tooth spall conditions, the area moment of inertia of the gear tooth cross-
section with respect to the new axis is modified as follows.

Iz =
2Lh3

x
3

+ 2Lhxδ2
xs −

(
Izs + Axs(hoxs + δxs)

2
)

(17)

Figure 5 shows the gear profile. Segments AB and BC represent the transition curve
and involute curve, respectively. P is the meshing point, and the corresponding pressure
angle is αp. F denotes the meshing force that is decomposed into Fx and Fy, respectively.
Based on the potential energy method [27], comprehensive mesh stiffness k(t) is deduced.

k(t) =
3

∑
i=1

1
1

khi
+ 1

kp
bi
+ 1

kp
si
+ 1

kP
ai
+ 1

kp
f i
+ 1

kg
bi
+ 1

kg
si
+ 1

kg
ai
+ 1

kg
f i

(18)
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1
ka

=



∫ xB
xA

sin2 αp
EA1

dx1 +
∫ xp

xB

sin2 αp
EA2

dx2 (xB < x ≤ xstart)∫ xB
xA

sin2 αp
EA1

dx1 +
∫ xs

xB

sin2 αp
EA2

dx2 +
∫ xp

xs

sin2 αp
EA3

dx3 (xstart < x ≤ xend)∫ xB
xA

sin2 αp
EA1

dx1 +
∫ xs

xB

sin2 αp
EA2

dx2 +
∫ xe

xs

sin2 αp
EA3

dx3 +
∫ xp

xe

sin2 αp
EA4

dx4 (xend < x)

(19)

1
kb

=



∫ xB
xA

M2
1

EI1
dx1 +

∫ xP
xB

M2
2

EI2
dx2 (xB < x ≤ xstart)∫ xB

xA

M2
1

EI1
dx1 +

∫ xs
xB

M2
2

EI2
dx2 +

∫ xp
xs

M2
3

EI3
dx3 (xstart < x ≤ xend)∫ xB

xA

M2
1

EI1
dx1 +

∫ xs
xB

M2
2

EI2
dx2 +

∫ xe
xs

M2
3

EI3
dx3 +

∫ xp
xe

M2
4

EI4
dx4 (xend < x)

(20)

1
ks

=



∫ xB
xA

1.2 cos2 αp
GA1

dx1 +
∫ xp

xB

1.2 cos2 αp
GA2

dx2 (xB < x ≤ xstart)∫ xB
xA

1.2 cos2 αp
GA1

dx1 +
∫ xs

xB

1.2 cos2 αp
GA2

dx2 +
∫ xp

xs

1.2 cos2 αp
GA3

dx3 (xstart < x ≤ xend)∫ xB
xA

1.2 cos2 αp
GA1

dx1 +
∫ xs

xB

1.2 cos2 αp
GA2

dx2 +
∫ xe

xs

1.2 cos2 αp
GA3

dx3 +
∫ xp

xe

1.2 cos2 αp
GA4

dx4 (xend < x)

(21)

1
k f

=
cos2 αP

EL

L∗
(

u f

s f

)2

+ M∗
(

u f

s f

)
+ P∗

(
1 + Q∗ tan2 αP

) (22)
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1
kh

=
πELe

4(1− υ2)
(23)

E, G, and υ stand for Young’s modulus, shear modulus, and Poisson’s ratio, respec-
tively. A1 and I1 denote the cross-sectional area and corresponding inertia within the
transition curve, respectively. A2, A4 and I2, I4 are the cross-sectional areas of the healthy
part of the involute curve and the related area moments of inertia. For the spall part of the
gear profile, A3 and I3 are evaluated by Equations (14) and (17), respectively. uf, sf, L*, M*,
P,* and Q* are given in reference [28].

Figure 6 shows the curve of mesh stiffness. The incidence of tooth spall reduces the
mesh stiffness. A localized spall fault is considered. Hence, it occurs once per revolution.
Thus, compared with the healthy gear, the reduction in mesh stiffness occurs mainly in the
double-tooth and the triple-tooth zones.
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3. Dynamic Model of System

The support of the rolling bearing is assumed to be rigid. The gear-bearing translation-
torsion dynamic lumped parameter model is established, as is shown in Figure 7, consider-
ing the influence of gear backlash, damping, comprehensive transmission error, friction
force, and time-varying meshing stiffness.
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3.1. Gear-Bearing System

m, I, T, and θ represent the mass, moment of inertia, torque, and torsional angular
displacement, respectively. Subscripts p and g indicate quantities associated with pinion and
gear, respectively. rb, kx, and ky denote the base circle radius, vertical radial support stiffness,
and horizontal radial support stiffness. The time-varying meshing stiffness, meshing
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damping, and backlash of the gear pair are expressed by km, cm, and 2b, respectively. e(t) is
the comprehensive static error along the tangent direction of the gear base circle.

As shown in Figure 7, the dynamic model has six degrees of freedom, including two
rotational degrees of freedom and four translational degrees of freedom along with the
horizontal and vertical directions. The generalized coordinate array is expressed as follows.

q =
[
θp, θg, xp, xg, yp, yg

]T (24)

3.2. Dynamic Meshing Force and Frictional Force

The relative displacement between pinion and gear along the line of action is expressed
as follows.

δ(t) = rbpθp − rbgθg + (xp − xg) cos ϕpg + (yp − yg) sin ϕpg − e(t) (25)

The dynamic meshing force between gears consists of elastic meshing forces caused by
time-varying stiffness and viscous meshing forces caused by meshing damping, denoted
as follows.

Fd = cm
.
δ(t) + km f (δ(t), b(t)) (26)

The gap function formula can be calculated as follows.

f (δ(t), b) =


δ(t)− b(t) (δ(t) > b(t))

0 (|δ(t)| ≤ b(t))

δ(t) + b(t) (δ(t) < −b(t))
(27)

b(t) represents the gear backlash. Based on fractal theory, it is expressed as follows [29].

b(t) = b0 −
Ra1

Rac(D1)
∑+∞

k=0 λ(D1−2)k sin(λkt)− Ra2

Rac(D2)
∑+∞

k=0 λ(D2−2)k sin(λkt) (28)

b0, λ, Ra1/Ra2, and D1/D2 denote initial gear backlash, characteristic scale coefficient,
actual surface roughness, and fractal dimension, respectively. Rac(D) is the function to get
the corresponding Ra with a particular fractal dimension, which can be obtained from the
reference [30]. The friction force between tooth surfaces during gear meshing is deduced
as follows.

Ff = ηµFd (29)

The direction of friction is variable, and the direction coefficient depends on the
following formula.

η = sign(ωpKN1 −ωgKN2) (30)

Friction force arms (Figure 8) are deduced as follows.

KN1 =
√
(r1 + r2)

2 − (rb1 + rb2)
2 −

√
ra22 − rb2

2 + rb1ω1t

KN2 =
√

ra22 − rb2
2 − rb1ω1t

(31)

The friction coefficient is related to relative sliding velocity, tooth surface roughness,
contact pressure, lubrication situation, etc. Hence, it is particularly difficult to predict the
friction coefficient value. The tooth friction model mainly includes the Coulomb friction
model, Buckingham empirical formula, Benedict Kelly model, and the friction model
based on Elastohydrodynamic lubrication (EHL) theory. Among these, the friction model
proposed by Xu [31] reasonably agrees with the measured data, so it is usually adopted to
predict the friction coefficient in this paper. It is based on non-Newtonian, thermal EHL
theory, and multiple linear regression analysis. The friction coefficient calculation results
are shown in Figure 9.
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The friction torque on the gear can be expressed as follows.

Mp = ηµFdKN1

Mg = ηµFdKN2
(32)

3.3. Differential Equations of Motion

Based on the time-varying meshing stiffness, transmission error, the fractal backlash,
the frictional force, and Newton’s law of motion, the differential equation of vibration
motion of the gear-bearing coupling system is deduced as follows.
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Ip
..
θp + Fdrbp −Mp = Ta

Ig
..
θg − Fdrbg + Mg = −Tb

mp
..
xp + cpx

.
xp + kpxxp + Fd cos ϕpg + Ff sin ϕpg = 0

mg
..
xg + cgx

.
xg + kgxxg − Fd cos ϕpg − Ff sin ϕpg = 0

mp
..
yp + cpy

.
yp + kpyyp + Fd sin ϕpg − Ff cos ϕpg = 0

mg
..
yg + cgy

.
yg + kgyyg − Fd sin ϕpg + Ff cos ϕpg = 0

(33)

Setting x1 = θp, x2=x1
′, x3 = θg, x4 = x3

′, x5 = xp, x6 = x5
′, x7 = xg, x8 = x7

′, x9 = yp,
x10 = x9

′, x11 = yg, and x12 = x11
′, the above equation is transformed into the following form.

x1
′ = x2

x2
′ = Ta

Ip
+

Mp
Ip
− Fdrbp

Ip

x3
′ = x4

x4
′ = −Tb

Ig
− Mg

Ig
+

Fdrbg
Ig

x5
′ = x6

x6
′ =

−Fd cos ϕpg
mp

− Ff sin ϕpg
mp

− cpx
.
xp

mp
− kpx xp

mp

x7
′ = x8

x8
′ =

Fd cos ϕpg
mg

+
Ff sin ϕpg

mg
− cgx

.
xg

mg
− kgx xg

mg

x9
′ = x10

x10
′ =

−Fd sin ϕpg
mp

+
Ff cos ϕpg

mp
−

cpy
.
yp

mp
− kpyyp

mp

x11
′ = x12

x12
′ =

Fd sin ϕpg
mg

− Ff cos ϕpg
mg

−
cgy

.
yg

mg
− kgyyg

mg

(34)

4. Numerical Simulation and Discussion

The high-contact-ratio gear system is non-linear. Table 2 lists its main parameters. The
parameters in blue boxes are gear basic parameters. Gear basic parameters were designed
via the KISSsoft software. Mesh damping ratio was obtained from the reference [32].
Additionally, the other parameters were calculated from the gear system via the Solidworks
software. The fourth-order Runge–Kutta numerical integration method is used to solve the
above differential equations of the system through the MATLAB software. The simulated
data are processed for generating a bifurcation diagram, three-dimensional frequency
spectrum, Poincaré map, phase map, etc.

Table 2. Main parameters of the high-contact-ratio gear.

Parameters Pinion/Gear Parameters Pinion/Gear
Tooth Number zp/zg 27/31 Designed contact ratio 2.135

Transverse modulus (mm) 5 Tooth width (mm) 20
Pressure angle (◦) 19 Moments of inertia (kg·m2) Ip/Ig 0.0051/0.0089

Addendum coefficient 1.32 Mass (kg) mp/mg 2.13/2.84
Modification coefficient 0 Mesh damping ratio 0.06
Hub bore radius (mm) 14 Input power (kW) 20

4.1. Effect of Excitation Frequency

Gear excitation frequency often changes with working conditions. It is one of the key
parameters affecting the dynamic characteristics of the gear system and is often used as
a variable parameter to compare the systematic dynamical performance. Here, surface
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roughness Ra is taken equal to 0.8 µm, and fractal dimensions D1 and D2 are equivalent
to 1.1. Figure 10 shows the bifurcation characteristics of the lateral displacement (xp) of
the pinion changing with the excitation frequency Ω. Its three-dimensional frequency
map is illustrated in Figure 11. Both figures reach an agreement on systematic bifurcation
behaviors.
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Figure 11. Three−dimensional frequency spectrum under different excitation.

The system is in periodic motion at low excitation frequency, as shown in Figure 12a,b.
When Ω equals 0.6218, resonance occurs in the system. The system enters chaotic regions
A1, A2, and A3 sequentially with the increasing excitation frequency. The system follows
quasi-periodic motion between the chaotic regions, as shown in Figure 12e to Figure 12h.
How the systems enter chaos is different. The system enters chaotic region A1 through
quasi-periodic motion, as shown in Figure 12c,d. However, the system enters chaotic
regions A2 and A3 by way of crisis, as shown in Figure 12i–l.



Machines 2022, 10, 154 12 of 18

Machines 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 11. Three−dimensional frequency spectrum under different excitation. 

The system is in periodic motion at low excitation frequency, as shown in Figure 
12a,b. When Ω equals 0.6218, resonance occurs in the system. The system enters chaotic 
regions A1, A2, and A3 sequentially with the increasing excitation frequency. The system 
follows quasi-periodic motion between the chaotic regions, as shown in Figure 12e to Fig-
ure 12h. How the systems enter chaos is different. The system enters chaotic region A1 
through quasi-periodic motion, as shown in Figure 12c,d. However, the system enters 
chaotic regions A2 and A3 by way of crisis, as shown in Figure 12i–l. 

As shown in Figure 11, the main components of the spectrum of gear system are 
composed of the meshing frequency and its harmonics. In the chaotic region, the fre-
quency spectrum is a continuous line. The value range of the chaotic regions is also incon-
sistent with Figure 10. 

Chaos means the uncontrollability and unpredictability of the system movement, 
which aggravates the vibration and noise of the system. In practice, such movement is to 
be avoided by appropriate measures. Through the above analysis of bifurcation charac-
teristics and frequency analysis, the frequency regions and critical bifurcation values of 
chaotic motions and motions of different periods are obtained. Hence, the desired motion 
state can be obtained artificially. 

   
(a) Ω = 0.523 (b) Ω = 0.622 (c) Ω = 0.741 

Machines 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

   
(d) Ω = 0.742 (e) Ω = 0.974 (f) Ω = 0.975 

   
(g) Ω = 0.977 (h) Ω = 0.984 (i) Ω = 1.007 

   
(j) Ω = 1.008 (k) Ω = 1.292 (l) Ω = 1.293 

Figure 12. Evolution process of system response for Ω ∈ [0.5, 1.3]. 

4.2. Effect of Gear Backlash 
Gear backlash is one of the main nonlinearities of the system. It generally changes 

the wear and the deformation of components of the system. The excitation frequency was 
set as a constant value (Ω = 1.2), and the other parameters remained unchanged in the 
study of bifurcation characteristics of the system. 

The bifurcation diagram and three-dimensional frequency spectrum are shown in 
Figures 13 and 14, respectively. Both cases have the same trend in motion state transitions. 
Several frequency jumps exist in the bifurcation diagram, for example, at b equals to 11.3. 
Various motion patterns such as single periodic motion, multi-periodic motion, quasi-pe-
riodic motion, and chaotic motions are seen within the rotational speed range. There are 
mainly four chaotic regions in the bifurcation diagram, namely B1, B2, B3, and B4. The 
way the system enters a chaotic region is different. The system enters B1, B2, and B4 
through quasi-periodic motion, as shown in Figure 15b,c,e,f,j,k. However, the system en-
ters B3 through the period-doubling route, as shown in Figure 15h,i. 

Figure 12. Evolution process of system response for Ω ∈ [0.5, 1.3].

As shown in Figure 11, the main components of the spectrum of gear system are
composed of the meshing frequency and its harmonics. In the chaotic region, the frequency
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spectrum is a continuous line. The value range of the chaotic regions is also inconsistent
with Figure 10.

Chaos means the uncontrollability and unpredictability of the system movement,
which aggravates the vibration and noise of the system. In practice, such movement is to be
avoided by appropriate measures. Through the above analysis of bifurcation characteristics
and frequency analysis, the frequency regions and critical bifurcation values of chaotic
motions and motions of different periods are obtained. Hence, the desired motion state can
be obtained artificially.

4.2. Effect of Gear Backlash

Gear backlash is one of the main nonlinearities of the system. It generally changes the
wear and the deformation of components of the system. The excitation frequency was set
as a constant value (Ω = 1.2), and the other parameters remained unchanged in the study
of bifurcation characteristics of the system.

The bifurcation diagram and three-dimensional frequency spectrum are shown in
Figures 13 and 14, respectively. Both cases have the same trend in motion state transitions.
Several frequency jumps exist in the bifurcation diagram, for example, at b equals to 11.3.
Various motion patterns such as single periodic motion, multi-periodic motion, quasi-
periodic motion, and chaotic motions are seen within the rotational speed range. There
are mainly four chaotic regions in the bifurcation diagram, namely B1, B2, B3, and B4.
The way the system enters a chaotic region is different. The system enters B1, B2, and
B4 through quasi-periodic motion, as shown in Figure 15b,c,e,f,j,k. However, the system
enters B3 through the period-doubling route, as shown in Figure 15h,i.
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5. Experimental Validation

A single-stage high-contact-ratio gear test rig is designed and developed to validate
the dynamic model. Dynamic characteristics under different speed conditions to imitate
real-life applications are studied. The test rig is set up at the Anhui Digital Design and
manufacturing laboratory, Hefei University of Technology, China. It can measure the
acceleration, acting load, and rotational speed of the system. The gearbox is coupled to
the servo motor, which has a maximum speed of 3000 rpm. The prime mover is Delta
make with a power capacity of 0.75 kW. ZHY-6001 piezoelectric accelerometers measure the
vibration signals of the system. Two DYN-200 torque transducers track the rotational speed
and torque of the gear system. A data acquisition system ZHKJ-1001 with six channels is
used. The sampling rate for the experimental trials is set at 10 kHz. The experimental setup
and test gears are shown in Figure 16. High-contact-ratio gear is a non-standard part. Thus,
the test gears are machined by slow wire cutting. Tooth spalling defects in the gears are
generated with the electric mill.
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The comparison between the experimental and simulated signals in the time-domain
and frequency-domain is presented in Figure 17. The gear vibration signal contains a lot of
interference noise caused by the operation of mechanical equipment. The white noise of the
ambient background appears in its full frequency band. In this paper, the moving average
method is used to denoise the collected experimental signals. The rotational frequency of
pinion and gear is fp (fp = np/60 = 10 Hz) and fg (fg = 8.7 Hz), respectively. The pinion’s
meshing frequency and meshing are fm (fm = zp ∗ fp = 270 Hz) and Tp (Tp = 1/fm = 0.0037 s).
The characteristic fault frequency is fs. It is the reciprocal of the failure period and can
expressed as follows.

f s =
1

xp2 − xp1
or f s =

1
xp3 − xp2

(35)

As shown in Table 3, there is little difference between the fault frequency calculated
from the abscissa data of three points (P1, P2, P3) in Figure 17a and the data of the three
points (P1, P2, P3) in Figure 17b.
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Table 3. Fault frequency calculation.

Fault Frequency (fs) Simulation Results Experimental Results Error
1

xp2−xp1
10 Hz 10 Hz 0%

1
xp3−xp2

10 Hz 9.75 Hz 2.5%

Figure 17a,b show the time-domain experimental and simulated horizontal displace-
ment signal. It can be observed that there is a certain difference in amplitude between
the two cases, which is caused by experimental errors. Compared to experimental results,
the simulated time-domain signal has a clear periodic impact to Zp ∗ Tp. The frequency
response characteristic of the system under the two conditions is presented in Figure 17c,d.
The frequency spectrum is mainly composed of gear mesh frequency and its harmonics.
Peaks appear in the frequency spectrum at n ∗ fm, where n is a positive integer. However,
the sideband structures can be seen clearly in both cases, as indicated by the arrow. The
vibration spectrum of the spalled high-contact-ratio gear system is primarily characterized
by the gear mesh frequency and its harmonics, and the sidebands induced by the modula-
tion phenomenon. The results of simulated signal agree with that of experimental signals,
which shows the reliability of the dynamic model proposed in this paper.
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6. Conclusions

A novel approach for calculating the meshing stiffness of gear with tooth spalling
defect is proposed. Simultaneously, a gear dynamic model is developed incorporating the
time-varying mesh stiffness, fractal backlash and time-varying friction. The bifurcation
characteristic of the gear system is acquired through the gear dynamic model. The vibration
signatures of the gear system obtained experimentally are used to validate the dynamic
model. Significant contributions of the study are summarized as follows:

(1) The system’s motion with ellipsoid tooth spalling fault exhibits rich bifurcation and
chaotic characteristics under the influence of excitation frequency and gear backlash.
The system presents diverse motion states, including single periodic motion, multi-
periodic motion, quasi-periodic motion, and chaotic motion. There are three typical
routes to chaos in the response, i.e., crisis to chaos, quasi-period to chaos, and period-
doubling bifurcation to chaos.

(2) The frequency spectrum of the gear system with localized spalling fault is mainly com-
posed of the meshing frequency and its harmonic components. The fault frequency
appears in the form of sidebands in the spectrum at low speed. The tooth spalling
fault could lead to the periodic impulses in the time-domain waveform.
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